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cepts have been recently introduced: (i) two elements of P are mutually visible
if there is a shortest path between them without further elements of P ; (ii) P
is a mutual-visibility set if its elements are pairwise mutually visible; (iii) the
mutual-visibility number of G is the size of any largest mutual-visibility set. In
this work we continue to investigate about these concepts. We first focus on
mutual-visibility in Cartesian products. For this purpose, too, we introduce
and investigate independent mutual-visibility sets. In the very special case
of the Cartesian product of two complete graphs the problem is shown to be
equivalent to the well-known Zarenkiewicz’s problem. We also characterize
the triangle-free graphs with the mutual-visibility number equal to 3.
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1 Introduction

Let G = (V (G), E(G)) be a connected, undirected graph and X ⊆ V (G) a subset
of the vertices of G. Two vertices of X are mutually visible if there exists a shortest
path (also called geodesic) between them without further vertices in X. X is a
mutual-visibility set if its vertices are pairwise mutually visible. If X ⊆ V (G) and
x, y ∈ X, then we say that x and y are X-visible, if there exists a shortest x, y-path
P such that V (P ) ∩ X = {x, y}. The size of a largest mutual-visibility set is the
mutual-visibility number of G, and it is denoted by µ(G).

In [8], the author started the study about this invariant and the mutual-visibility
sets in some classes of graphs, after showing that the problem of finding a mutual-
visibility set with a size larger than a given number is NP-complete. There are
different motivations for addressing this problem. The first comes from the role that
mutual visibility plays in problems arising in the context of distributed computing by
mobile entities. Another derives from communication problems in computer/social
networks, where vertices of a network in mutual visibility may represent entities
that want to efficiently send data in such a way that the exchanged messages do not
pass through other entities.

Related work. The past two decades have seen rapid growth and development
of the field of distributed computing by mobile entities [12], whose aim is the study
of the computational and complexity issues arising in systems of decentralized com-
putational entities operating either in the Euclidean plane or in some discrete en-
vironment (e.g., a graph). In both settings, the research concern is on determining
what tasks can be performed by the entities, under what conditions, and at what
cost. One of such basic task is called Mutual Visibility and has been introduced
in [7] under the assumption that three collinear entities are not mutually visible:
given an arbitrary initial configuration of n entities located at distinct positions,
they autonomously arrange themselves in a configuration in which each entity is in
a distinct position and from which it can see all other entities.

Starting with this initial work, many papers have addressed the same problem
(e.g., see [2, 4, 28]). Later, similar visibility problems were considered in different
contexts, where the entities are “fat entities” modeled as disks in the Euclidean
plane (e.g., see [29]) or are points on a grid based terrain and their movements are
restricted only along grid lines (e.g., see [1]).

However, questions about sets of points and their mutual visibility in the Eu-
clidean plane have been investigated since the end of XIX century. In [10] Dudeney
posed the still open no-three-in-line problem: find the maximum number of points
that can be placed in an n× n grid so that no three points lie on a line. Motivated
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by the Dudeney’s problem, in [22] the General Position problem in graphs was
introduced. A couple of years earlier and in a different language, an equivalent
problem was posed in [6]. A subset S of vertices in a graph G is a general position
set if no triple of vertices from S lie on a common geodesic in G. The General
Position problem is to find a largest general position set of G, the order of such
a set is the general position number gp(G) of G. Since its introduction, the general
position number has been studied for several graph classes (e.g., grid networks [23],
cographs and bipartite graphs [3], graph classes with large general position num-
ber [31], Cartesian products of graphs [18, 19, 32, 33], and Kneser graphs [15, 27]).

The difference between a general position set S and a mutual-visibility set X
is that two vertices are in X if there exists a shortest path between them with no
further vertex in X, whereas two vertices are in S if for every shortest path between
them no further vertex is in S. The two concepts are intrinsically different, but also
closely related, since the vertices of a general position set are in mutual visibility.

Outline and results. In the rest of the introduction, we provide basic definitions
and notation. In the next section, independent mutual-visibility sets are introduced
and a couple of related results proved. We use these sets in Section 3 to bound
the mutual-visibilty number of Cartesian product graphs. Then we prove that if
a maximum mutual-visibility set of a graph G is independent, then µ(Kk�G) =
k · µ(G). For the very special case of µ(Km�Kn) we show that its computation
is equivalent to a special case of Zarenkiewicz’s problem, which is a notorious open
problem. The main result is given in Section 4, where we prove that if G is a
connected, triangle-free graph, then µ(G) = 3 if and only if G is a tree with three
leaves or a so-called frog graph.

Basic definitions. Since two vertices from different components of a graph are
not mutually visible, all graphs in the paper are connected unless stated otherwise.

For a natural number n, we set [n] = {1, . . . , n}. Given a graph G, V (G) and
E(G) are used to denote its vertex set and its edge set, respectively. The order of
G, that is |V (G)|, is denoted by n(G). The distance function dG on a graph G is the
usual shortest-path distance. The diameter diam(G) of G is the maximum distance
between pairs of vertices of the graph.

If X ⊆ V (G), then G[X] denotes the subgraph of G induced by X. We denote
by Pk any induced path with k ≥ 1 vertices, by Ck any chordless cycle with k ≥ 3
vertices, and by Kk the clique with k ≥ 1 vertices. Given a cycle C, two vertices

u, v of C are antipodal if dC(u, v) =
⌊
n(C)
2

⌋
.

An independent set is a set of vertices of G, no two of which are adjacent. The
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cardinality of a largest independent set is the independence number α(G) of G.
A subgraph G′ of a graph G is isometric, if for every two vertices of G′, the

distance between them in G′ equals the distance in G. The subgraph G′ is convex, if
for every two vertices of G′, every shortest path in G between them lies completely
in G′. Clearly, each convex subgraph is isometric.

2 Independent mutual-visibility number

In this section we introduce independent mutual-visibility sets. They will turn out
to be useful in the next section, but we believe that they may also be of independent
interest.

Let X be a mutual-visibility set of a graph G. If G[X] is edgeless, then we say
that X is an independent mutual-visibility set. The independent mutual-visibility
number µi(G) of G is the size of a largest independent mutual-visibility set. Clearly,
if G is an arbitrary graph, then

µi(G) ≤ min{µ(G), α(G)} . (1)

If G has small diameter, then we have the equality, more precisely, the following
holds.

Lemma 2.1 If diam(G) ≤ 3, then µi(G) = α(G).

Proof. If diam(G) = 1, then G is a complete graph and hence µi(G) = 1 = α(G).
Suppose next that diam(G) ∈ {2, 3} and let X be an arbitrary independent set of G.
We claim that X is also an independent mutual-visibility set. Let x, y be arbitrary
vertices from X and let P be a shortest x, y-path. Since X is an independent
set, P is of length 2 or 3. But then, again using the fact that X is independent,
V (P ) ∩ X = {x, y}. This means that x and y are X-visible and consequently
µi(G) ≥ α(G). The argument is completed by applying (1). �

Lemma 2.1 need not hold for graphs G with diam(G) ≥ 4. For instance, µi(P5) =
2 and α(P5) = 3.

In view of Lemma 2.1 we are interested in the graphs G for which µ(G) = µi(G)
holds. Additional reasons for this interest will be given in Section 3.

As the first example note that µ(Ck) = 3 = µi(Ck) holds for each k ≥ 6. From [8,
Corollary 4.3] we know that if L is the set of leaves of a tree T , then L is a mutual-
visibility set and µ(T ) = |L|. Hence, if n(T ) ≥ 3, then

µ(T ) = |L| = µi(T ) . (2)
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The corona G◦H of disjoint graphs G and H was introduced in [13] as the graph
obtained from the disjoint union of G and n(G) copies of H by joining the ith vertex
of G to every vertex in the ith copy of H. This graph operation has so far been
explored from many aspects, see [9, 14, 21]. Here we add the following result which
in particular yields a large class of graphs with µ = µi.

Proposition 2.2 If G is a (connected) graph with n(G) ≥ 2, and H is an arbitrary
graph, then

µ(G ◦H) = n(G)n(H) .

Moreover, for k ≥ 1, µ(G ◦Kk) = k · n(G) = µi(G ◦Kk).

Proof. Let V (G) = {v1, . . . , vn(G)}, and let Hi be the copy of H whose vertices are
in G◦H adjacent to vi, i ∈ [n(G)]. Then (G◦H)[V (Hi)∪{vi}] is the join of the one
vertex graph K1 and the graph Hi. If Hi is not complete, we can see it directly or
deduce from [8, Corollary 4.10] that µ((G ◦H)[V (Hi)]) = n(H). Hence, no matter

whether H is complete or not, ∪n(G)
i=1 V (Hi) is a mutual-visibility set of G ◦ H and

consequently µ(G ◦H) ≥ n(G)n(H).
For the reversed inequality assume on the contrary that µ(G ◦H) > n(G)n(H).

Let X be an arbitrary mutual-visibility set of G ◦ H of order µ(G ◦ H). Then X
necessarily contains at least one vertex of G. That is, setting k = |X ∩ V (G)|, we
have k ≥ 1. Note that if vi ∈ X, then, since n(G) ≥ 2, we have V (Hi) ∩X = ∅. It
follows that |X| ≤ k + (n(G) − k)n(H) = n(G)n(H) − k(n(H) − 1) ≤ n(G)n(H).
This contradiction implies that µ(G ◦H) ≤ n(G)n(H).

The second assertion of the theorem follows from the already proved assertion
and the fact that the set ∪n(G)

i=1 V (Hi) is independent when H = Kk. �

We point out that in Proposition 2.2 the graph H need not be connected because
G ◦H is connected no matter whether H is connected or not.

3 Mutual-visibility in Cartesian products

In this section we first give an upper and a lower bound on the mutual-visibility
number of general Cartesian product graphs, where the latter bound is expressed in
terms of the independent mutual-visibility number. Then we prove that if µi(G) =
µ(G), then µ(Kk�G) = k · µ(G). In the second part we reduce the problem of
computing µ(Km�Kn) to the well-known Zarenkiewitz’s problem [17, 25, 34, 35].
This implies that to compute µ(G�H) is an intrinsically difficult problem.

Recall that the Cartesian product G�H of graphs G and H has the vertex set
V (G) × V (H) and the edge set E(G�H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and h =
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h′, or, g = g′ and hh′ ∈ E(H)}. If (g, h) ∈ V (G�H), then the G-layer Gh through
the vertex (g, h) is the subgraph of G�H induced by the vertices {(g′, h) : g′ ∈
V (G)}. Similarly, the H-layer gH through (g, h) is the subgraph of G�H induced
by the vertices {(g, h′) : h′ ∈ V (H)}. Recall further the following known result.
(For more information on the Cartesian product we refer to the book [16].)

Lemma 3.1 If G and H are graphs and (g, h), (g′, h′) ∈ V (G�H), then

dG�H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′) .

Our first result on Cartesian products reads as follows.

Theorem 3.2 If G and H are graphs, then the following holds.

(i) µ(G�H) ≤ min{µ(G)n(H), µ(H)n(G)} ,
(ii) µ(G�H) ≥ max{µ(G)µi(H), µ(H)µi(G)} .

Proof. (i) If h ∈ V (H), then the G-layer Gh is a convex subgraph of G�H,
hence each pair of vertices from V (Gh) can only be mutually visible inside the layer.
Applying this fact to each vertex of H we get that µ(G�H) ≤ n(H)µ(G), cf. [8,
Lemma 2.3]. Analogously we see that µ(G�H) ≤ n(G)µ(H) also holds.

(ii) Let XG be a mutual-visibility set of G of size µ(G), and let XH be an
independent mutual-visibility set of H of size µi(H). We claim that X = XG ×XH

is a mutual-visibility set of G�H.
Let x = (g, h) and y = (g′, h′) be different vertices of X. We need to show x and

y are X-visible in G�H. Suppose first that h = h′. Then x and y both lie in the
G-layer Gh. Since Gh is a convex subgraph of G�H isomorphic to G, and XG is a
mutual-visibility set of G, the vertices x and y are X-visible in G�H. In the rest
we may thus assume that h 6= h′.

Since XG is a mutual-visibility set of G, there exists a shortest g, g′-path PG
such that V (PG) ∩ XG = {g, g′}. (In the case when g = g′, the path PG consists
of a single vertex g = g′.) Further, since XH is a mutual-visibility set of H, there
exists a shortest h, h′-path PH such that V (PH) ∩ XH = {h, h′}. Let h′′ be the
neighbor of h on PH . Since XH is independent we infer that h′′ 6= h′. Consider
now the x, y-path PG�H defined as follows: PG�H starts with the edge (g, h)(g, h′′),
then continues along the copy of PG in the layer Gh′′ , and ends with the copy of the
h′′, h′-subpath of PH in the layer g′H. (Note that if g = g′, then PG�H is simply the
copy of PH in the layer gH.) Using Lemma 3.1 it follows that PG�H is a shortest
x, y-path in G�H. Moreover, since V (PG�H) ∩ X = {x, y} we conclude that X
is a mutual-visibility set. Hence µ(G�H) ≥ µ(G)µi(H). By the commutativity of
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the Cartesian product we also have µ(G�H) ≥ µ(H)µi(G) and the result follows.
�

Theorem 3.2(ii) together with (2) yields the following consequence which should
be compared with the main theorem of [33] asserting that gp(T1�T2) = gp(T1) +
gp(T2) holds for trees T1 and T2 of order at least 3.

Corollary 3.3 If T1 and T2 are trees of order at least 3, then µ(T1�T2) ≥ µ(T1)µ(T2).

The bound of Theorem 3.2(i) is sharp. For instance, it was proved in [8, Theorem
4.6] that if r > 3 and s > 3, then µ(Pr�Ps) = 2 · min{r, s}. Moreover, the
two bounds of Theorem 3.2 can coincide. We demonstrate this by the next result
in which we determine the mutual-visibility number of a large class of Cartesian
product graphs.

Theorem 3.4 If k ≥ 2 and G is a graph with µ(G) = µi(G), then

µ(Kk�G) = k · µ(G) .

Proof. Since µ(Kk) = k, Theorem 3.2(i) yields

µ(Kk�G) ≤ n(Kk) · µ(G) = k · µ(G) .

On the other hand, using Theorem 3.2(ii) and the assumption µ(G) = µi(G), we get

µ(Kk�G) ≥ µ(Kk) · µi(G) = k · µ(G)

and we are done. �

3.1 Reduction of µ(Km�Kn) to Zarankievicz’s problem

The following lemma is the key for the reduction from the title.

Lemma 3.5 Let r, s ≥ 2 and let X ⊆ V (Kr�Ks). Then X is a mutual-visibility
set of Kr�Ks if and only if |X ∩ V (C)| ≤ 3 holds for each induced 4-cycle C of
Kr�Ks.

Proof. Let V (Kk) = [k] and set G = Kr�Ks. Suppose first that X is a mutual-
visibility set of G. Consider an arbitrary induced 4-cycle C of G. Then C has
consecutive vertices of the form (i, k), (j, k), (j, `), (i, `), where i 6= j and k 6= `. In
particular, C is a convex subgraph of G and hence |X ∩ V (C4)| ≤ 3 must hold.
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Conversely, let X ⊆ V (Kr�Ks) be such that |X ∩ V (C)| ≤ 3 holds for each
induced 4-cycle C of G. Consider arbitrary vertices x = (i, k) and y = (j, `) of X. If
either i = j or k = `, then x and y lie either in a common Ks-layer or in a common
Kr-layer. In either case, x and y are adjacent and hence X-visible. Suppose next
that i 6= j and k 6= `. Then the vertices x and y lie in the convex 4-cycle C with the
consecutive vertices (i, k), (j, k), (j, `), (i, `). Since |X ∩C| ≤ 3, we may without loss
of generality assume that (j, k) /∈ X. But then the path x = (i, k), (j, k), (j, `) = y
demonstrates that x and y are X-visible. Hence we can conclude that X is a mutual-
visibility set of G. �

Each induced 4-cycle C of Kr�Ks can be written as K2�K ′2, where K2 is the
projection of C onto G and K ′2 is the projection of C onto H. One often says that
such a 4-cycle is a Cartesian square. With this terminology in hand, Lemma 3.5
asserts that the problem of computing µ(Kr�Ks) is to find a largest subset of
vertices X, so that X intersects each Cartesian square in at most three vertices.
This brings us to the following:

Definition 3.6 (Zarankiewicz’s Problem) Let m, n, s, and t be given positive
integers. Determine z(m,n; s, t) the maximum number of 1s that an m × n binary
matrix can have provided that it contains no constant s× t submatrix of 1s.

From Lemma 3.5 we deduce:

Corollary 3.7 If m,n ≥ 2, then µ(Km�Kn) = z(m,n; 2, 2).

Values z(m,n; s, t) have been extensively studied, cf. [34], but even the values
z(m,n; 2, 2) are not known. We recall the following most relevant results that can
be found in [34], the first two as Theorems 13.2.19. and Theorem 13.2.21.

Theorem 3.8 [20, Kővári—Sós-Turán, 1954] For s, t > 1,

z(m,n; s, t) < (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m.

Corollary 3.7 together with Theorem 3.8 for the case s = t = 2 yields:

µ(Km�Kn) = z(m,n; 2, 2) < (n− 1)
√
m+m = (n− 1)

√
m+m.

Theorem 3.9 [5, 11, Brown, 1966; Erdős-Rényi-Sós, 1966] When n is sufficiently
large,

n3/2 − n4/3 ≤ z(n, n; 2, 2) ≤ 1

4
n(1 +

√
4n− 3) .
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Theorem 3.10 [34, Theorem 13.2.24.] If α = s−1
st−1 and β = t−1

st−1 , then

z(m,n; s, t) ≥
⌊(

1− 1

s! t!

)
m1−αn1−β

⌋
.

We note in passing that the usual construction leading to this lower bound(s) is to
use projective planes. In the special case of interest to us, Corollary 3.7 together
with Theorem 3.10 yields:

µ(Km�Kn) = z(m,n; 2, 2) ≥
⌊

3

4
m2/3n2/3

⌋
.

4 Triangle-free graphs G with µ(G) = 3

In [8], the following characterizations are proved:

• µ(G) = 1 if and only if G ' K1;

• µ(G) = 2 if and only if G ' Pn, n ≥ 2.

In this section we supplement these results by characterizing triangle-free graphs G
with µ(G) = 3. To this end, some preparation is needed.

Lemma 4.1 If G′ is an isometric subgraph of G, then µ(G) ≥ µ(G′).

Proof. Let X be a mutual-visibility set of G′. For each u, v ∈ X there is a shortest
u, v-path P in G′ such that X ∩ V (P ) = {u, v}. Since P is a shortest u, v-path also
in G, then u, v are mutually visible also in G. Hence X is also a mutual-visibility
set of G and thus µ(G) ≥ µ(G′). �

Since a convex subgraph is an isometric, Lemma 4.1 extends [8, Lemma 2.2]
which is stated for convex subgraphs. We also need the following fact based on
∆(G), the maximum degree of a vertex in a graph G.

Lemma 4.2 [8, Lemma 2.6] If G is a graph, then µ(G) ≥ ∆(G).

A frog graph is obtained by composing a cycle C with two paths Pr and Ps,
r, s ≥ 1 (cf. Fig. 1) as follows: given two antipodal vertices vr and vs of C, identify
vr (vs, respectively) with an external vertex of Pr (Ps, respectively). See Fig. 1.
Vertices vr and vs are called junction vertices of the frog graph. Notice that each
cycle graph is also a frog graph (it occurs when r = s = 1).

The graph H is the graph obtained from the disjoint union of two paths on three
vertices by adding an edge between the central vertices of the two paths, see Fig. 2.
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Figure 1: Examples of frog graphs.

y

w

x

z

Figure 2: The graph H.

Lemma 4.3 If the graph H is a subgraph of a triangle-free graph G, then µ(G) ≥ 4.

Proof. Consider a subgraph H of G and let X = {x, y, w, z} be the set containing
the four pendant vertices of H as described in Fig. 2.

We claim that X is a mutual-visibility set of G. As G is triangle-free, the x, y-
path of length 2 in H is a shortest path in G and hence x and y are X-visible
in G. Symmetrically, w and z are X-visible in G. It remains to show that each
pair of vertices at distance 3 in H is X-visible in G. It suffices to consider the
pair x, z because the argument for the other three such pairs is analogous. Clearly,
dG(x, z) ≤ dH(x, z) = 3. There is nothing to prove if dG(x, z) = 1. Suppose
dG(x, z) = 2. If x and z are not X-visible in G, each common neighbor of x and
z must be from {y, w}, but this is not possible as G is triangle-free. Finally, if
dG(x, z) = 3, then x and z are clearly X-visible in G. This proves the claim which
in turn implies that µ(G) ≥ 4. �

All is now ready for our main result.

Theorem 4.4 Let G be a connected, triangle-free graph. Then µ(G) = 3 if and
only if G is a tree with three leaves or a frog graph.

Proof. (⇐) If G is a tree with three leaves, then µ(G) = 3 as proved in [8, Corollary
4.3]. If G is a frog graph, then let C be its cycle, Pr and Ps its attached paths, and
vr, vs the corresponding junction vertices. Since C is a convex subgraph of G (and
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hence also isometric), Lemma 4.1 gives µ(G) ≥ µ(C). This implies µ(G) ≥ 3 since
µ(C) = 3 for any cycle (cf. [8, Lemma 2.8]). Assume now that there exists in G a
mutual-visibility set X with |X| ≥ 4. Notice first that |Pr∩X| ≤ 1 and |Ps∩X| ≤ 1
must hold. Indeed, if, say, Pr ∩ X = {u1, u2} and u3 ∈ (Ps ∪ C) ∩ X, then either
u3 and u1 or u3 and u2 are not X-visible. Notice also that X cannot be completely
contained in C. If Pr ∩ X = {u1}, let u2, u3 ∈ X be the vertices of C closest to
vr. Consider the two vr, vs-paths of C: u2 and u3 must belong to the same path,
otherwise u1 and any additional vertex u4 ∈ X are not X-visible. But, if u2 and
u3 belong to the same path, then since vr and vs are antipodal, u1, u2, u3 are not
pairwise X-visible. Then µ(G) ≤ 3.

(⇒) Since µ(G) = 3, Lemma 4.2 implies that ∆(G) ≤ 3. If ∆(G) = 2, then
G cannot be a path as we would have µ(G) ≤ 2. In the rest we may assume that
∆(G) = 3. We analyze different cases according to the number of cycles in G.

Assume that G has no cycles. Then G is a tree with ∆(G) = 3 and µ(G) = 3.
Moreover, G must have exactly three leaves, for otherwise µ(G) ≥ 4 would hold.

Assume that G has a single cycle C. We show that G is a frog graph. Recall
that ∆(G) = 3 and consider first the case in which G contains two vertices u, v with
degree 3 and at least one of them (say u) is not on C. In case v is on C, assume
without loss of generality that v is the vertex of C with degree 3 closest to u. Then,
the two neighbors of u and the two neighbors of v which do not lie on a shortest
u, v-path, form a mutual-visibility set of G, a contradiction with µ(G) = 3. Hence,
if in G there are vertices with degree 3, they all are on C. Consider the case in
which there are at least three such vertices. Then at least two of them (say u, v)
are not antipodal and hence there exists a mutual-visibility set of G containing the
four vertices adjacent to u and v not belonging to the shortest u, v-path. Again a
contradiction with µ(G) = 3. Two cases remain: (1) if C has a single vertex u such
that deg(u) = 3, then G is a frog graph; (2) if C has two vertices u, v with degree
3, they must be antipodal (otherwise we get the previous contradiction) and hence
G is again a frog graph.

Assume finally that G has more than one cycle. To complete the proof of the
theorem we are going to show that µ(G) ≥ 4. In the first subcase suppose that G
contains two vertex-disjoint cycles C ′ and C ′′. Let u′ ∈ V (C ′) and u′′ ∈ V (C ′′) be
selected such that dG(u′, u′′) is smallest possible. Then, having in mind that G is
triangle-free, the four vertices in (N(u′) ∩ C ′) ∪ (N(u′′) ∩ C ′′) are pairwise mutual-
visible. Observe next that if C ′ and C ′′ are cycles of G, then |V (C ′) ∩ V (C ′′)| = 1
is not possible because ∆(G) = 3. If two cycles share one single edge uv, then G
contains H and Lemma 4.3 yields µ(G) ≥ 4.

It remains to analyze the case in which each pair of cycles of G shares more
than one edge. Select a pair of cycles C ′, C ′′ such that n(C ′) + n(C ′′) is as small as
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possible, and assume without loss of generality that n(C ′) ≤ n(C ′′). Then, both C ′

and C ′′ are isometric subgraphs of G. According to the minimality of n(C ′)+n(C ′′),
it follows that C ′ ∩ C ′′ = Pn, where n ≥ 3 by the case assumption.

Consider the subgraph F = G[V (C ′) ∪ V (C ′′)] and let u, v be the end-vertices
of Pn. Then degF (u) = degF (v) = 3 and u and v are connected by three paths in
F . We may without loss of generality assume that Pn is a shortest among these
three u, v-paths. Let Pl and Pm be the other two paths such that l ≥ m ≥ n. Then
C ′ = G[V (Pn) ∪ V (Pm)] and C ′′ = G[V (Pn) ∪ V (Pl)].

Let x, y, z be three vertices such that:

• Pl = (u, . . . , z, . . . , v), where z divides Pl in the u, z-subpath of length d ≥ 1
and the z, v-subpath of length l − d− 1;

• Pn = (u, x, . . . , v), where x divides Pn in the u, x-subpath of length 1 and the
x, v-subpath of length n− 2;

• Pm = (u, . . . , y, . . . , v), where y divides Pm in the u, y-subpath of length d′ ≥ 1
and the y, v-subpath of length m− d′ − 1.

m− 1− d′

n− 2

Pm

x

u

v

C ′

y

Pl
l − 1− d

C ′′

z
d

d′

Pn

Figure 3: The subgraph F as defined in the proof of Theorem 4.4. The solid line represents
an edge, the dashed lines represent paths, and the gray arrows show the lengths of some
subpaths.

We set now a condition for the position of z on Pl such that x, v, z are mutually
visible in C ′′. To this aim, the following conditions must hold:

• (l − 1− d) ≤ (1 + d) + (n− 2);

• (1 + d) ≤ (l − 1− d) + (n− 2);
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• (n− 2) ≤ (l − 1− d) + (1 + d).

The last condition corresponds to l ≥ n − 2, which holds by hypothesis. The first
two conditions yield the following constraints about d:

l − n ≤ 2d ≤ l + n− 4 . (3)

This implies that when the length d of the u, z-subpath fulfills (3), x, v, z are mutu-
ally visible in C ′′. Analogously in C ′, by letting d′ fulfilling the following constraints,

m− n ≤ 2d′ ≤ m+ n− 4, (4)

then we get that x, v, y are mutually visible in C ′.

We now check whether (3) and (4) are sufficient to have that X = {v, x, y, z} is
a mutually visible set of F . To ensure this property, we need to prove the following:
(i) y does not obstruct the visibility of z and v; (ii) z does not obstruct the visibility
of y and v; (iii) both x and v do not obstruct the visibity of y and z, that is, the
y, z-path passing through u and with length d+ d′ is a shortest path in F .

Concerning proving (i), it corresponds to show that (l−1−d) ≤ d+d′+(m−1−d′).
The latter is equivalent to 2d ≥ l −m, which is guaranteed by (3). Similarly, (ii)
corresponds to show that (m − 1 − d′) ≤ d + d′ + (l − 1 − d); this is equivalent to
2d′ ≥ m− l which trivially holds since l ≥ m ≥ n.

Concerning proving (iii), it corresponds to show that all the following relation-
ships hold:

• d+ d′ ≤ (m− 1− d′) + (n− 2) + (1 + d). This relationship holds by (4).

• d+ d′ ≤ (d′ + 1) + (n− 2) + (l − 1− d). This relationship holds by (3).

• d+ d′ ≤ (m− 1− d′) + (l − 1− d). It corresponds to 2d+ 2d′ ≤ m+ l − 2 =
(m + n − 4) + (l − n + 2). Since 2d′ ≤ m + n − 4 by (4), if we overwrite (3)
by further imposing

l − n ≤ 2d ≤ l − n+ 2 , (5)

then we finally get that X = {v, x, y, z} is a mutually visible set of F .

In the rest of the proof we select d and d′ such that they fulfill (4) and (5), respec-
tively, and fix them. In this way the vertices z and y are uniquely defined.

Assume now that X is not a mutual-visibility set of G. The only possibility for
this is due to some path Pt that connects a vertex in Pl to a vertex in Pm. It can be
easily observed that this occurs when Pt connects z and y and two vertices in X are
not mutually visible, that is when one of the following pairs is not mutually visible:
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(a) y and v (that is, z obstructs the visibility of y and v);

(b) z and v (that is, y obstructs the visibility of z and v);

(c) z and x (that is, y obstructs the visibility of z and x);

(d) y and x (that is, z obstructs the visibility of y and x).

Assume that Pt has no vertex in common with the y, z-path passing on u in F .
We now prove that, in each of the above cases, the cycle C ′′′ formed by Pt, by the
y, u-subpath of Pm of length d′, and by the u, z-subpath of Pl of length d has order
less than n(C ′′), that is n(C ′′′) = (t− 1) + d+ d′ < n(C ′′) = l+n− 2 < l+n, which
is a contradiction with the minimality of n(C ′) + n(C ′′). Notice that the latter is
equivalent to

t < l + n− d− d′ + 1. (6)

Consider the case (a), in which z obstructs the visibility of y and v. In this case,
the length t− 1 of the y, z-path Pt must guarantee (t− 1) + (l− 1− d) < m− 1− d′,
that is:

t < m+ d− d′ − l + 1. (7)

According to (7), to prove (6) it is enough to show that the following holds:

l + n− d− d′ + 1 ≥ m+ d− d′ − l + 1.

Notice that this inequality is equivalent to 2d ≤ n + 2l −m, which trivially holds
by using (5).

Consider (b). In this case, the length t − 1 of the y, z-path Pt must guarantee
(t − 1) + (m − 1 − d′) < l − 1 − d. By using the same approach as in case (a),
this relationship still leads to prove that n(C ′′′) < n(C ′′). In fact, it is equivalent to
showing that 2d′ ≤ m+ n, which is trivially implied by (4).

Consider (c). In this case, the length t − 1 of the y, z-path Pt must guarantee
(t − 1) + d′ + 1 < d + 1. Proving n(C ′′′) < n(C ′′) is equivalent to showing that
2d ≤ l + n, which is trivially implied by (5).

Consider (d). In this case, the length t − 1 of the y, z-path Pt must guarantee
(t − 1) + d + 1 < d′ + 1. Proving n(C ′′′) < n(C ′′) is equivalent to showing that
2d′ ≤ l + n, which is implied by (4) and by the assumption l ≥ m.

This proves the claim that X is a mutual-visibility set of G when Pt has no
vertex in common with the y, z-path P passing on u in F . Assume now that Pt
shares some vertex with such a path P . Since Pt connects y and z, it must form
at least a cycle with P of length less than n(C ′′′). As above, this contradicts the
minimality of n(C ′) + n(C ′′). �
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5 Concluding remarks

As a continuation of the present investigation, it would in particular be desirable to
characterize the trees for which the equality holds in Corollary 3.3, and to charac-
terize all graphs G with µ(G) = 3.

As pointed out in the introduction, mutual-visibility sets are conceptually similar
to general position sets. Hence it would be interesting to investigate graphs G with
gp(G) = µ(G), where gp(G) is the general position number of G. For instance, the
equality holds in geodetic graphs, that is, graphs with the property that each pair
of vertices is connected by a unique shortest path, cf. [24, 26, 30].

Note that the Petersen graph is geodetic. In this respect it would be of interest
to consider µ(G) for graph G with diam(G) = 2.
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[11] P. Erdős, A. Rényi, V.T. Sós, On a problem of graph theory, Studia Sci. Math.
Hungar. 1 (1966) 215–235.

[12] P. Flocchini, G. Prencipe, N. Santoro, Distributed Computing by Oblivious
Mobile Robots, Synthesis Lectures on Distributed Computing Theory, Morgan
& Claypool Publishers, 2012.

[13] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970)
322–325.
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