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Abstract

Given a graph G, a set S of vertices in G is a general position set if no
triple of vertices from S lie on a common shortest path in G. The general
position achievement/avoidance game is played on a graph G by players A
and B who alternately select vertices of G. A selection of a vertex by a
player is a legal move if it has not been selected before and the set of selected
vertices so far forms a general position set of G. The player who picks the
last vertex is the winner in the general position achievement game and is
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the loser in the avoidance game. In this paper, we prove that the general
position achievement/avoidance games are PSPACE-complete even on graphs
with diameter at most 4. For this, we prove that the misère play of the
classical Node Kayles game is also PSPACE-complete. As positive results,
we obtain linear time algorithms to decide the winning player of the general
position avoidance game in rook’s graphs, grids, cylinders, and lexicographic
products with complete second factors.

Key words: general position sets; general position number; achievement game;
avoidance game; graph product
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1 Introduction

In 1985, Buckley and Harary [2] introduced two geodetic games for graphs: the
geodetic achievement game and the geodetic avoidance game. In both games, two
players (A and B) alternately select vertices which are not in the geodetic closure
of the vertices selected so far, where the geodetic closure of a subset S of vertices is
the set of all vertices on geodesics (shortest paths) between two vertices in S. The
first player unable to move is the loser in the achievement game, but is the winner
in the avoidance game. The authors determine the winner of both games in several
families of graphs [2]. In 1988, the result of [2] regarding wheel graphs was improved
in [23] and, in 2003, Haynes, Henning and Tiller [10] obtained results for trees and
complete multipartite graphs.

Clearly, at the end of both geodetic games, the geodetic closure of the set S of
selected vertices is the whole vertex set of the graph, since no other vertex can be
selected. However, possibly S is not minimal; that is, S may contain a proper subset
whose geodetic closure is the same as S. For example, in a path Pn v1v2 . . . vn, a
possible sequence of moves is v1, . . . , vn with Player A selecting the vertices vi for i
odd and Player B selecting the vertices vi for i even. So all vertices may be selected,
but the geodetic closure of only two vertices v1 and vn contains all vertices.

In order to avoid this situation and obtain minimal subsets regarding the geode-
tic closure, Klavžar, Neethu and Chandran [3] introduced two games in 2021: the
general position achievement game and the general position avoidance game (gp-
achievement and gp-avoidance for short). In both games, the set S of vertices
selected by the two players must be a general position set, which is a set such that
no three distinct vertices from S lie on a common shortest path in G. In the same
example of the path Pn v1v2 . . . vn for n ≥ 3, Player A chooses the first vertex (say
vj), Player B chooses the second vertex (say vk for k 6= j), and then Player A is
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unable to select the third vertex, losing the gp-achievement game and winning the
gp-avoidance game.

The general position problem of finding a largest general position set of a
graph is a generalization of the No-three-in-line problem in the n× n grid from dis-
crete geometry, which can be traced to the famous Dudeney’s “Puzzle with Pawns”
of his book “Amusements in Mathematics” [7] from 1917. In 1995, Korner [17] in-
vestigated the general position problem on hypercubes, while in [4] it was considered
for the first time on general graphs. However, the formalisation of the problem as we
know it today and the notation that is in use have been introduced in [20, 21]. Also
see [8, 18, 22, 25] for the related general position subset selection problem in com-
putational geometry. In 2018, it was proved that the general position problem

is NP-hard [20]. In 2019, general position sets in graphs were characterized [1] and,
after this, several additional papers on the general position problem were published,
many of them with bounds on the maximum size of a general position set and exact
values in graph products [5, 13, 14, 15, 16, 24, 27, 28].

As mentioned before, the gp-achievement game and the gp-avoidance game were
introduced in 2021 in [3]. In the game terminology, the gp-achievement game is the
normal game (the last to play wins) and the gp-avoidance game is the misère game
(the last to play loses). From the classical Zermelo-von Neumann theorem, in both
games one of the two players has a winning strategy, since they are finite perfect-
information games without draw [29]. So, the main question is: given a graph in one
of the two general position games, which player has a winning strategy? The two
games are independent, that is, winning the gp-achievement game in a graph does
not mean that the player loses the gp-avoidance game in the same graph. Figure 1
shows a graph on which player A has a winning strategy in both games. In both
games, A first selects the central vertex. By the symmetry of the graph, we may
assume w.l.o.g. that B replies by playing the vertex 2. With this, optimal strategies
for A are shown in the figure.

1

2

3

1

2 3 4

Figure 1: Player A wins in both games. The sequence of the chosen vertices is rep-
resented by numbers. Odd numbers are player A moves. The game gp-achievement
is illustrated in the left and the game gp-avoidance in the right.
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In [3], the gp-achievement game was investigated on Hamming graphs and Carte-
sian and lexicographic products. Among other results, it was proved that player A
wins the gp-achievement game on a bipartite graph G if and only if the number of
isolated vertices in G is odd.

In this paper, we determine the computational complexity of both games: the
gp-achievement game and the gp-avoidance game are PSPACE-complete even in
graphs with diameter at most 4. We obtain the hardness of the gp-achievement
game by a reduction from the classical Node Kayles game, which was proved to be
PSPACE-complete [26] in 1978. The hardness of the gp-avoidance game is obtained
by a reduction from the misère Node Kayles game, which is just as the normal
Node Kayles game, except that the last player to move loses the game. In order to
obtain our result, we first prove that the misère Node Kayles game is also PSPACE-
complete. To the best of our knowledge, although the normal Node Kayles game
was proved PSPACE-complete in 1978, the PSPACE-hardness of the misère Node
Kayles game was not proved before.

In the second part of the paper we complement results from [3] regarding the gp-
achievement game by proving several results for the gp-avoidance game on Cartesian
and lexicographical products. We obtain linear time algorithms to decide the win-
ning player of the general position avoidance game in rook’s graphs, grids, cylinders,
and lexicographic products with complete second factors.

2 Preliminary results and examples

In this section we first recall other concepts and notations needed.
All graphs considered, here, are finite, simple and without loops or multiple

edges. The distance dG(u, v) between vertices u and v is the length of a shortest
u, v-path. A u, v-path of minimum length is also called a u, v-geodesic. The interval
IG[u, v] between u and v is the set of vertices that lie on some u, v-geodesic. For
S ⊆ V (G), set IG[S] =

⋃

u,v∈S
IG[u, v]. When the graph G is clear from the context,

we omit the subscript and simply write d(u, v), I[u, v] and I[S].
A set of vertices S ⊆ V (G) is a general position set if no three vertices from S lie

on a common geodesic. The size of a smallest general position set of G is denoted
by gp(G) and called the general position number of G. For example, notice that
gp(Cn) = 3 for any cycle Cn with n ≥ 5.

Following the notations from [3], the sequence of vertices played in the position
games on a graph G will be denoted by a1, b1, a2, b2, . . ., that is, the vertices played
by A are a1, a2, . . ., and the vertices played by B are b1, b2, . . . For instance, we may
say that A starts the game by playing a1 = x, where x ∈ V (G). Suppose that
x1, . . . , xj are vertices played so far on the graph G. Then we say that y ∈ V (G) is a
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playable vertex if y /∈ {x1, . . . , xj} and {x1, . . . , xj} ∪ {y} is a general position set of
G. Let PℓG(x1, . . . , xj) be the set of all playable vertices after the vertices x1, . . . , xj

have already been played; we may sometimes simplify the notation PℓG(x1, . . . , xj)
to PℓG(. . . xj). For instance, if x and y are arbitrary vertices of a path P , then
PℓP (x) = V (P ) \ {x} and PℓP (x, y) = ∅. In fact, if G is an arbitrary graph, then
PℓG(a1) = V (G) \ {a1}. Denoting by S the set of vertices {x1, . . . , xj} played so far,
we may also write PℓG(S) for PℓG(x1, . . . , xj). The following observation will turn
out to be quite useful, hence we state it as a lemma for further use.

Lemma 2.1 [3] Let S be the sequence of played vertices so far on a graph G. Then
x ∈ PℓG(S) if and only if the following two conditions hold:

(i) if u, v ∈ S, then x /∈ I[u, v], and

(ii) if u ∈ S, then I[x, u] ∩ S = {u}.

We next recall a characterization of general position sets from [1], for which some
preparation is needed. LetG be a connected graph, S ⊆ V (G), and P = {S1, . . . , Sp}
a partition of S. Then P is distance-constant if for any i, j ∈ [p], i 6= j, the value
d(u, v), where u ∈ Si and v ∈ Sj is independent of the selection of u and v. If P is
a distance-constant partition, and i, j ∈ [p], i 6= j, then let d(Si, Sj) be the distance
between the sets Si and Sj , that is, the distance between one arbitrary vertex of
Si and one of Sj. We say that a distance-constant partition P is in-transitive if
d(Si, Sk) 6= d(Si, Sj) + d(Sj, Sk) holds for arbitrary pairwise different i, j, k ∈ [p].
With this notations in hand, we have the following characterization.

Theorem 2.2 [1, Theorem 3.1] Let G be a connected graph. Then S ⊆ V (G) is a
general position set if and only if the components of G[S] are complete subgraphs,
the vertices of which form an in-transitive, distance-constant partition of S.

We will also make use of the following fact that was observed for the first time
in the proof of [1, Theorem 5.1].

Lemma 2.3 [1] Let G be a connected bipartite graph. If S is a general position set
of G with |S| ≥ 3, then S is an independent set of G. In other words, if S is not
an independent set of G, then S is a general position set if and only if S consists of
exactly two adjacent vertices.

Let us first look at some examples. Since in a complete graph every vertex
subset is a general position set, A wins the gp-avoidance game on the complete
graph Kn(and loses the gp-achievement game) if and only if n is even. Clearly A
wins the gp-avoidance game on a graph G with gp(G) = 2. As proved in [4], the
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only graphs with gp(G) = 2 are paths and the cycle C4. If gp(G) = 3, then gp-
avoidance game will take either two or three moves. In fact, if gp(G) = 3 then
A wins the gp-avoidance game if only only if every vertex of G lies in a maximal
general position set of order 3. Applying this observation to cycles we infer that B
wins the gp-avoidance game on the cycle Cn(n ≥ 3) if and only if n 6= 4. On the
other hand, it was observed in [3] that B wins the gp-achievement game on Cn if
and only if n is even. Hence both the games are intrinsically different.

The following useful result for the gp-avoidance game is a direct consequence of
[3, Theorem 3.1] which deals with the gp-achievement game.

Theorem 2.4 Let G be a graph. Then the following holds.
(i) If A has a strategy such that after the vertex ak, for some k ≥ 1, is played,

the set PℓG(. . . ak)∪{a1, b1, . . . , ak} is a general position set and |PℓG(. . . ak)| is odd,
then A wins the gp-avoidance game.

(ii) If B has a strategy such that after the vertex bk, for some k ≥ 1, is played,
the set PℓG(. . . bk)∪{a1, b1, . . . , bk} is a general position set and |PℓG(. . . bk)| is odd,
then B wins the gp-avoidance game.

As an example of the application of Theorem 2.4, consider the Petersen graph P
(see Figure 2). By the symmetry of P , we may assume that a1 is an arbitrary vertex
of P . Consider first the case that b1 is a neighbor of a1, as illustrated in Figure
2. Then it is easy to check that PℓP (a1, b1) consists of four vertices. Moreover,
PℓP (a1, b1) ∪ {a1, b1} is a general position set. Hence, after A plays any vertex a2
from PℓP (a1, b1), we have that PℓP (a1, b1, a2) ∪ {a1, b1, a2} is a general position set,
since it is equal to PℓP (a1, b1) ∪ {a1, b1}, and |PℓP (a1, b1, a2)| = 3 is odd. Thus,
we can apply Theorem 2.4(i) to conclude that A wins the gp-avoidance game on P .
Consider second the case that b1 is a vertex at distance 2 from a1. Then A replies
with a2 which is a neighbor of a1 but not a neighbor of b1. Now it is easy to check
that PℓP (a1, b1, a2) consists of three vertices and PℓP (a1, b1, a2) ∪ {a1, b1, a2} is a
general position set, hence Theorem 2.4(i) can be applied once more. (We remark
in passing that B wins the gp-achievement game on the Petersen graph.)

As another application of Theorem 2.4 we have the following result.

Proposition 2.5 Let G be the complete multipartite graph Kn1,...,nk
, where k ≥ 2

and ni ≥ 2 for i ∈ [k]. Then A wins the gp-avoidance game on G if and only if k is
even and at least one ni is even.

Proof. Suppose first that ni is odd for all i ∈ [k]. Let X be the partition set of G
in which the first move a1 has been played by A. Then B replies by playing a vertex
b1 6= a1 from X . Note that PℓG(a1, b1) = X \ {a1, b1}. Since X is a general position
set of G, Theorem 2.4(ii) applies and B wins the gp-avoidance game on G.
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a1 b1

Figure 2: Example of Theorem 2.4(i) on the Petersen graph P , when Bob selects a
neighbor b1 of a1. The set PℓP (a1, b1) consists of the green vertices.

Hence if at least one ni is even, A would definitely choose a1 from that even
partition set X to win the game. Now, if B would reply by playing a vertex in X ,
then by the argument of the previous paragraph and with Theorem 2.4(i) in hand,
A would win. So it is better for B to play a vertex b1 which lies in a partition set
Y 6= X . Since PℓG(a1, b1) = V (G)\ (X ∪Y ), the vertex a2 must lie in a partition set
Z different from both X and Y . Continuing in this manner, each of the subsequent
played vertices belongs to its private partition set. In conclusion, if some ni is even,
then A will win the gp-avoidance game if and only if k is even. �

The generalized wheel Wn,m, n ≥ 1, m ≥ 3, is the graph obtained by joining each
vertex of the complement of the complete graph Kn to every vertex of the cycle Cm.
That is, Wn,m is the join of Kn and Cm. In the following we resolve the gp-avoidance
game on Wn,m.

Theorem 2.6 If n ≥ 1 and m ≥ 3, then B wins the gp-avoidance game on Wn,m if
and only if m ≥ 4.

Proof. Suppose that m = 3. Let a1 be an arbitrary vertex of C3. Assume first that
B replies by playing an arbitrary vertex of Kn. Then PℓG(a1, b1) = V (C3)\{a1} and
PℓG(a1, b1) ∪ {a1, b1} is isomorphic to K4 which is a general position set. Then A
chooses a vertex of Kn leaving only one option to Bob (the last non-selected vertex
of Kn) and A wins. Assume second that b1 is a vertex of C3. Then A replies by
playing a vertex of Kn and we are in the same situation as in the first case. Hence
in any case A wins.

Suppose now that m ≥ 4. If A starts with a vertex from Cm, then choose b1 from
Kn. Thus by Theorem 2.2, the remaining game is restricted to a clique in Wn,m. As
m ≥ 4, each maximal clique of Wn,m has order 3, hence B wins the game. And if A
starts with a vertex of Km, then by choosing a vertex from Cm, B again wins the
game. �

7



This is in contrast with the fact that solving gp-achievement game on Wn,m

appears to be difficult. This is because, in the gp-achievement game, if n is even,
A plays a1 in Cm (otherwise B wins by playing only in Kn) and consequently B
also plays b1 in Cm (otherwise A wins immediately by playing in Cm) and no other
vertex of Km can be selected. In this case, the gp-achievement game on Cm reduces
to the game of selecting vertices in such a way that no three selected vertices induce
a P3, which seems to be hard even in cycles.

3 Both games are PSPACE-complete

In this section, we prove that the general position achievement and avoidance games
are PSPACE-complete. We first show that they are in PSPACE. Here we consider
the games as decision problems: given a graph, does player A have a winning strat-
egy?

Lemma 3.1 The gp-achievement and gp-avoidance games are in PSPACE.

Proof. Since the number of turns is at most n = |V (G)| and, in each turn, the
number of possible moves is at most n (there are at most n vertices to select), we
have that the gp-achievement game and the gp-avoidance game are polynomially
bounded two player games, which implies that they are in PSPACE [11]. �

Now we obtain reductions from the clique-forming game, which is PSPACE-
complete [26]. In this game, given a graph G, two players 1 and 2 select alternately
vertices and the subset of the chosen vertices must induce a clique. The first player
unable to play loses the game. That is, the player who has played the last vertex of
a maximal clique wins. This game is strongly related to the classical Node Kayles
game, that is also PSPACE-complete [26], in which the objective is to obtain an
independent set, instead of a clique. The clique-forming game is the Node Kayles
game played on the complement of the graph, and vice-versa.

Theorem 3.2 The gp-achievement game is PSPACE-complete even on graphs with
diameter at most 4.

Proof. From Lemma 3.1, the gp-achievement game is in PSPACE. Now we obtain
a reduction from the clique-forming game. Let H be an instance of clique-forming
game with vertex set V (H) = {v1, . . . , vn}. We will construct a graph G such that
player A has a winning strategy in the gp-achievement game on G if and only if the
second player of the clique-forming game on H has a winning strategy.

Let G be the graph obtained from H by adding a new vertex u adjacent to all
vertices of H and a new vertex fi (called “friend” of vi), for every vertex vi of H ,
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whose only neighbor is vi. Notice that G has diameter at most 4. See Figure 3 for
an example.

Graph H

Graph G u

v1 v2 v3

f1 f2 f3

Figure 3: Example of the reduction from the clique-forming game to the gp-
achievement game, where H is the graph with vertices v1, v2 and v3. Player A
has a winning strategy in the gp-achievement game on G if and only if Player 2 has
a winning strategy in the clique-forming game on H .

If player A selects a vertex vi of H in the first move of the gp-achievement game
played on G, then player B wins immediately by selecting the vertex fi: notice that
the shortest path between fi and a vertex other than vi passes through vi. From the
same argument, if player A selects a vertex fi, where vi ∈ V (H), in the first move,
then player B wins immediately by selecting the vertex vi. So let us assume that
player A selects the vertex u in the first move.

From now on, notice that players A and B cannot select two non-adjacent vertices
vi and vj of H , since vi − u − vj is a shortest path. Moreover, during the gp-
achievement game, they cannot select two vertices fi and fj such that vi and vj
are non-adjacent, since fi − vi − u− vj − fj is a shortest path. They cannot select
two vertices vi and fj such that vi and vj are non-adjacent, since vi − u − vj − fj
is a shortest path. Finally, the players cannot select two vertices vi and fi, since
u− vi − fi is a shortest path.

Let C be the vertex subset obtained from the selected vertices after the gp-
achievement game by the following: for every played vertex vi of H , put vi on C
and, for every played vertex fi, put vi on C. From the above, we have that C is a
clique of H and we may assume that the players only select vertices from H after
the first move (on u), since playing on the fi’s is essentially the same as playing on
the corresponding vertices of H .

Thus, if the second player of the clique-forming game on H has a winning strat-
egy, player A has a winning strategy in the gp-achievement game on G, since player
A will be the second to play on H (recall that u was the first chosen vertex). More-
over, if the first player of the clique-forming game on H has a winning strategy,
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player B has a winning strategy in the gp-achievement game on G, since player B
will be the first to play on H . �

In the following, we prove that deciding who wins the gp-avoidance game is
PSPACE-complete. We obtain a reduction from the misère clique-forming game,
which is the same as the clique-forming game, but the first player unable to play
wins the game. As before, the misère clique-forming game is strongly related to the
misère Node Kayles game, whose objective is to obtain an independent set and the
first player unable to play wins the game. Although these games are well known
and their normal versions were proved PSPACE-complete in 1978, to the best of
our knowledge the hardness of these misère games were not proved before. In this
paper, we prove that both misère games are PSPACE-complete. We postpone the
proof of this to Theorem 3.5. In the next theorem, we use this result to prove that
the gp-avoidance game is PSPACE-complete.

Theorem 3.3 The gp-avoidance game is PSPACE-complete even in graphs with
diameter at most 4.

Proof. From Lemma 3.1, the gp-avoidance game is in PSPACE. Now we obtain
a reduction from the misère clique-forming game, the decision version of which is
proved to be PSPACE-complete in upcoming Theorem 3.5. Let H be an instance
of the misère clique-forming game with vertex set V (H) = {v1, . . . , vn}. We will
construct a graph G such that player A has a winning strategy in the gp-avoidance
game on G if and only if the second player of the misère clique-forming game on H
has a winning strategy.

Let G be the graph obtained from H by adding a new vertex u adjacent to all
vertices of H and, for every vertex vi of H , by adding a C5 with vertices Fi =
{pi, qi, ri, si, ti}, all of them adjacent to vi. Notice that G has diameter at most 4.
See Figure 4 for an example.

If player A selects a vertex vi of H in the first move of the gp-avoidance game
played on G, then player B wins by selecting the vertex qi: notice that, for every
vertex w 6∈ {vi, pi, ri}, there is a shortest path between w and qi passing through vi,
and then player A must select pi or ri, being the last to move and losing the game.
From the same argument, if player A selects a vertex of Fi, for some vi ∈ V (H),
in the first move, then player B wins by selecting the vertex vi. So we may assume
that player A selects the vertex u in the first move.

From now on, notice that players A and B cannot select two non-adjacent vertices
vi and vj of H , since vi − u − vj is a shortest path. Also, during the gp-avoidance
game, they cannot select a vertex fi ∈ Fi and a vertex fj ∈ Fj such that vi and vj
are non-adjacent, since fi − vi − u− vj − fj is a shortest path. They cannot select
two vertices vi and fj ∈ Fj such that vi and vj are non-adjacent, since vi−u−vj−fj

10



Graph H

Graph G u

v1 v2 v3

p1 q1 r1 s1 t1 p2 q2 r2 s2 t2 p3 q3 r3 s3 t3

Figure 4: Example of the reduction from the misère clique-forming game to the
gp-avoidance game, where H is the graph with vertices v1, v2 and v3. Player A has
a winning strategy in the gp-avoidance game on G if and only if Player 2 has a
winning strategy in the clique-forming game on H .

is a shortest path. Moreover, the players cannot select two vertices vi and fi ∈ Fi,
since u− vi − fi is a shortest path.

Finally, if exactly one vertex of Fi was already selected by one of the players and
player A selects a second vertex of Fi, then player B can select a third vertex of Fi,
forcing player A to select a vertex outside Fi in the next move. This is because Fi

induces the cycle C5 and all maximal general position sets of Cn with n ≥ 5 are of
order 3. The same occurs if player B selects a second vertex of Fi. For example, if pi
was already selected and player A chooses vertex qi, player B can select the vertex
si. In other words, playing twice in the same set Fi will not change the outcome of
the game.

Let C be the vertex subset obtained from the selected vertices after the gp-
avoidance game by the following: for every played vertex vi of H , put vi on C and,
for every played vertex fi ∈ Fi, put vi on C. From the above, we have that C is a
clique of H and we may assume that the players only select vertices from H after
the first move (on u), since playing on the sets Fi’s is essentially the same as playing
on the corresponding vertices of H (recall that playing twice in the same set Fi will
not change the outcome of the game).

Thus, if the second player of the misère clique-forming game on H has a winning
strategy, player A has a winning strategy in the gp-avoidance game on G, since
player A will be the second to play on H (recall that u was the first chosen vertex).
Moreover, if the first player of the misère clique-forming game on H has a winning
strategy, player B has a winning strategy in the gp-avoidance game on G, since
player B will be the first to play on H . �
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Finally, we prove the PSPACE-hardness of the misère clique-forming game and
the misère Node Kayles game. The complexity of computational games defined a
long time ago has been the subject of recent papers (see for example [6, 19]). We
first reproduce in Theorem 3.4 the 1978 PSPACE-hardness proof of the normal Node
Kayles game [26], since our proof in Theorem 3.5 is strongly based on it.

Theorem 3.4 [Schaefer, 1978] The normal Node Kayles game is PSPACE-complete.

Proof. The reduction is from the TQBF problem, which takes as an instance
a totally quantified CNF formula Φ with n variables x1, . . . , xn and m clauses
B1, . . . , Bm, where the quantifiers are alternately ∃ and ∀ starting from xn to x1.
This can be seen as a game in which Player 1 and Player 2 alternately set true or
false to the variables xn, xn−1, . . . , x1 in this order. Player 1 wins if the formula is
true at the the end; otherwise, Player 2 wins.

Consider the example Φ = ∃x3 ∀x2 ∃x1 : B1∧B2∧B3, with the following clauses:
B1 = (x1 ∨ x1), B2 = (x1 ∨ x2) and B3 = (x1 ∨ x2 ∨ x3). In this example, Player 1
wins, since Player 1 sets true to the variable x3 in the first turn (in order to satisfy
clause B3), Player 2 then sets true to the variable x2 (trying to make B2 unsatisfied)
and Player 1 must set true to variable x1, satisfying all clauses and winning the
game.

Schaefer [26] assumes that the number n of variables is odd (otherwise we can
add a new variable which does not appear in any clause) and the first clause B1 is
(x1 ∨ x1), which is always satisfied and does not change the outcome of the game.
Given a TQBF formula Φ, the constructed graph G = G(Φ) is described below.

For i ∈ [n], create in G the vertices xi and xi associated to the variable xi.
For k ∈ [m], create the vertex x0,k associated to the clause Bk. For i ∈ [n] and
j ∈ {0, . . . , i − 1}, create the vertex yi,j. Let Xi be the set with all the vertices
xi, xi and yi,j, and make Xi be a clique in G. Let X0 be the set with the vertices
x0,1, . . . , x0,m associated to the clauses, and make X0 be a clique in G.

If the literal xi is in the clause Bk, create the edge xix0,k. If the literal xi is in
the clause Bk, create the edge xix0,k. For i ∈ [n] and j ∈ {0, . . . , i− 1}, create the
edge yi,jw for every vertex w ∈ (X0 ∪ · · · ∪Xi−1)−Xj. This ends the reduction of
[26]. See Figure 5 for the formula Φ mentioned above, which is the same example
as in [26].

Schaefer [26] defines a game as legitimate if for i = 1, . . . , n the vertex selected
at move i is either xn−i+1 or xn−i+1. If a player does an illegitimate move when all
previous moves were legitimate, then the other player wins immediately. In order to
prove this, fix i ∈ [n] and assume that the first n− i moves were legitimate, that is,
the vertices selected so far are one of each pair {xn, xn}, . . . , {xi+1, xi+1}. Clearly,
from the construction of G, no vertex of Xn ∪ Xn−1 ∪ . . . ∪ Xi+1 can be played
now. Suppose that the player on move n− i+ 1 plays illegitimately, by selecting a
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x3 x3
y3,0 y3,1 y3,2

x2 x2
y2,0 y2,1

x1 x1
y1,0

x0,3 x0,2 x0,1

Clause vertices

Figure 5: Example of the construction of Theorem 3.2 of [26] from the input formula
∃x3∀x2∃x1 : (x1 ∨ x1) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3). A line leading to an enclosure
represents multiple edges leading to each vertex in the enclosure. Also, within each
enclosure, all vertices are mutually joined by edges, which are not shown.

vertex from Xi ∪ . . . ∪ X0 other than xi or xi. If the player selects a node in Xk,
for k < i, then the opponent wins by choosing yi,k and no other vertex is playable,
since any vertex of Xk is adjacent to the illegitimately played vertex and any vertex
of (X0∪ . . .∪Xi)−Xk is adjacent to yi,k. Finally, if the illegitimate move is in Xi, it
must be yi,k for some k < i and therefore the opponent wins by selecting xk if k > 0
or x0,1 if k = 0, which is playable because of the assumption about B1. As before,
no other vertex is playable.

As a consequence, we may consider from now on that the players move legiti-
mately. Then every move on the TQBF game in Φ has an obvious corresponding
move on the Node Kayles game in G(Φ), and vice-versa: setting xi true (resp. false)
in TQBF corresponds to selecting the vertex xi (resp. xi) in Node Kayles, and
vice-versa.

If Player 1 has a winning strategy on a formula Φ of TQBF, Player 1 can play
the corresponding moves on the graph G(Φ) of Node Kayles. After the last move
of TQBF, all clauses are satisfied (because of the winning strategy of Player 1 on
TQBF) and then no clause vertex is playable on Node Kayles. Since n is odd, Player
1 is the last to play, winning the Node Kayles game.
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Finally, if Player 2 has a winning strategy on a formula Φ of TQBF, Player 2
can play the corresponding moves on the graph G(Φ) of Node Kayles. After the last
move of TQBF, there is at least one non-satisfied clause (because of the winning
strategy of Player 2 on TQBF) and then there is a playable clause vertex on Node
Kayles. Since n is odd, Player 1 selected either x1 or x1 and Player 2 can select a
playable clause vertex in the next move, winning the Node Kayles game.

Theorem 3.5 The misère clique-forming game and the misère Node Kayles game
are PSPACE-complete.

Proof. Since the misère clique-forming game is the misère Node Kayles game
played on the complement of the graph (and vice-versa), we will only prove that the
misère Node Kayles game is PSPACE-hard. We obtain a reduction from the TQBF
problem, based on the reduction of [26] for the Node Kayles game (see Theorem 3.4
above).

Following the proof of Theorem 3.4, instead of assuming that the number n of
variables is odd, we assume that n is even. As in the proof of Theorem 3.4, we
can do this since it is possible to add a new variable which does not appear in any
clause. We also assume that B1 = (x1 ∨ x1).

Given a TQBF formula Φ, let G = G(Φ) be the graph constructed in the proof
of Theorem 3.4. Let G′ = G′(Φ) be the graph obtained from G by replacing every
vertex yi,j by two false twin vertices y′i,j and y′′i,j (respecting the adjacency of yi,j).
That is, y′i,j and y′′i,j are not adjacent in G′ and there are edges y′i,jw and y′′i,jw in G′

for every w ∈ V (G) such that yi,jw ∈ E(G).
As in the proof of Theorem 3.4, we can define a move i as legitimate if the

selected vertex is either xn−i+1 or xn−i+1.
We also prove that, if an illegitimate move is done after all previous moves were

legitimate, then the other player wins the misère Node Kayles game. For this, fix
i ∈ [n] and assume that the first n− i moves were legitimate. From the construction
of G′, no vertex of Xn ∪ Xn−1 ∪ . . . ∪ Xi+1 can be played now. Suppose that the
player on move n− i+1 plays illegitimately, by selecting a vertex from Xi∪ . . .∪X0

other than xi or xi. If the player selects a node in Xk, for k < i, then the opponent
wins by choosing y′i,k and then y′′i,k is the only playable vertex, since any vertex of Xk

is adjacent to the illegitimately played vertex and any vertex of (X0∪ . . .∪Xi)−Xk

is adjacent to y′i,k. Finally, if the illegitimate move is in Xi, it must be either y′i,k or
y′′i,k for some k < i and therefore the opponent wins by selecting xk if k > 0 or x0,1

if k = 0, which is playable because of the assumption about B1. As before, if the
illegitimate move was in y′i,k (resp. y′′i,k), then y′′i,k (resp. y′i,k) is the only playable
vertex.

As a consequence, we may consider from now on that the players move legiti-
mately in the misère Node Kayles game. Then every move on the TQBF game in
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Φ has an obvious corresponding move on the misère Node Kayles game in G′(Φ),
and vice-versa: setting xi true (resp. false) in TQBF corresponds to selecting the
vertex xi (resp. xi) in misère Node Kayles, and vice-versa.

If Player 1 has a winning strategy on a formula Φ of TQBF, Player 1 can play
the corresponding moves on the graph G′(Φ) of Node Kayles. After the last move
of TQBF, all clauses are satisfied (because of the winning strategy of Player 1 on
TQBF) and then no clause vertex is playable on Node Kayles. Since n is even,
Player 2 is the last to play, losing the misère Node Kayles game.

Finally, if Player 2 has a winning strategy on a formula Φ of TQBF, Player 2 can
play the corresponding moves on the graph G′(Φ) of Node Kayles. After the last
move of TQBF, there is at least one non-satisfied clause (because of the winning
strategy of Player 2 on TQBF) and then there is a playable clause vertex on misère
Node Kayles. Since n is even, Player 2 selected either x1 or x1 and Player 1 must
select a playable clause vertex in the next move, losing the misère Node Kayles
game. �

4 The avoidance game played on Cartesian prod-

ucts

The Cartesian product G�H of two graphs G and H is the graph with vertices
V (G) × V (H), where the vertices (g1, h1), (g2, h2) are adjacent if they are equal in
one coordinate and adjacent in the other. If g ∈ V (G), then the subgraph of G�H
induced by {g} × V (H) is isomorphic to H . It is called the H-layer (through g),
denoted by gH . Analogously G-layers Gh are defined. If S ⊆ V (G�H), then the
set {g ∈ v(G) : (g, h) ∈ S for some h ∈ V (H)} is the projection πG(S) of S on G.
The projection πH(S) of S on H is defined analogously.

We further recall the following known result about the distance function in the
Cartesian product. If G and H are connected graphs and (g, h), (g′, h′) ∈ V (G�H),
then the following distance formula holds:

dG�H((g, h), (g
′, h′)) = dG(g, g

′) + dH(h, h
′) . (1)

Moreover, if P is a (g, h), (g′, h′)-geodesic in G�H , then the projection πG(P )
induces a g, g′-geodesic in G and the projection πH(P ) induces a h, h′-geodesic in
H . The distance formula (1) also implies that

IG�H((g, h), (g
′, h′)) = IG(g, g

′)× IH(h, h
′) . (2)

For these results and more information on the Cartesian product we refer to the
book on product graphs [9]. We make use of the following three known lemmas on
general position sets of Cartesian products.
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Lemma 4.1 [28, Lemma 2.4] Let G and H be connected graphs and let R be a
general position set of G�H. If u = (g, h) ∈ R, then V (gH) ∩ R = {u} or
V (Gh) ∩R = {u}.

Lemma 4.2 [3, Lemma 3.2] Let R ⊆ G�H be such that R has following properties.

1. Either V (gH) ∩R = {(g, h)} or V (Gh) ∩ R = {(g, h)}, for all (g, h) ∈ R.

2. Both πG(R) and πH(R) are general position sets of G and H respectively.

Then R is a general position set of G�H.

Lemma 4.3 [3, Lemma 3.3] Let G andH be connected graphs and let R ⊆ V (G�H).
If πG(R) is a general position set in G and πG(R) = |R|, then R is a general position
set of G�H.

In [3, Theorem 3.6] it was proved that player A wins the gp-achievement game on
the rook’s graphs Kn�Km if and only if both n and m are odd. Thus we first treat
the gp-avoidance game on Kn�Km. As it happens, the present proof is much more
involved than the one for the gp-achievement game, again demonstrating that the
two games can be intrinsically different on the same class of graphs.

Theorem 4.4 If n,m ≥ 2, then B wins the gp-avoidance game on Kn �Km if and
only if either n = 2 and m is odd; or n = 3 and m is even.

Proof. Consider the gp-avoidance game on Kn�Km. Let V (Kn) = {u1, . . . , un}
and V (Km) = {v1, . . . , vm}. Set G = Kn �Km for the rest of the proof.

We first show that B wins the game on K2�Km when m is odd. By the vertex
transitivity of G we may assume that A start the game with a1 = (u1, v1). Then
B replies by picking a new vertex from the same Km-layer, say b1 = (u1, v2). Then
Lemma 4.1 guarantees that both (u2, v1), (u2, v2) /∈ PℓG(a1, b1). The game then
continues in this manner, that is, whenever there exists a K2-layer in which no
vertex has yet been played and it is B’s turn, he selects a vertex from the Km-layer
in which A has just played. Lemmas 4.1 and 4.2 guarantee that the selected vertices
so far form a general position set and the corresponding vertices in the neighboring
Km-layer are not playable further. As m is odd, A will play the last vertex and
hence B wins.

Next we are going to prove that B wins on K3�Km if m is even. Let A start
the game with a1 = (u1, v1). Then B picks the vertex b1 = (u2, v1). If A chooses
a2 = (u3, v1), then it follows from Lemma 4.1 that no further moves are possible.
Hence B wins the game. So we may assume that A pick a2 from a newK3-layer. Also
by Lemma 4.1, PℓG(a1, b1) ⊆

u3Km. By the symmetry of G, we may assume that
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a2 = (u3, v2). Now, since m is even and PℓG(a1, b1, a2) = {u3} × (V (Km)\{v1, v2}),
A plays the last vertex. Also Lemma 4.2 guarantees that the selected vertices so far
form a general position set of G. Hence B wins the game.

It remains to prove that in all the other cases A has a winning strategy. Let A
begin by choosing a1 = (u1, v1). For the first move b1 = (ui, vj) of B we may, using
the symmetry of G, without loss of generality assume that i = 2 and j ∈ [2]. Also
in the rest of the proof, whenever (ur, vs) is selected before (uk, vl), then due to the
symmetry of G we may assume that r ≤ k or s ≤ l. The strategy of player A is
to achieve the following: after each of his moves ai, for some fixed i to be explicitly
determined in different cases,

|PℓG(. . . ai) ∩ V (Kvk
n )| is odd and |PℓG(. . . ai) ∩ V (ujKm)| is even (3)

hold for all layers Kvk
n and all layers ujKm in which at least one vertex has already

been played.

Suppose first that b1 = (u2, v1). Then PℓG(a1, b1) ⊆ (V (G)\(u1Km∪ u2Km)). We
consider the following three cases.

Case 1. Both n and m are even.
The strategy of player A is to achieve the condition (3), after each of his moves
ai with i ≥ 2. If n = 2, then Lemma 4.1 implies that PℓG(a1, b1) = ∅ and so
A wins the game. So, assume that n ≥ 4 and hence A can continue by choosing
a3 = (u3, v1). Again by Lemma 4.1, PℓG(a1, b1, a2) ⊆ V (G)\(u1Km∪ u2Km∪ u3Km),
the condition (3) is fulfilled. In the rest of the game whenever B select a vertex x,
then A replies with a neighbor of x from the same Kn-layer. Thus at any stage of
the game A can make B to choose from a new Km-layer. Since n is even, B will
play the last vertex. Also by using Lemma 4.2 we can see that the selected vertices
form a general position set of G. Hence A will win the gp-avoidance game on G.

Case 2. Both n and m are odd.
As in the previous case, A chooses a2 = (u3, v1) for the second move. After that
for each i = 2 to ⌊n

2
⌋ − 1, whenever B selects bi = (u2i, v1) from Kv1

n , A replies
with a vertex ai+1 = (u2i+1, v1) from Kv1

n . This is a legal move since n is odd.
Furthermore, if B proceeds with b⌊n

2
⌋ = (un−1, v1) from Kv1

n , then A deliberately
picks the vertex a⌊n

2
⌋+1 = (un, v2). Then by Lemma 4.1, PℓG(. . . a⌊n

2
⌋+1) = V (unKm)\

{(un, v1), (un, v2)}. Since m is odd, A wins the game. Hence in the following we
can assume that for some index i with 2 ≤ i ≤ ⌊n

2
⌋, B must select bi from a new

Kn-layer. Let r be the least such index. Then a1, a2 . . . ar−1 ∈ Kv1
n . Now, by using

Lemma 4.1 we can assume that br = (u2r, v2). If r = ⌊n
2
⌋, then A deliberately

picks the vertex ar+1 = (u2r+1, v1) = (un, v1) for his next move. Thus again by
Lemma 4.1, PℓG(. . . ar+1) = V (un−1Km) \ {(un−1, v1), (un−1, v2)}. Since m is odd,
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A wins the game. So assume that 2 ≤ r ≤ ⌊n
2
⌋ − 1. In the remaining game,

the strategy of player A is to achieve the condition (3), after each of his moves ai
with i > r. Then A continues with the vertex ar+1 = (u2r, v3) and condition (3)
is fulfilled. Hereafter, whenever B selects a vertex in a Kn-layer in which at least
one vertex has been played earlier, then A can continue with a new vertex from
the same Kn-layer. Similarly, whenever B selects a vertex from a previously visited
Km-layer, then A replies with a new vertex from the same Km-layer. Since n is odd,
again condition (3) is fulfilled. On the other hand, consider the case that B plays
bi = (uk, vj) from a new layer. In this case if j is odd, then A replies with another
such vertex from a new layer; and if j is even, then A replies with a new vertex from
the same Km-layer. After each such move of A, the condition (3) remains fulfilled
since both n and m are odd. Note that by our strategy, if bi = (uk, vj), then k is
even at each stage of the game. Player A then continues this strategy and wins the
game.

Case 3. n > 3 is odd and m > 2 is even.
Let player A begin by choosing a2 = (u3, v2). After that for each i = 2 to ⌊n

2
⌋ − 1,

whenever B selects bi = (u2i, vj) from Kv1
n or from Kv2

n , A replies with the vertex
ai+1 = (u2i+1, vj) from the same Kn-layer. This is a legal move since n is odd.
Furthermore, if B proceeds with b⌊n

2
⌋ = (un−1, vj) from Kv1

n or from Kv2
n , then A de-

liberately picks the vertex a⌊n
2
⌋+1 = (un, v3). This is a legal move since m > 2 and it

is even. Then by Lemma 4.1, either PℓG(. . . a⌊n
2
⌋+1) = (V (G)\{v1, v2, v3})×{u3, un}

or PℓG(. . . a⌊n
2
⌋+1) = (V (G)\{v1, v2, v3}) × {un}. Since m is even, A wins the

game. Hence in the following we can assume that for some index i with 2 <
i ≤ ⌊n

2
⌋, bi selects from a new Kn-layer. Let r be the least such index. Then

a1, . . . , ar−1 ∈ V (Kv1
n ∪ Kv1

n ). Now by using Lemma 4.1, we can assume that
br = (u2r, v3). If r = ⌊n

2
⌋, then A picks the vertex ar+1 = (un, v1). Then by

Lemma 4.1, PℓG(. . . ar+1) = (V (G)\{v1, v2, v3})× {un−1}. Since m is even, A wins
the game. So assume that 1 < r ≤ ⌊n

2
⌋ − 1. In the remaining game, the strategy of

player A is to achieve the condition (3), after each of his moves ai with i > r. Here A
continue with ar+1 = (u2r, v4). Since n > 3 is odd and m > 2 is even, this is a legal
move. By Lemma 4.1, condition (3) is fulfilled. In the rest of the game whenever
B picks a vertex in a Km-layer in which at least one vertex has been played earlier,
then A chooses a new vertex from the same Km layer. Similarly, if B picks a vertex
in a Kn-layer in which at least one vertex has been played earlier, then A chooses a
new vertex from the same Kn-layer. Now suppose that B plays bi = (uk, vj) from a
new layer. In this case if k is odd, A replies with an another such vertex; and if k is
even, A selects a vertex from the same Km-layer. Since m is even and n is odd, it
follows from Lemma 4.1 that the condition (3) remains fulfilled. Note that at any
stage of the game, if bi = (uk, vj), then j is odd. Following this strategy, A wins the
game.
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Suppose second that b1 = (u2, v2). Again, we need to consider the following three
cases.

Case 1. Both n and m are even.
In this case the strategy of player A is to achieve the condition (3), after each of
his moves ai with i ≥ 2. A continues the game by choosing a2 = (u3, v2). Then by
Lemma 4.1, PℓG(a1, b1, a2) ⊆ V (G)\(u2Km∪u3Km). At some point of the game, if B
picks a vertex from a Kn-layer in which at least one vertex has been played earlier,
then A can choose from the same Kn-layer. Similarly if B chooses a vertex from a
Km-layer in which at least one vertex has been played earlier, then A can choose a
vertex from the same Km-layer. Furthermore, if B plays a vertex from a new layer
(no vertex of this layer was played before), then A replies with another such vertex
from a new layer. By Lemma 4.2, the selected vertices form a general position set
of G. Also since both m and n are even the condition (3) remains fulfilled. Hence
A wins the game.

Case 2. Both n and m are odd.
In the remaining game, the strategy of player A is to achieve condition (3), after
each of his moves ai with i ≥ 2. A chooses a2 = (u2, v3). If B selects a vertex in a
Kn-layer in which at least one vertex has been played earlier, then choose a vertex
from the sameKn-layer. And if B plays a vertex such that it is the first vertex played
in the two layers, then replies with another such vertex. And if B chooses a vertex
from a Km-layer in which at least one vertex has been played earlier then choose
a vertex from the same Km-layer. Since both n and m are odd, the condition (3)
remains fulfilled. Hence B plays the last vertex.

Case 3. n > 3 is odd and m > 2 is even.
A continues by choosing a2 = (u3, v2). After that for each i = 2 to ⌊n

2
⌋−1, whenever

B selects bi = (u2i, vj) from Kv1
n or Kv2

n , A replies with a vertex ai+1 = (u2i+1, vj)
from the same Kn-layer. This is a legal move since n is odd. Furthermore, if B
proceeds with b⌊n

2
⌋ = (un−1, vj) from Kv1

n or Kv2
n , then A deliberately picks the

vertex a⌊n
2
⌋+1 = (un, v3). Since m > 2 and even, this is a legal move. Then by

Lemma 4.1, PℓG(. . . , an
2
+1) = (V (G)\{v1, v2, v3}) × {u1, un}. Since m is even and

by Lemma 4.1, A wins the game. So assume that for some index i B selects a
vertex from a new Kn-layer. Let r be the least such index. If r = ⌊n

2
⌋, choose

ar+1 = (un, v1). Then PℓG(. . . ar+1) = (V (G)\{v1, v2, v3}) × {un−1}. Since m is
even, A wins the game. Now suppose that 2 ≤ r < ⌊n

2
⌋. Then by Lemma 4.1,

br = (u2r, v3). In the remaining game, the strategy of player A is to achieve the
condition (3), after each of his moves ai with i > r. A continues the game by
choosing ar+1 = (u2r, v4) . Since m > 2 this is a legal move. Now if B picks a vertex
in a Kn-layer in which at least one vertex has been played earlier, then A replies
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with a vertex from the same Kn-layer. Similarly if B selects a vertex in a Km-layer in
which at least one vertex has been played earlier, then select a vertex from the same
Km-layer. In the rest of the game, suppose that B chooses bi = (uk, vj) from a new
layer. If k is odd, then A replies by another such vertex; and if k is even, A selects
a vertex from the same Km-layer. Since m is even and n is odd The condition (3)
remains fulfilled. Note that at any stage, by our strategy if bi = (uk, vj), then j is
odd. Hence B plays the last vertex. Following this strategy, A wins the game. �

In [3], it is proved that player B wins the gp-achievement game for any connected
bipartite graph. In the following two theorems, we show that the same behaviour
occurs in grids Pn�Pm, but fails in cylinders Cn�Pm, which are subclasses of
connected bipartite graphs.

Theorem 4.5 If n ≥ 3 and m ≥ 2, then B wins the gp-avoidance game on Pn�Pm.

Proof. Let Pn = u1 . . . un, Pm = v1 . . . vm, and set G = Pn �Pm. First suppose
that a1 is a vertex of degree 2, say a1 = (u1, v1). Then B chooses b1 = (un−1, vm).
Since IG[a1, b1] = V (G) \ V (unPm), player B forces player A to select a vertex from
V (unPm), which is then also the last vertex played in the game.

Suppose second that a1 = (ui, vj) is a vertex of degree at least 3, say 1 < j < m.
Then choose b1 = (u1, vm). Then clearly PℓG(a1, b1) = {(uk, vl) | 1 ≤ k < i and
1 ≤ l < j} ∪ {(uk, vl) | i < k ≤ n and j < l ≤ m}. Let a2 = (uk, vl). Now for any
(ug, vh) ∈ PℓG(a1, b1, a2), either {a1, a2, (ug, vh)} or {b1, a2, (ug, vh)} is not a general
position set in G. Hence B wins the gp avoidance game on G. �

We need the following lemma to prove our next result.

Lemma 4.6 [14, Lemma 3.1] Let r ≥ 2, s ≥ 3, and S be a general position set of
the cylinder graph Pr �Cs. If |S ∩ V (iCs)| = 2 for some i ∈ [r]0, then |S| ≤ 4.

Theorem 4.7 If n ≥ 3 and m ≥ 2, then B wins the gp-avoidance game on Cn�Pm

if and only if n is odd.

Proof. Let Cn = u1 . . . unu1, Pm = v1 . . . vm, and set G = Cn �Pm. Consider the
gp-avoidance game on Cn �Pm.

Suppose first that n is even. We will show that A wins on G. Let A start with
the vertex a1 = (u1, v1). Let b1 = (ui, vj). Since G is connected and bipartite, by
using Lemma 2.3 we can assume that at each stage of the game the selected vertices
so far is an independent set of G. First if j = 1, then 2 < i < n. Choose a2 = (u2, v2)
when i < n

2
. Since each layer of G is convex, we have that a2 /∈ IG[a1, b1]. Also since

a1 /∈ IG[a2, b1] and b1 /∈ IG[a1, a2], the second move of A is legal. Now we can see
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that (un
2
+2, v2) ∈ PℓG(a1, b1, a2) since {ui, u1, un

2
+2} is a general position set of Cn

and u2 /∈ ICn
[u1, un

2
+2]. Next if i ≥ n

2
, choose a2 = (un, v2). This is a legal move

as IG[a1, a3] = {(un, v1), (u1, v2)}. Then using a parallel argument we can see that
(u2, v2) ∈ PℓG(a1, b1, a2). Hence in both cases, PℓG(a1, b1, a2) 6= ∅. Thus Lemma 4.6
in turn implies that A will win the game on G.

Next consider the case i = 1. Then Lemma 2.3 in turn implies that j > 2.
Thus A can choose a2 = (un

2
, v2). Since {u1, un

2
, un} is a general position set of Cn,

(un, v2) ∈ PℓG(, . . . , a2). Hence, by Lemma 4.6, A will win the game on G.
For n even, it remains to consider the case j > 1 and i > 1 If i > n

2
+ 1, then

choose a3 = (u2, vj). Since u2 /∈ ICn
[ui, u1], this is a legal move. Then (ui+1, v1) ∈

PℓG(. . . a2) if i 6= n; and (un−1, v1) ∈ PℓG(. . . a2) if i = n. And if i ≤ n
2
, choose

a3 = (un, vj). Then (uk, v1) ∈ PℓG(. . . a2), where
n
2
+ 1 < k < n. Hence as in the

previous case A wins the game by Lemma 4.6.
Suppose second that n is odd. In the following we prove that B wins the game

on G. Let A chooses a1 = (ui, vj). Then B replies with the vertex b1 = (ui+1, vj).
Let a3 = (u, v). Since both a1 and b1 are adjacent in G, the set {ui, ui+1, u} must
be a general position set of Cn. Otherwise, either a1 ∈ IG[a2, a3] or a2 ∈ IG[a1, a3],
which is impossible. Thus PℓG(a1, b1) ⊆ V (

ui+⌊n
2
⌋Pm). Let a3 = (ui+⌊n

2
⌋, vj), where

1 ≤ j ≤ m. Let x = (ui+⌊n
2
⌋, vk) be an arbitrary vertex in V (

ui+⌊n
2
⌋Pm) \ {a3}.

Without loss of generality we may assume that k > j. Then a3 ∈ IG[a2, x]. Thus
|PℓG(a1, b1) ∩ V (

ui+⌊n
2
⌋Pm)| = 1. Hence B wins the gp-avoidance game on G. �

5 The avoidance game played on lexicographic

products

The lexicographic product G ◦H of graphs G and H is the graph with the vertex set
V (G) × V (H), where vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈ E(G),
or g = g′ and hh′ ∈ E(H). Layers and projections are defined for the lexicographic
product in the same way as they are defined for the Cartesian product. The distance
between vertices in lexicographic products can be computed as follows (see [9]).

Proposition 5.1 If (g, h) and (g′, h′) are two vertices of G ◦H, then

dG◦H ((g, h), (g′, h′)) =







dG(g, g
′); g 6= g′ ,

dH(h, h
′); g = g′, degG(g) = 0 ,

min{dH(h, h
′), 2}; g = g′, degG(g) 6= 0 .

Lemma 5.2 [3, Lemma 4.2] Let G and H be connected graphs. If S is a general
position set of G ◦H, then πG(S) is a general position set of G.

21



We need the following lemma which was proved as a claim within the proof of
Theorem 4.3 in [3].

Lemma 5.3 Let G be a connected graphs, n ≥ 1, and S ⊆ V (G ◦Kn). Then S is
a maximal general position set of G ◦Kn if and only if S = SG × V (Kn), where SG

is a maximal general position set of G.

Theorem 5.4 If G is a connected graph and n ≥ 1, then B wins the gp-avoidance
game on G ◦Kn if and only if B wins the gp-avoidance game on G and n is odd.

Proof. Suppose first that n is odd and B wins the gp-avoidance game on G. We will
show that B can win the game on G ◦H using the following strategy. Suppose first
that A selects a vertex ai from a Kn-layer from which no vertex was played earlier.
If there exists a vertex x such that no vertex from its Kn-layer has been played yet
and πG(x) is the reply of B to the move πG(ai) of A played in G according to the
winning strategy of B in G, then B selects bi = x. Otherwise B replies with an
arbitrary vertex from some Kn-layer in which at least one vertex has already been
played. Suppose second that A selects a vertex ai from a Kn-layer from which at
least one vertex was played earlier. Then again B replies with an arbitrary vertex
from some Kn-layer in which at least one vertex has already been played. Since B
wins the gp-avoidance game on G, the described strategy ensures that by the end
of the game, vertices from an odd number of Kn-layers will be played. Moreover, in
view of Lemma 5.3, all the vertices from these layers will be played. Since n is odd,
the total number of vertices played by the end of the game will be odd, meaning that
A will play the last move and hence B will win the gp-avoidance game on G ◦Kn.

It remains to prove that in the other cases A has a winning strategy. If n is
even, then it follows from Lemma 5.3 that an even number of vertices will be played
during the game. This shows that A wins the game on G ◦Kn. On the other hand,
if A wins on G, then A starts the game by choosing a vertex a1 such that πG(a1) is
the starting vertex according to the winning strategy of B in G. Then A follows a
strategy parallel to the strategy of B from the first paragraph to win the game on
G ◦Kn. �

We next give a sufficient condition on G which guarantees that A wins the gp-
avoidance game on G ◦H .

Proposition 5.5 Let G and H be connected graphs. If there exists a vertex u in G
such that for any v 6= u ∈ V (G), PℓG(u, v) ∪ {u, v} is a clique of even order, then
A wins the gp-avoidance game on G ◦H.

Proof. Consider the gp-avoidance game on G ◦ H . The initial strategy of A is to
play a1 = (u, v1), where v1 is an arbitrary vertex of H and u is such that for any
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v 6= u ∈ V (G), PℓG(u, v)∪{u, v} is a clique of even order in G. Then, after the first
move of B, Proposition 5.1 implies that the entire game is restricted to a subgraph of
G ◦H induced by V (G′)×V (H), where G′ is a clique of G of even order. Moreover,
by Lemma 5.3, all vertices of V (G′)× V (H) will be played by the end of the game.
As there are even number of these vertices, B plays the last vertex and A wins. �

Obvious examples of graphs G that fulfill the assumption of Proposition 5.5 are
complete graphs of even order. Another such family is formed by the graphs that
are obtained from a disjoint union of complete graphs of even order by selecting one
vertex in each of these complete subgraphs and identifying all of them into a single
vertex.

6 Conclusions and open problems

To conclude, we provide a list of open questions and directions for further research.
The first problem that we propose is the complexity of the gp-achievement game
and the gp-avoidance game for graphs with diameter at most 3. We tried to obtain
a reduction from Node Kayles, but the diameter 4 seems to be a strong restriction of
our reduction. Are these games polynomial time solvable for graphs with diameter
2? This question is also unsolved.

Another interesting problem is to determine the player with a winning strategy
in other simple graph classes, such as cographs and P4-sparse graphs [12], and strong
product of graphs in both general position games.

It is also interesting to see that the gp-achievement game on generalized wheels
Wn,m is still unsolved. See the technical discussion after Theorem 2.6, which solved
the gp-avoidance game on these graphs. There is a relation between the gp-achievement
game on generalized wheels and the game in which three selected vertices cannot
induce a P3, which is interesting by itself and seems to be hard even in cycles.

Other open problem is to solve the gp-avoidance game in connected bipartite
graphs. In [3], it is proved that player B always wins the gp-achievement game in
this graph class, but Theorem 4.7 shows that this is not true even in cylinders (a
subclass of connected bipartite graphs).

Finally, an interesting problem is to determine the winner in the gp-avoidance
game played on Kn ◦H , where H is an arbitrary graph.
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