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Abstract

Let G be a graph and let S(G), M(G), and T (G) be the subdivision, the mid-
dle, and the total graph of G, respectively. Let dim(G), edim(G), and mdim(G)
be the metric dimension, the edge metric dimension, and the mixed metric dimen-
sion of G, respectively. In this paper, for the subdivision graph it is proved that
1
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max{dim(G), edim(G)} ≤ mdim(S(G)) ≤ mdim(G). A family of graphs Gn is

constructed for which mdim(Gn) − mdim(S(Gn)) ≥ 2 holds and this shows that
the inequality mdim(S(G)) ≤ mdim(G) can be strict, while for a cactus graph G,
mdim(S(G)) = mdim(G). For the middle graph it is proved that dim(M(G)) ≤
mdim(G) holds, and if G is tree with n1(G) leaves, then dim(M(G)) = mdim(G) =
n1(G). Moreover, for the total graph it is proved that mdim(T (G)) = 2n1(G) and
dim(G) ≤ dim(T (G)) ≤ n1(G) hold when G is a tree.

Keywords: resolving set; mixed resolving set; edge resolving set; subdivision graph;
middle graph; total graph; tree
AMS Subj. Class.: 05C12; 05C69; 05C76

1 Introduction

The metric dimension of graphs is a classical topic in graph theory that has significantly
increased the attention of several researchers in the last decade. This can be seen for
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instance while making a search query at the MathSciNet database, where about 90 percent
of articles were published in the last 10 years. Reasons for this increasing interest might
arise from the several applications of metric dimension topics on practical problems from
areas like computer science [11], social networks [20], chemistry [5], and biology [19], among
other ones. For more information on these facts we suggest the recent survey [18]. Another
reason for this might be regarding the explosion of different newly defined variations of the
classical concept that give more insight into the classical topic and between themselves.
For more information and background on many of these variants, we recommend the other
recent survey [8].

It is our goal to present some contributions on one of these variants called mixed metric
dimension. Particularly the exposition centers the attention on finding (or bounding)
the mixed metric dimension of some graphs obtained under some modifications on their
structure which have the common nature of making subdivisions into their edges. The
modifications are as follows.

• The subdivision graph S(G) of a graph G is obtained from G by subdividing each
edge of G. It is clear that n(S(G)) = n(G)+m(G) and m(S) = 2m(G). If e ∈ E(G),
then by ve we will denote the vertex of S(G) obtained by subdividing the edge e,
and call it a subdivision vertex.

• The middle graph M(G) of a graph G is obtained from G by subdividing each edge,
and then joining pairs of these new vertices if and only if their corresponding edges
have a common endvertex in G. Note that M(G) contains the line graph L(G)
of G as a proper induced subgraph and the subdivision graph S(G) as a proper
spanning subgraph. Middle graphs were introduced by Hamada and Yoshimura [3],
and further studied in several papers, cf. [9, 16].

• The total graph T (G) of a graph G is obtained from the middle graph M(G) by
adding the edges xy, where xy ∈ E(G). Total graphs were introduced more than
50 years ago, see [1], and further on studied in about two hundred articles. Note
that T (G) contains G as an induced subgraph, and its edges will be called original
edges. T (G) also contains S(G) as a spanning subgraph, its edges will be addressed
as S(G)-edges. In addition, T (G) contains L(G) as an induced subgraphs, and its
edges shall be called L(G)-edges.

The subdivision, middle and total graphs are combinatorial constructions whose own
properties are many times inherited from the original graphs from which they have arisen.
Consequently, these constructions, as well as several other related ones (line graphs, edge
contracted graphs, etc), are frequently considered in the investigation on graph theory
as they are giving some extra information on the original graphs. The case of metric
dimension related topics does not escape to this, as we shall present throughout our whole
exposition.
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2 Preliminaries

In this paper, we consider finite, simple and connected graphs. The vertex and edge sets
of a graph G are denoted by V (G) and E(G), respectively. Two vertices x, y ∈ V (G)
are resolved (resp. determined or identified) by a vertex v ∈ V (G) if dG(x, v) 6= dG(y, v)
where dG stands for the classical distance operator in graphs. A set S ⊂ V (G) is called
a resolving set for G if every two vertices u, v ∈ V (G) are resolved by a vertex of S.
A resolving set of the smallest possible cardinality in G is called a metric basis, and the
cardinality of a metric basis is the metric dimension of G, denoted dim(G). These concepts
were first formally and independently introduced for graphs in [4, 15] in connection with
some problems of uniquely recognizing the vertices of a graph with a purpose of locating
intruders in a network. We may remark that in [15], resolving sets were named locating
sets and the metric dimension was called locating number.

On the other hand, and aimed to also uniquely identify the edges (resp. edges and
vertices) of a graph, the notion of edge (resp. mixed) resolving sets were first presented in [6]
(resp. [7]) as follows. Two elements x, y ∈ V (G)∪E(G) are resolved by a vertex v ∈ V (G) if
dG(x, v) 6= dG(y, v). Here, if x = ww′ is an edge, then dG(x, v) = min{dG(w, v), dG(w

′, v)}.
A set of vertices S ⊂ V (G) is said to be an edge resolving set for G if every two edges
e, f ∈ E(G) are resolved by a vertex of S. Moreover, the set S is called a mixed resolving
set for G if any two elements (vertices or edges) x, y ∈ V (G) ∪ E(G) of the graph are
resolved by a vertex of S. An edge (resp. mixed) resolving set of the smallest possible
cardinality is called an edge (resp. mixed) metric basis, and its cardinality the edge (resp.
mixed) metric dimension, denoted by edim(G) (resp. mdim(G)). Recent studies on the
edge and mixed metric dimensions of graphs are for instance [2, 14] and [10, 12, 13],
respectively.

The following concept from the seminal paper [7] is very useful. A vertex u ∈ NG(v)
is a maximal neighbor of v if all neighbors of v (and v itself) are in NG[u]. That is, u
is a maximal neighbor of v if u is adjacent to all neighbors of v. The next Lemma 2.1
implicitly follows from [7, Theorem 3.8].

Lemma 2.1 If W is a mixed resolving set for a graph G, and v ∈ V (G) has a maximal
neighbour, then v ∈ W .

Proof. Since v has a maximal neighbour, there exists u ∈ NG(v) such that NG[v] ⊆ NG[u].
Consider the edge uv and the vertex u. Since for x ∈ V (G)\{v} we have dG(x, u) =
dG(x, uv), the only vertex that can distinguish uv and u is v. That is, we conclude that
v ∈ W . �

Recall that a graph G with edge disjoint cycles is called a cactus. For three vertices
u, v and w from a cycle C in a cactus graph G we say that they form a geodesic triple of
vertices if dG(u, v) + dG(v,w) + dG(w, u) = |V (C)|. Let G be a cactus graph with c cycles
C1, . . . , Cc. The root vertices on the cycle Ci are the vertices of degree at least 3. The
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number of root vertices on the cycle Ci is denoted by rt(Ci). By n1 we denote the number
of degree 1 vertices of G.

Theorem 2.2 [13, Theorem 5] Let G be a cactus graph with t cycles Cs1 , . . . , Cst. Then

mdim(G) = n1(G) +

t∑

i=1

max{3− rt(Csi), 0} + ǫ,

where ǫ is the number of cycles Csi in G for which rt(Csi) ≥ 3 and there is not a geodesic
triple of root vertices on the cycle Csi.

3 Subdivision graphs

Let G be a graph and let X be a metric basis of S(G). Hence, denote

φ(X) = {u ∈ V (G) : u ∈ X or u is adjacent to a subdivision vertex from X}

and
φ(G) = min{|φ(X)| : X is a metric basis of S(G)} .

Theorem 3.1 If G is a graph, then the following hold:

(i) mdim(S(G)) ≤ mdim(G),

(ii) φ(G) ≥ max{dim(G), edim(G)}.

Proof. At the beginning of the proof, we give the distance function for those vertex to
vertex and vertex to edge situations in the graph S(G) needed later on. Let x, y ∈ V (G).
Then xv1v2 . . . vky is a path of length k+1 in G if and only if xvxv1v1vv1v2v2 . . . vkvvkyy is
a path of length 2(k + 1) in S(G). Thus, if x, y ∈ V (G), then

dS(G)(x, y) = 2dG(x, y) . (1)

Similarly, if x ∈ V (G) and e ∈ E(G), then

dS(G)(x, ve) = 2dG(x, e) + 1 , (2)

and if e, e′ ∈ E(G), then
dS(G)(ve, ve′) = 2dG(e, e

′) + 2 . (3)

Finally, if x ∈ V (G) and f ∈ E(S(G)), where f is one of the edges obtained by subdividing
e ∈ E(G), then

dS(G)(x, f) ∈ {2dG(x, e), 2dG(x, e) + 1} . (4)

Let us now prove the two claims of the theorem.
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(i) Let W ⊆ V (G) be a mixed resolving set for G. We are going to show that W ⊆
V (S(G)) is a mixed resolving set for S(G).

Let x, y ∈ V (S(G)). If x, y ∈ V (G), then there exists w ∈ W such that dG(x,w) 6=
dG(y,w). By (1) we have dS(G)(x,w) = 2dG(x,w) 6= 2dG(y,w) = dS(G)(y,w). Suppose
next that x ∈ V (G) and y = ve for some e ∈ E(G). Then by (1) and (2) we get that
dS(G)(x,w) is even and dS(G)(ve, w) is odd for any w ∈ W , hence x and ve are distinguished
by (every vertex of) W . Suppose finally that x = ve and y = ve′ for two edges e, e′ ∈ E(G).
Since W is a mixed resolving set, there exists w ∈ W such that dG(e, w) 6= dG(e

′, w).
Using (2) once more, we get dS(G)(w, ve) = 2dG(w, e) + 1 6= 2dG(w, e

′)+ 1 = dS(G)(w, ve′).
So any pair of vertices of S(G) is distinguished by W .

Consider next a vertex x ∈ V (S(G)) and an edge f ∈ E(S(G)). Then f = zve,
where e = zz′ ∈ E(G). Suppose that x ∈ V (G) and let w ∈ W be a vertex with
k = dG(x,w) 6= dG(e, w) = ℓ. Then dS(G)(x,w) = 2k and dS(G)(f,w) ∈ {2ℓ, 2ℓ+1} by (4).
Hence dS(G)(x,w) 6= dS(G)(f,w). Suppose next x ∈ V (S(G)) \V (G). Then x = ve′ , where
e′ ∈ E(G). As W is a mixed resolving set, there exists w ∈ W such that k = dG(e, w) 6=
dG(e

′, w) = ℓ. Then dS(G)(x,w) = 2ℓ + 1 by (2) and dS(G)(f,w) ∈ {2k, 2k + 1} by (4).
Hence again dS(G)(x,w) 6= dS(G)(f,w).

It remains to verify that also each pair of edges of S(G) is distinguished by W . Let f =
zve ∈ E(S(G)), where e = zz′ ∈ E(G) and f ′ = yve′ ∈ E(S(G)), where e′ = yy′ ∈ E(G).
Let w ∈ W be a vertex with k = dG(w, e) 6= dG(w, e

′) = ℓ. Then by (4), dS(G)(w, f) ∈
{2k, 2k + 1} and dS(G)(w, f

′) ∈ {2ℓ, 2ℓ + 1} and consequently dS(G)(f,w) 6= dS(G)(f
′, w).

This proves the first inequality.

(ii) In order to establish φ(G) ≥ dim(G), we need to prove that if X is an arbitrary
metric basis of S(G), then φ(X) is a resolving set of G. Consider u, v ∈ V (G). If at least
one of them belongs to X, then it also belongs to φ(X); so u and v are distinguished
by it. Suppose this is not the case. Then in S(G) there exists a vertex x ∈ X such
that dS(G)(u, x) 6= dS(G)(v, x). If x ∈ V (G), then x ∈ φ(X) and by (1) we are done.
Suppose x is a subdivision vertex, say x = ve, where e = x′x′′. Then x′, x′′ ∈ φ(X). If
dG(u, x

′) = dG(v, x
′) and dG(u, x

′′) = dG(v, x
′′), then by (4) we would have dS(G)(u, x) =

dS(G)(v, x). Hence u, v are distinguished in G by at least one of x′, x′′, a contradiction.
Thus φ(G) ≥ dim(G) holds.

It remains to prove that φ(G) ≥ edim(G). Consider e = xx′, f = yy′ ∈ E(G). Then
consider the vertices ve and vf of S(G). If at least one of these two vertices lies in X,
say ve, then dG(e, x) = dG(e, x

′) = 0, and dG(f, x) 6= 0 or dG(f, x
′) 6= 0, hence e and

f are distinguished by φ(X) since x, x′ ∈ φ(X). It remains to consider the case when
ve /∈ X and vf /∈ X. Then in S(G) there exists a vertex w ∈ X such that dS(G)(w, ve) 6=
dS(G)(w, vf ). If w ∈ V (G), then w ∈ φ(X) and by (2) we are done. Suppose now that
w is a subdivision vertex, say w = vg, where g = w′w′′. Then w′, w′′ ∈ φ(X). By (3) we
have dS(G)(vg, ve) = 2k + 2 (for some k) and dS(G)(vg, vf ) = 2ℓ + 2 (for some ℓ), where
k 6= ℓ. We may assume without loss of generality that ℓ < k. Again assume without loss
of generality that dG(w

′′, f) ≤ dG(w
′, f). Then dG(g, f) = dG(w

′′, f) = ℓ. On the other
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hand, because dG(g, e) = k, we have dG(w
′′, e) ≥ k > ℓ = dG(w

′′, f). We conclude that
w′′ ∈ φ(X) distinguishes the edges e and f . �

Corollary 3.2 If G is a graph, then

1

2
max{dim(G), edim(G)} ≤

1

2
φ(G) ≤ mdim(S(G)) ≤ mdim(G) .

Proof. Let X be an arbitrary metric basis of S(G). Then by the construction,

φ(G) ≤ |φ(X)| ≤ 2|X| = 2dim(S(G)) . (5)

Then we have

1

2
max{dim(G), edim(G)} ≤

1

2
φ(G) ≤ dim(S(G)) ≤ mdim(S(G)) ≤ mdim(G)

where the first and the last inequality hold by Theorem 3.1 (ii) and (i), respectively.
The second inequality was established in (5), and the third inequality is obvious by the
definition of the two dimensions. �

Let Gn, n ≥ 2, be graphs defined as follows. The vertex set of Gn is {x, y, z1, z2, . . . , zn}
and the edge set is {xy, xz1, yz1, xz2, yz2, . . . , xzn, yzn}. In Fig. 1 the subdivision S(G5)
of G5 is drawn, where the subdivision vertices are drawn by squares.

x y

z1

z2

z3

z4

z5

Figure 1: The graph S(G5)

6



One can check that mdim(G2) = 4 and mdim(S(G2)) = 3 hold. For instance,
{vxz1 , vxz2 , vyz1} is a mixed metric basis of S(G2). This particular example shows that
the right-hand side inequality of Corollary 3.2 can be strict. More generally, we have the
following result.

Proposition 3.3 If n ≥ 5, then mdim(Gn)−mdim(S(Gn)) ≥ 2.

Proof. Note first that each vertex of Gn has a maximal neighbor, hence by Lemma 2.1,
mdim(Gn) = n+2. To prove the result it thus suffices to show that mdim(S(Gn)) ≤ n. For
this sake let Sn = {vxz1 , vxz2 , vyz3 , vyz4 , z5, . . . , zn}. We claim that Sn is a mixed resolving
set of Gn and proceed by induction.

For n = 5 it was checked by hand that the set S5 is indeed a mixed resolving set of
S(G5). Suppose now that the assertion holds for n−1 ≥ 5 and consider Gn and the set Sn.
Let x and y be two arbitrary elements from V (Gn)∪E(Gn). If x, y both lie in the subgraph
Gn−1 of Gn, then because Gn−1 is an isometric subgraph of Gn, the elements x and y are
by induction distinguished by some element from Sn−1 ⊂ Sn. Suppose next that exactly
one of x and y, say x, lies in Gn−1. Then note that dGn(y, zn) ≤ 1 while dGn(x, zn) ≥ 2.
Hence x and y are identified by zn ∈ Sn. The last case to consider is when none of x and
y lies in Gn−1. In that case, if dGn(x, zn) = dGn(y, zn), then dGn(x, vxz1) 6= dGn(y, vxz1)
and we are done. �

We would point out an open problem concerning whether there are graphs G such
that mdim(G) − mdim(S(G)) > 2. On the other hand, equality cases are also possible,
for instance we have the following:

Corollary 3.4 If G is a cactus graph, then mdim(G) = mdim(S(G)).

Proof. It is straightforward to verify that S(G) is a cactus graph such that (i) C is a cycle
in G if and only if S(C) is a cycle in S(G); (ii) rt(C) ≥ 3 and there is not a geodesic triple
of root vertices on the cycle C if and only if rt(S(C)) ≥ 3 and there is not a geodesic triple
of root vertices on the cycle S(C); (iii) and that rt(C) = rt(S(C)). Therefore, Theorem 2.2
implies the result. �

Another interesting open question is to characterize graphs G such that mdim(G) =
mdim(S(G)).

4 Middle and total graphs

In the first part of this section we deal with middle graphs. We first demonstrate that
dim(M(G)) can be bounded from the above by mdim(G) and then prove that the bound
is tight on trees.

Theorem 4.1 If G is a graph, then mdim(G) ≥ dim(M(G)).

7



Proof. We first consider the distances between elements of S(G). If x, y ∈ V (G), then
clearly

dM(G)(x, y) = dG(x, y) + 1. (6)

On the other hand, if x ∈ V (G) and e ∈ E(G), then

dM(G)(x, ve) = dG(x, e) + 1. (7)

Next, let W be a mixed resolving set for G. We claim that M forms a resolving set for
M(G). To this end, let x, y ∈ V (M(G)). The cases x ∈ W or y ∈ W are straightforward.
Hence, we assume x, y /∈ W . Since each of x, y corresponds either to a vertex or to an
edge of G, and W is a mixed resolving set for G, there exists a vertex w ∈ W such that
dG(x,w) 6= dG(y,w).

If x, y ∈ V (G), then by (6) we have

dM(G)(x,w) = dG(x,w) + 1 6= dG(y,w) + 1 = dM(G)(y,w)

If x = ve and y = vf for some e, f ∈ E(G), then by (7),

dM(G)(ve, w) = dG(e, w) + 1 6= dG(f,w) + 1 = dM(G)(vf , w).

Finally, if x ∈ V (G) and y = vf for some f ∈ E(G), then by (6) and (7), it follows

dM(G)(x,w) = dG(x,w) + 1 6= dG(f,w) + 1 = dM(G)(vf , w).

Therefore, W is a resolving set for M(G) as claimed. �

Theorem 4.2 If G is a tree, then mdim(G) = dim(M(G)) = n1(G).

Proof. From [7] we have mdim(G) = n1(G). Thus, by Theorem 4.1, dim(M(G)) ≤ n1(G).
To complete our proof it is enough to show that dim(M(G)) ≥ n1(G). To do this, let W
be a metric basis for M(G).

Consider a pendant edge xy of G, where dG(x) = 1. Then dM(G)(vxy, z) = dM(G)(y, z)
holds for every vertex z ∈ V (M(G)) \ {x, vxy, y}. It follows that W ∩ {x, vxy, y} 6= ∅.
Suppose now that y is a support vertex of G with k ≥ 2 leaves attached to it, say x1, . . . , xk.
By the above, W ∩{xi, vxiy, y} 6= ∅ and W ∩{xj, vxjy, y} 6= ∅ hold for each i, j ∈ [k], i 6= j.
If W ∩ {xi, vxiy, y} = {y} = W ∩ {xj, vxjy, y}, then xi and xj are not distinguished by W .
Therefore we deduce that

|W ∩
k⋃

i=1

{xi, vxiy, y}| ≥ k .

Hence W contains at least n1 vertices and we are done. �

We now turn our attention to the mixed metric dimension of total graphs of trees and
prove the following somewhat surprising result.
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Theorem 4.3 If G is a tree, then

mdim(T (G)) = 2n1(G) .

Proof. Let x be a leaf of G adjacent to y. Then we claim that both x and vxy have a
maximal neighbor. Indeed, vxy is a maximal neighbor of x, and y is a maximal neighbor
of vxy. By Lemma 2.1, both x and vxy belong to each mixed resolving set. Applying this
argument to each pendant edge of G we obtain that mdim(T (G)) ≥ 2n1(G).

Let nowW be the set of vertices of T (G) containing all the vertices corresponding to the
leaves in G together with the subdivision vertices adjacent to them. Then |W | = 2n1(G).
We claim that W is a mixed metric basis of T (G). Let x and y be arbitrary elements from
V (T (G)) ∪E(T (G)).

Consider first all possible situations when x, y ∈ V (T (G)). If x, y ∈ V (G), then
there exists a leaf w in G such that dG(x,w) 6= dG(y,w). Since dT (G)(x,w) = dG(x,w)
and dT (G)(y,w) = dG(y,w), x and y are distinguished by w ∈ W in T (G) also. Sup-
pose next that x ∈ V (G) and y = vzz′ . Let t be a leaf of G such that dG(x, t) ≤
min{dG(z, t), dG(z

′, t)}. Then dT (G)(y, t) ≥ dT (G)(x, t)+1. The next case is when x = vzz′

and y = vww′ , which can be dealt with using the same argument as in the previous case.
Consider next all possible situations when x, y ∈ E(T (G)). If x and y are original

edges, then their distances to leaves remain the same and there is nothing to prove, based
on the facts that the sets of leaves in G and T (G) are the same, that the set of leaves of
G is included in W , and that the set of leaves is a mixed metric basis of G.

We next consider all the remaining cases when x and y are incident edges.

Case 1: x and y are S(G)-edges: x = zvzz′ and y = z′vzz′ .
Then let t be a leaf of G such that dG(t, z

′) = dG(t, z) + 1. Then

dT (G)(y, t) = dT (G)(x, t) + 1

which means that x and y are distinguished by t which is a leaf of G.

Case 2: x and y are S(G)-edges: x = z′vzz′ and y = z′vz′z′′ .
Then select a leaf t of G such that the shortest path from t to z′′ contains z and z′.
Consider now the vertex vtt′ ∈ W , where tt′ ∈ E(G). Then we infer that

dT (G)(y, vtt′) = dT (G)(x, vtt′) + 1

which means that x and y are distinguished by the subdivision vertex vtt′ which is adjacent
to the leaf t of G.

For all the other situations in which x and y are incident, we consider Cases 1 and
2 as models. We have collected the remaining situations in Table 1, where the column
corresponding to the identifying vertex contains a vertex from W selected in a way parallel
as the vertices t and vtt′ were selected in Cases 1 and 2, respectively.

9



edge x of type edge y of type identifying vertex

L(G) : vzz′vz′z′′ L(G) : vz′z′′vz′′z′′′ vtt′

L(G) : vzz′vz′z′′ S(G) : vz′z′′z
′′ vtt′

L(G) : vzz′vz′z′′ S(G) : vz′z′′z
′ vtt′

original: zz′ S(G) : vzz′z
′ t

original: zz′ S(G) : z′vz′z′′ t

Table 1: Some remaining pairs of edges and one identifying vertex of each pair.

To cover all the cases when x and y are edges, we still need to deal with the situation
when x and y are not incident. For instance, this is the case when x is an original edge
and y is an L(G)-edge. However, for non-incident edges the existence of a vertex of type
t or vtt′ can be readily deduced.

To complete the proof, we need to see that also an edge x and a vertex y are dis-
tinguished by W . Suppose first that x is a vertex of G and y = xvzx. Then we con-
sider a leaf t of G and the subdivision vertex vtt′ ∈ W , where tt′ ∈ E(G), such that
dT (G)(x, vtt′) = dT (G)(y, vtt′ ) + 1 and we are done. Suppose second that x = vzz′ and
y = zvzz′ . Then we detect a leaf t such that dT (G)(x, t) = dT (G)(y, t)+1. In any other case
(including those in which x and y are not incident) we can similarly find a vertex t (leaf
of G) or vtt′ (subdivision vertex of T (G) adjacent to the leaf t of G) which distinguish x
and y. �

To prove the left-hand side inequality of our next result, we use the standard terminol-
ogy concerning the metric dimension of trees that can be seen in, say [4, 8, 15, 18]. That
is, a vertex of degree at least three of a tree G is called a major vertex. A leaf u of G is
called a terminal vertex of a major vertex v of G if dG(u, v) < dG(u,w) for every other
major vertex w of G. The terminal degree of a major vertex v is the number of terminal
vertices of v. A major vertex v of G is an exterior major vertex of G if it has positive
terminal degree.

Proposition 4.4 If G is a tree, then dim(G) ≤ dim(T (G)) ≤ n1(G).

Proof. In the third paragraph of the proof of Theorem 4.3 when considering arbitrary two
vertices of T (G), each pair of vertices was distinguished by some leaf of G. This implies
the right-hand side inequality.

Now, for any exterior major vertex u of G, the subtree Gu containing all the vertices
between u and its terminal leaves, must contain exactly the number of terminal leaves of
u minus 1. Denote this number by gu. To prove our assertion, we claim that a basis W
of T (G) must contain at least gu vertices from T (Gu). Suppose this is not the case. Then
there exist two leaves t1 and t2 in G such that no vertex in T (G) on any shortest t1, u-path
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and no vertex on any shortest t2, u-path lies in W . But then the vertices vuu′ and vuu′′ are
not identified by W , where u′ and u′′ are adjacent to u in G on the u, t1- and u, t2-paths,
respectively. �

The upper bound of Proposition 4.4 is tight as demonstrated by paths and stars K1,k,
k ∈ {2, 3, 4} for which dim(T (Pn)) = 2 and dim(T (K1,k)) = k for k ∈ {2, 3, 4}, see [17].
On the other hand, dim(T (K1,k)) = k − 1 for k ≥ 5, again see [17], which shows that the
lower bound is also tight. Hence the problem to determine dim(T (G)) for an an arbitrary
tree seems a challenging problem, an interesting fact because by Theorem 4.3 we know
mdim(T (G)).
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