
On the computational complexity of the Steiner k-eccentricity

Xingfu Lia, Guihai Yua, Aleksandar Ilićb, Sandi Klavžarc,d,e,†

aCollege of Big Data Statistics, Guizhou University of Finance and Economics

Guiyang, Guizhou, 550025, China.

E-mail: xingfuli@mail.gufe.edu.cn; yuguihai@126.com
bFacebook Inc, Menlo Park 94025, California, USA

E-mail: aleksandari@gmail.com
c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
d Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

sandi.klavzar@fmf.uni-lj.si

December 3, 2021

Abstract

The Steiner k-eccentricity of a vertex v of a graph G is the maximum Steiner
distance over all k-subsets of V (G) which contain v. A linear time algorithm for
calculating the Steiner k-eccentricity of a vertex on block graphs is presented. For
general graphs, an O(nν(G)+1(n(G) + m(G) + k)) algorithm is designed, where ν(G)
is the cyclomatic number of G. A linear algorithm for computing the Steiner 3-
eccentricities of all vertices of a tree is also presented which improves the quadratic
algorithm from [Discrete Appl. Math. 304 (2021) 181–195].

Key words: Steiner tree; Steiner k-eccentricity; block graph; tree; algorithm; compu-
tational complexity

1 Introduction

Every graph G = (V (G), E(G)) in this paper is simple and undirected. The order of G
will be denoted by n(G) and the size of G by m(G). The cyclomatic number, ν(G), of G
is the minimum number of edges of G whose removal makes G acyclic. If G is connected,
then ν(G) = m(G)−n(G) + 1. (The cyclomatic number of G can alternatively be defined
as the dimension of its cycle space.) If every block of G is a clique, then G is a block graph.
The distance dG(u, v) between vertices u and v in G is the length of a shortest u, v-path.

The eccentricity eccG(v) of a vertex v in G is the maximum distance between v and
all the other vertices of G. We refer to [3–8, 14, 19, 20] for different investigations of the

1

ar
X

iv
:2

11
2.

01
14

0v
1

 [
m

at
h.

C
O

]
 2

 D
ec

 2
02

1

eccentricity. In this work we study a generalization of the eccentricity, the Steiner k-
eccentricity. Its definition is based on Steiner trees which are in turn defined as follows.
If S ⊆ V (G), then a subgraph T of G is a Steiner S-tree, if T is a minimum connected
subgraph of G which spans all vertices from S. Every vertex from S is called a terminal
of T , and the set S is the terminal set of T . The Steiner k-eccentricity, ecck(v,G), of a
vertex v is the maximum size over all Steiner S-trees, where |S| = k and v ∈ S, that is,

ecck(v,G) = max
S⊆V (G)
|S|=k,v∈S

{m(T) : T is a Steiner S-tree} .

(For additional aspects of the Steiner distance see [12,13,15,18,22].) Note that eccG(v) =
ecc2(v,G). A Steiner S-tree T that realizes ecck(v,G) is a Steiner k-eccentricity tree of
v, we will shortly say that T is a Steiner k-ecc v-tree. The k-set S corresponding the
the Steiner k-ecc v-tree is a Steiner k-ecc v-set in G. The problem to find a Steiner
k-eccentricity tree of a given vertex is referred to as the Steiner k-eccentricity tree (k-
ST) problem. The decision version of the Steiner k-eccentricity tree problem (k-ST) is
presented in Table 1.

Table 1: The Steiner k-eccentricity tree problem (k-ST)
Instance: Graph G, v ∈ V (G), k ∈ [n(G)], constant c.

Question: Is there a Steiner S-tree T , where |S| = k and v ∈ S, such that m(T) ≥ c?

The minimum Steiner tree problem is a well-known NP-hard problem [11], but the
hardness of the k-ST problem is still unknown. In [16], a linear time algorithm was designed
to find the optimal value of the 3-ST problem on trees, while in [17] the result was extended
to the k-ST problem. In the following section we design a linear time algorithm for the
k-ST problem on block graphs. In the subsequent section we present an algorithm for the
problem on general graphs with the time complexity O(nν(G)+1(n(G) + m(G) + k)). In
Section 4 we present a linear algorithm to calculate the Steiner 3-eccentricity for all vertices
in a weighted tree. This improves the corresponding quadratic algorithm for (unweighted)
trees from [16]. We conclude the paper by giving several directions for future work.

2 A linear algorithm for block graphs

In this section, we devise a linear-time algorithm to solve the k-ST problem on block
graphs. The main idea is to reduce the problem from a block graph G to a special
spanning tree T such that the equqality ecck(v,G) = ecck(v, T) holds, and then to invoke
the algorithm from [17].

Let G be a block graph. If v ∈ V (G) and B is a block of G, then let NearG(v,B)
be a nearest vertex to v in the block B, see Fig. 1 for an example. We first observe that
NearG(v,B) is unique.

2

v

Near(v B G)

B

v

Near(v B G)

B

G ET(v G)

Figure 1: Block graph G (left) and T (v,G) (right). The dashed lines indicate the edges
which must be removed from G to construct T (v,G).

Property 2.1 If G is a block graph, v ∈ V (G), and B a block of G, then NearG(v,B) is
unique.

Proof. If v ∈ V (B), then clearly NearG(v,B) = v is unique. If v /∈ V (B), then let P be
a shortest path between v and the block B. Then the end-vertex x of P , x 6= v, is a cut
vertex of B which in turn implies that NearG(v,B) = x is again unique.

Let v be a vertex of a block graph G. For every block B of G remove every edge
which is not incident with NearG(v,B) and denote the resulting graph by T (v,G), for an
example see Fig. 1 again. Considering shortest paths between v and the cut vertices of
G we infer that T (v,G) is connected. Moreover, it is also clear (having in mind that G
is a block graph) that T (v,G) has no cycle. Hence T (v,G) is a spanning tree of G. In
addition, with Property 2.1 in hands it immediately follows from the construction that
T (v,G) is unique for each vertex v of a block graph G.

We are now ready for the key result needed for our algorithm for block graphs.

Theorem 2.2 Let v be a vertex of a block graph G. Then a Steiner k-ecc v-tree in T (v,G)
is also a Steiner k-ecc v-tree in G.

Proof. Let T1 be a Steiner k-ecc v-tree in T (v,G) and suppose on the contrary that T1
is not a Steiner k-ecc v-tree in G. Let T2 be a Steiner k-ecc v-tree in G. Then we have
m(T1) 6= m(T2). Moreover, since T1 is also a subtree of G, we must have m(T1) < m(T2).
We are now going to construct a tree T ′

2 of T (v,G) with m(T ′
2) > m(T1), which will

contradict the fact that T1 is a Steiner k-ecc v-tree in T (v,G).
Construct the tree T ′

2 from T2 through the following procedure. For every block B
of G, if there is an edge e ∈ E(B) ∩ E(T2) such that neither endpoint of e is the vertex
NearG(v,B), then delete the edge e from T2, and add an edge between one endpoint of e
and NearG(v,B). After finishing the whole procedure for all blocks of G, the tree T ′

2 is

3

constructed. Since the edge deletion and addition occur pairwise, m(T ′
2) = m(T2). Since

m(T1) < m(T2), we have the announced contradiction m(T1) < m(T ′
2).

Theorem 2.2 directly leads to Algorithm 1.

Algorithm 1: k-ECC-Block(v, G, k)

Input: Block graph G, vertex v ∈ V (G), an integer k ≥ 3.
Output: ecck(v,G).

1 Determine T (v,G);
2 Return ecck(v, T (v,G));

Theorem 2.3 If G is a block graph and v ∈ V (G), then Algorithm 1 computes ecck(v,G)
and can be implemented to run in O(k(n(G) +m(G))) time.

Proof. The correctness of the algorithm follows from Theorem 2.2.
Since T = T (v,G) is a tree, Step 2 can be implemented in O(k(n(T) + m(T)) time

by invoking the corresponding algorithm from [17]. As for Step 1, to determine T (v,G)
efficiently, Algorithm 2 modifies the depth-first search (DFS) algorithm, and runs in linear
time.

Algorithm 2: Get-Tree(v,G)

Input: Block graph G, vertex v ∈ V (G).
Output: T (v,G).

1 Mark all vertices as ’unvisited ’, and mark the vertex v as ’visited ’;
2 for each unvisited vertex u ∈ NG(v) do
3 for each vertex w ∈ NG(u) do
4 if wv ∈ E(G) then
5 Delete uw from G;
6 end

7 end
8 Get-Tree(u,G);

9 end
10 return G;

3 On general graphs

The basic property that allows a fast algorithm for calculating the Steiner k-eccentricity
of a vertex in a tree is that every Steiner k-ecc v-tree contains a Steiner (k − 1)-ecc v-
tree [17]. This property does not hold in general graphs. In fact, as the example from
Fig. 2 demonstrates, the property does not hold even on unicycle graphs.

This example illustrates that it could be difficult to find a property that would lead to
a fast algorithm for calculating the Steiner k-eccentricity of a vertex on general graphs. In

4

v0 v1
v2

v3

v4

v5 v6

P1

P2

P3

P4

P5

P6

Figure 2: The Steiner 3-ecc tree of the vertex v0 is formed by the paths P1, P2, P3, P4,
and P6. The Steiner 2-ecc tree of v0 is formed by the paths P1, P5 and P6. Hence the
Steiner 3-ecc v0-tree does not contain a Steiner 2-ecc v0-tree.

this section, we present two algorithms to solve the k-ST problem in general graphs. The
first one is a brute-forced method, the other one reduces the problem from general graphs
to trees. The running time of the brute-forced method grows exponentially with k, while
the running time of the latter algorithm grows exponentially in ν(G).

3.1 Brute-force algorithm

The definition of the Steiner k-eccentricity of a vertex leads to a direct, brute-force al-
gorithm as follows. Let v be a vertex for which we are going to calculate the Steiner
k-eccentricity in a graph G. Initially, enumerate all (k − 1)-subsets S in V (G) \ {v}. For
each of these sets S then invoke an algorithm to find a minimum Steiner tree for the set
S ∪ {v}. Finally, choose the maximum size among all these minimum Steiner trees.

The Steiner tree problem is a well-known NP-hard problem [11]. Erickson, Monma,
and Veinott [9] designed an exact algorithm for the Steiner tree problem with running
time O(3kn + 2k(m + n log n)), where n = n(G), m = m(G), and k is the number of
terminals. Fuchs et al. [10] and Vygen [21] followed by exact algorithms with running

times O(2k+(k/2)1/3(lnn)2/3) and O(nk2k+log2 k log2 n), respectively. Note that the running
time of all these algorithms grows exponentially with the number of terminals. So the
running time of the brute-forced method also grows exponentially with respect to the
number of terminals.

3.2 Reducing to trees

We now devise a novel algorithm whose running time does not grow exponentially on the
number of terminal, that is, on k. The key for the algorithm is the following result, where
T (G) denotes the set of all spanning trees of a connected graph G.

5

Theorem 3.1 If G is a connected graph, then

ecck(v,G) = min{ecck(v, T) : T ∈ T (G)} . (1)

Proof. Let G be a graph, v ∈ V (G), and T s spanning tree of G. Then we claim that the
size of a Steiner k-ecc v-tree in G is not larger than the size of a Steiner k-ecc v-tree in T .

Suppose on the contrary that there is a Steiner k-ecc v-tree T1 in T such that m(T1)
is less than the size of a Steiner k-ecc v-tree in G. Let Tv be a Steiner k-ecc v-tree in G
and Sv be the corresponding Steiner k-ecc v-set. Then we have m(T1) < m(Tv). Since T
is a spanning tree of G, we clearly have Sv ⊆ V (T). Moreover, the size of the minimum
Steiner tree on the set Sv in T is not less than the size of Tv. Let T2 be a minimum Steiner
tree on the set Sv in T . Then we have m(Tv) ≤ m(T2) and therefore, m(T1) < m(T2).
This contradicts to the assumption that T1 is a Steiner k-ecc v-tree in T , hence the claim
is proved.

From the claim it now follows that the value of ecck(v,G) is equal to min{ecck(v, T) :
T ∈ T (G)}.

In order to determine the Steiner k-eccentricity of a vertex in a graph G, Theorem 3.1
says that it suffices to calculate the Steiner k-eccentricity of the vertex in every spanning
tree. In our algorithm we enumerate all possible edge sets of size ν(G) rather than enu-
merating all spanning trees. Moreover, we calculate the Steiner k-eccentricity of a vertex v
in a spanning tree as soon as the spanning tree is enumerated, and maintain the maximum
Steiner k-eccentricity of v over all currently enumerated spanning trees. The enumerating
method is based on the following recursive equation. (Recall that if a graph G is a tree
itself, then one can invoke the linear time algorithm from [17] to calculate the Steiner
k-eccentricity of v.)

ecck(v,G) =

ecck(v,G); G is a tree,

min
e∈E(C)

{ecck(v,G− e)}; otherwise ,
(2)

where C is a cycle of G. The whole procedure is summarized in Algorithm 3, where the
parameter current-opt is initialized to be zero and used to store the currently maximum
Steiner k-eccentricity.

6

Algorithm 3: k-ECC(v, G, k, current-opt)

Input: Graph G, v ∈ V (G), integer k ≥ 3.
Output: The Steiner k-eccentricity of v in G.

1 if G is a tree then
2 temp ← Steiner k-eccentricity of G;
3 if temp < current-opt then
4 current-opt ← temp
5 end
6 return current-opt ;

7 end
8 else
9 C ← simple cycle of G;

10 for each edge e of C do
11 H ← G− e;
12 k-ECC(v, H, k, current-opt);

13 end

14 end

Theorem 3.2 Let G be a connected graph and v ∈ V (G). Then Algorithm 3 calculates the
Steiner k-eccentricity of v and can be implemented to run in O(nν(G)+1(n(G)+m(G)+k))
time.

Proof. The correctness of the algorithm follows from Theorem 3.1.
For the time complexity, we first note that in Step 2 we can apply the linear algorithm

from [17] and that for Step 9 we can use the BFS algorithm starting from v.
For the rest of the proof set s = ν(G), n = n(G), and m = m(G). Let T (v, s) be the

running time of Algorithm 3. By (2) we have

T (v, s) =

{
O(kn); s = 0,

O(n+m) + `1 ∗ T (v, s− 1); s > 0,
(3)

where `1 = m(C). Setting M=n+m, we can argue as follows:

T (v, s) = O(M) + `1 ∗ T (v, s− 1)

= O(M)(1 + `1 + `1 ∗ `2 + · · ·+ Πs
i=1`i) + (Πs

i=1`i) ∗ T (v, 0)

= O(M)(1 +O(n) +O(n) ∗O(n) + ...+ Πs
i=1O(n)) + (Πs

i=1O(n)) ∗O(kn)

= O(ns+1(n+m+ k)),

and we are done.

Note that the time complexity of Algorithm 3 grows exponentially with ν(G) rather
than with k.

7

4 Linear time to calculate Steiner 3-eccentricities for all ver-
tices

As already mentioned, in [16] a linear time algorithm to calculate the Steiner 3-eccentricity
of a vertex of a tree was designed. In case one wishes to determine the Steiner 3-eccentricity
of all vertices, for instance in order to compute the average Steiner 3-eccentricity, then
this approach yields a quadratic algorithm. In this section we demonstrate that also the
Steiner 3-eccentricity of all vertices of a tree can be computed in linear time. Moreover,
we also extend this result to weighted trees.

Let T and Tr, respectively, be a rooted weighted tree on n vertices and the subtree
rooted at a vertex r ∈ V . In other words, Tr is a subgraph induced on vertex r and all of
its descendants.

The root of T is assigned by an arbitrary vertex. The weights of edges are stored in an
adjacency list named as adj. The linear algorithm is two-stage DFS procedures. Details
for the DFS algorithm can be found in [1]. The first stage is to compute the longest paths
from v in the subtree rooted at v for every vertex v, while the second one is to update
the longest paths with the upwards path via parent node for the purpose of computing
Steiner 3-eccentricities. The first stage and the second stage are respectively showed in
Algorithms 4 and 5.

Algorithm 4: DFS stage1 (v)

Input: The adjacency matrix of the tree T with the root vertex root.
Output: The downwards arrays path weight, path index, attached weight.

path weight[v] = (0, 0, 0);
path index[v] = (−1,−1,−1);
attached weight[v] = (0, 0, 0);
for every neighbor u of v do

if parent[u] = −1 and u 6= root then
parent[u] = v;
DFS stage1(u);
update(v, u, adj weight[v][u] +
path weight[0][u],max(path weight[1][u], attached weight[0][u]));

end

end

8

Algorithm 5: DFS stage2 (v)

Input: The outputs of DFS stage1.
Output: The arrays path weight, path index, attached weight.

mark[v] = 1;
u = parent[v];
if u 6= −1 then

up path weight = 0;
up attached weight = 0;
if path index[0][u] 6= v then

up path weight = adj weight[u][v] + path weight[0][u];
if path index[1][u] 6= v then

up attached weight = max(path weight[1][u], attached weight[0][u]);
end
else

up attached weight = max(path weight[2][u], attached weight[0][u]);
end

end
else

up path weight = adj weight[u][v] + path weight[1][u];
up attached weight = max(path weight[2][u], attached weight[1][u]);

end
update(v, u, up path weight, up attached weight);

end
for every neighbor u of v do

if mark[u] = −1 then
DFS stage2(u);

end

end

The Steiner 3-eccentricity of the vertex v can be computed as

ε3(v) = path weight[v][0] + max{path weight[v][1], attached weight[v][0]},

where path weight[v] is initialized as (0, 0, 0) and represents the length of the longest
path from the vertex v in the subtree Tv; path index[v] is initialized as (−1,−1,−1)
and represents the neighbor of v on the longest path from the vertex v in the subtree
Tv; attached weight[v] is initialized as (0, 0, 0) and represents the length of the longest
subpath attached at the longest path in the subtree Tv strictly bellow v.

The main helper function update(v, u, new weight, new attached weight) is to keep
the top three values for the longest paths coming from the vertex v and implemented by
the C code in Appendix.

9

The first stage DFS stage1 is to recursively traverse all neighbors of the vertex v.
After the subtree is processed, we update the values for the node v based on the values
for each of the subtrees. We traverse the nodes in the pre-order phase in the second
stage DFS stage2. We update the values for the root and then run computation for the
neighbors.

Theorem 4.1 There is a linear-time algorithm to calculate the Steiner 3-eccentricities
for all vertices in a weighted tree T .

Proof. Given that the algorithm consists of two traversals using DFS algorithms and
with linear initialization, the time complexity of the algorithm equals O(n). There are six
additional vectors of size n, and therefore the memory complexity of the algorithm equals
O(n) as well.

The correctness of the algorithm directly follows from the definition of Steiner 3-
eccentricities for the root vertex v. For other vertices, we effectively compute the top
three longest paths and attached paths - which is equivalent as considering those vertices
as roots.

5 Conclusion

We presented a linear-time algorithm to solve the k-ST problem on block graphs, and an
algorithm to solve the k-ST problem on general graphs, where the exponential growth of
the running time depends only on the cyclomatic number of a graph.

It seems that if a graph is dense, then the Steiner k-eccentricity of a vertex may be easy
to find. For instance, this is the case for complete graphs and for complete graphs with
one or two edges removed. Inspired by this, an open question is how to modify Algorithm
3 so that it works well not only for small values of ν but also when ν is large.

For calculating the Steiner k-eccentricity of a vertex in a graph G, we showed that
there is an algorithm whose running time grows exponentially on µ but is independent
of the input parameter k. On the other hand, is there is a fixed-parameter tractable
algorithm [2] to solve this problem? Moreover, there is still no answer to the question of
whether the problem is NP-hard.

Let’s turn back to the k-ST problem. One can also ask whether there is a k-set S
such that the size of the minimum Steiner tree on S is at least c. This yields the Steiner
k-eccentricity set problem (k-SES). The decision version of the Steiner k-eccentricity set
problem (k-SES) is presented in Table 2.

For every vertex v in a graph G, there is a k-set S1 such that a minimum Steiner tree on
S1 has at least c edges if and only if there is a minimum Steiner tree on some k-set S2 such
that the size of the Steiner tree is at least c, where v ∈ S1 and v ∈ S2. In other words,
there is a ”YES” answer to the k-ST problem if and only if there is a ”YES” answer
to the k-SES problem. Therefore, the k-ST problem is as hard as the k-SES problem.

10

Table 2: The Steiner k-eccentricity set problem (k-SES)
Instance: Graph G, v ∈ V (G), k ∈ [n(G)], constant c.

Question: Is there a k-set S, where v ∈ S, such that the size of a minimum
Steiner tree on S is at least c?

However, algorithms to solve these two problems could be different. It seems that there
is no brute-force algorithm to solve the k-SES problem.

Finally, we designed an O(n)-time algorithm to calculate Steiner 3-eccentricities for all
vertices of a tree. Does this result extend to k ≥ 4?

Acknowledgements

This work was supported by Science Foundation of Guizhou University of Finance and
Economics (2020XYB16), Science Foundation of Guizhou University of Finance and Eco-
nomics (2019YJ058). Sandi Klavžar acknowledges the financial support from the Slovenian
Research Agency (research core funding P1-0297, and projects N1-0095, J1-1693, J1-2452).

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms,
Third Edition, MIT Press, Cambridge, 2009.

[2] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, Cham, 2015.

[3] P. Dankelmann, W. Goddard, C. Swart, The average eccentricity of a graph and its
subgraphs, Util. Math. 65 (2004) 41–51.

[4] P. Dankelmann, S. Mukwembi, Upper bounds on the average eccentricity, Discrete
Appl. Math. 167 (2014) 72–79.

[5] P. Dankelmann, F. J. Osaye, Average eccentricity, k-packing and k-domination in
graphs, Discrete Math. 342 (2019) 1261–1274.

[6] P. Dankelmann, F. J. Osaye, S. Mukwembi, B. Rodrigues, Upper bounds on the
average eccentricity of K3-free and C4-free graphs, Discrete Appl. Math. 270 (2019)
106–114.

[7] Z. Du, A. Ilić, On AGX conjectures regarding average eccentricity, MATCH Commun.
Math. Comput. Chem. 69 (2013) 597–609.

[8] Z. Du, A. Ilić, A proof of the conjecture regarding the sum of the domination number
and average eccentricity, Discrete Appl. Math. 201 (2016) 105–113.

11

[9] R. E. Erickson, C. Monma, A. F. Veinott, Send-and-split method for minimum-
concave-cost network flows, Math. Oper. Res. 12 (1987) 634–664.

[10] B. Fuchs, W. Kern, D. Mölle, S. Richter, P. Rossmanith, X. Wang, Dynamic pro-
gramming for minimum Steiner trees, Theory Comput. Syst. 41 (2007) 493–500.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979.

[12] T. Gologranc, Steiner convex sets and Cartesian product, Bull. Malays. Math. Sci.
Soc. 41 (2018) 627–636.

[13] S. Klavžar, D. Kuziak, I. Peterin, I. G. Yero, A Steiner general position problem in
graph theory, Comput. Appl. Math. 40 (2021) Paper 223.

[14] A. Ilić, On the extremal properties of the average eccentricity, Comput. Math. Appl.
64 (2012) 2877–2885.

[15] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math.
Graph Theory 36 (2016) 455–465.

[16] X. Li, G. Yu and S. Klavžar, On the average Steiner 3-eccentricity of trees, Discrete
Appl. Math. 304 (2021) 181–195.

[17] X. Li, G. Yu, S. Klavžar, J. Hu, B. Li, The Steiner k-eccentricity on trees, Theoret.
Comput. Sci. 889 (2021) 182–188.

[18] Y. Mao, P. Dankelmann, Z. Wang, Steiner diameter, maximum degree and size of a
graph, Discrete Math. 344 (2021) Paper 112468.

[19] H. Smith, L. A. Székely, H. Wang, Eccentricity sum in trees, Discrete Appl. Math.
207 (2016) 120–131.

[20] Y. Tang, B. Zhou, On average eccentricity, MATCH Commun. Math. Comput. Chem.
67 (2012) 405–423.

[21] J. Vygen, Faster algorithm for optimum Steiner trees, Inform. Process. Lett. 111
(2011) 1075–1079.

[22] D. Weißauer, Isometric subgraphs for Steiner distance, J. Graph Theory 94 (2020)
597–613.

12

	1 Introduction
	2 A linear algorithm for block graphs
	3 On general graphs
	3.1 Brute-force algorithm
	3.2 Reducing to trees

	4 Linear time to calculate Steiner 3-eccentricities for all vertices
	5 Conclusion

