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Abstract

The outer multiset dimension dimms(G) of a graph G is the cardinality of
a smallest set of vertices that uniquely recognize all the vertices outside this
set by using multisets of distances to the set. It is proved that dimms(G) =
n(G)− 1 if and only if G is a regular graph with diameter at most 2. Graphs
G with dimms(G) = 2 are described and recognized in polynomial time. A
lower bound on the lexicographic product of G and H is proved when H is
complete or edgeless, and the extremal graphs are determined. It is proved
that dimms(Ps�Pt) = 3 for s ≥ t ≥ 2.
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1 Introduction

Computing the metric dimension of graphs is one of the classical topics in metric
graph theory, based on its applicability in several location related problems aris-
ing in different areas of investigation like for instance computer science, chemistry,
biology, or social sciences. For a better understanding on definitions, terminology,
contributions, and open questions on this issue we suggest the fairly complete and
recently presented survey [16].

The theory of metric dimension in graphs has also been much developed by
studying several variations of the classical concept, while attempting to consider
some specifications or generalizations that are giving more insight into this classical
version. The number of such variants has been significantly increased in the last
recent years, and the reader can now find a very rich area of investigation concerning
such variants. For a comprehensive background on a large number of such variants,
it is suggested the other recent survey [10].

Given a connected graph G, it is said that a vertex v ∈ V (G) resolves (or identi-
fies, or determines) two vertices x, y ∈ V (G) if dG(x, v) 6= dG(y, v); equivalently, x, y
are resolved by v. Here and later dG(u, w) stands for the distance between u, w in
G. It is also said that a set of vertices S resolves the set V (G) if every two vertices
of G are resolved by a vertex of S, and such set is called a resolving set. The metric

dimension of G is defined as the cardinality of a smallest resolving set for G, and
denoted by dim(G). A resolving set of cardinality dim(G) is called a metric basis.
The concepts above were first (and independently) presented in [7, 15].

It can be easily noted that a resolving set S of a graph G has the property of
uniquely identifying all the vertices of G by means of distances to the vertices in S.
That is, consider S = {v1, . . . , vk} as an ordered set of vertices of a connected graph
G, and for any vertex v ∈ V (G), consider the vector

r(v|S) = (dG(v, v1), . . . , dG(v, vk)).

It is readily seen that S is a resolving set forG if and only if all the vectors r(v|S) with
v ∈ V (G) are pairwise different. The vector r(v|S) is called themetric representation

of v with respect to S.
The core of the locating property of a resolving set S of a graph is based on

the uniqueness of the metric representations with respect to S of the vertices of
the graph, and these metric representations are given by vectors of distances. A
modified version of this was presented in [14], where the authors suggested the use
of “multisets” instead of vectors in the definition of metric representations of a
vertex with respect to a given set. That is, for a given vertex v ∈ V (G) and a set
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S = {w1, . . . , wt}, the multiset representation of u with respect to S is

mG(u|S) = {{dG(u, w1), . . . , dG(u, wt)}},

where {{·}} limits a multiset. Hence, the set S is a multiset resolving set for G
if all the multisets mG(u|S) with u ∈ V (G) are pairwise different. The multiset

dimension of G is then defined as the cardinality of a smallest multiset resolving
set. A detail that one can immediately notice is that there could be vertices in
a graph that have the same multiset representation with respect to every set of
vertices of G (for instance twin vertices), and so, the multiset dimension of such
graphs is not properly defined. In such situations, the authors of [14] adopted the
agreement that such graphs has infinite multiset dimension. The problem from [14]
to characterize the graphs with infinite multiset dimension remains open. Some
partial contributions on this direction were already described in [4].

On the other hand, in order to avoid the problem of the possible infiniteness of
the multiset version of the metric dimension, it was introduced an “outer” version
of multiset resolving sets in [6] as follows. A set S ⊆ V (G) is a outer multiset

resolving set for G, if the multiset representations of vertices u /∈ S with respect to
S are pairwise different. A multiset resolving set of the smallest possible cardinality
is called an outer multiset basis, and the cardinality of an outer multiset basis is
the outer multiset dimension of G, denoted by dimms(G). This structure clearly
avoids the problem of infiniteness of multiset dimension, since vertices that must
be distinguished by a set S are only vertices outside S. In this work, we are aimed
to continue developing this research line. To this end, we next give some basic
definitions and terminologies that are necessary along our exposition.

For a positive integer k we will use the notation [k] = {1, . . . , k}. A vertex u of a
graph G is diametral if there exists a vertex v ∈ V (G) such that dG(u, v) = diam(G),
where diam(G) denotes the diameter of G, that is, the largest distance between
vertices of G. We also say that v is a vertex diametral to u. A subgraph H of a
graph G is isometric if dH(u, v) = dG(u, v) holds for all u, v ∈ V (H). The open
and the closed neighborhood of a vertex u of G will be denoted by NG(u) and by
NG[u], respectively. The degree degG(u) of u is |NG(u)|. Vertices x and y of G are
true twins if NG[u] = NG[v] and are false twins if NG(u) = NG(v). Vertices u and
v are just twins, if they are either true twins or false twins. The order of G will be
denoted by n(G). If in a multiset (of distances) an element d appears k times, then
we may abbreviate it to dk. For instance, {{1, 1, 1, 2, 5, 5}} = {{13, 2, 52}}. Finally,
all graphs considered in this paper are connected and of order at least 2.
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2 Graphs with outer multiset dimension order mi-

nus one

For the classical metric dimension parameter, it is well known that dim(G) = n(G)−
1 if and only if G is a complete graphs. In [6], some examples of non complete
graphs G of order n such that dimms(G) = n− 1 were given. However, a complete
characterization of the class of graphs achieving this equality was not given in [6].
We next settle this issue.

Theorem 2.1 A graph G satisfies dimms(G) = n(G)−1 if and only if G is a regular

graph with diam(G) ≤ 2.

Proof. It was observed in [6] that dimms(Kn) = n − 1. Moreover, from [6, Exam-
ple 3.3, Proposition 3.5] we also know that dimms(C4) = 3, dimms(C5) = 4, and
dimms(Cn) = 3 for n ≥ 6, as well as that dimms(Pn) = 1. It follows that the theorem
holds for complete graphs and graphs G with ∆(G) ≤ 2. In the rest of the proof we
may thus assume that diam(G) ≥ 2 and ∆(G) ≥ 3.

Suppose first that G is a graph which satisfies dimms(G) = n(G) − 1. Assume
that G is not regular and select vertices u and v of G such that degG(u) 6= degG(v).
We claim that V (G)\{u, v} is an outer multiset resolving set. For this sake we only
need to verify that mG(u|S) 6= mG(v|S). Let mG(u|S) = {{1su, . . .}} and m(v|S) =
{{1sv , . . .}}. Then, no matter whether u and v are adjacent or not, degG(u) 6= degG(v)
implies that su 6= sv and hence mG(u|S) 6= mG(v|S). This shows that G must be
regular.

Suppose now that G is an r-regular graph, r ≥ 3, which satisfies dimms(G) =
n(G)−1. We first claim that every vertex of G is diametral. Assume on the contrary
that there exists a non-diametral vertex u, and let v be an arbitrary diametral vertex
of G. Let S = V (G) \ {u, v} and note that diam(G) /∈ m(u|S) while diam(G) ∈
m(v|S). This means that S is an outer multiset resolving set which in turn implies
that dimms(G) < n(G)− 1. This contradiction proves the claim that each vertex of
G is diametral.

Assume that diam(G) ≥ 3. Let u be an arbitrary vertex of G and consider a
diametral path starting in u and ending in u′. Let w be the neighbor of u on the
diametral path. Then w 6= u′ because diam(G) ≥ 3. Let S = V (G) \ {u, w}. Since
dimms(G) = n(G)−1, the set S is not an outer multiset resolving set. In particular, if
mG(u|S) = {{. . . , diam(G)su}} and mG(v|S) = {{. . . , diam(G)sw}}, then su = sw > 0.
Consider now the set T = V (G) \ {u, u′, w}. Note first that (having in mind that
diam(G) ≥ 3 and that G is r-regular) each of the vertices u and w has r−1 neighbors
in T while u′ has r neighbors in T . Therefore, the pairs u, u′ and w, u′ are resolved
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by T . Moreover, since u′ /∈ T , there are su − 1 vertices in T at distance diam(G)
from u, while there are sw vertices in T that are at distance diam(G) from w. Since
su = sw we have proved that T also resolves the pair u, w. It follows that T is an
outer multiset resolving set, a contradiction to the assumption dimms(G) = n(G)−1.
We came to this contradiction because we assumed that diam(G) ≥ 3. We conclude
that diam(G) = 2.

Conversely, suppose thatG is an r-regular graph, r ≥ 3, with diam(G) = 2. Let S
be an outer multiset basis ofG. Assume that |S| ≤ n(G)−2. Let S = V (G)\S. Since
diam(G) = 2, for each x ∈ S we have mG(x|S) = {{1sx, 2s

′

x}}, where sx + s′x = |S|.
As S is an outer multiset resolving set, sx 6= sy for each pair of vertices x, y ∈ S,
for otherwise sx = sy would mean that s′x = s′y and hence x and y have the same

multiset representation. Select a vertex u ∈ S such that su is smallest possible.
Then, because sx 6= sy for each pair of vertices x, y ∈ S, and since |S| ≥ 2, we
have su < r. Let r = su + t. Then u has t neighbors in S. Because the vertices x
from S have pairwise different values sx, and since su is the smallest among them,
{sx : x ∈ S} = {su, su + 1, . . . , su + t} = {su, su + 1, . . . , r}. Hence, there exits
a vertex w ∈ S with sw = r. This means that w has r neighbors in S. But w is
adjacent also to u ∈ S, hence degG(w) ≥ r + 1. As this is not possible we conclude
that |S| = n(G)− 1, that is, dimms(G) = n(G)− 1. �

Examples of graphs from Theorem 2.1 are the Petersen graph, Hamming graphs
(alias Cartesian products of complete graphs), and direct products of complete
graphs. In addition, from Theorem 2.1 we immediately derive [6, Proposition 3.4]
which asserts that if k ≥ 2, then for the complete k-partite graph Kr,...,r we have
dimms(Kr,...,r) = kr − 1. On the other hand, we can easily get that if k ≥ 2 and
2 ≤ r1 < r2 < · · · < rk, them dimms(Kr1,...,rk) = r1 + · · ·+ rk − k.

3 Graphs with outer multiset dimension 2

The problem of characterizing the graphs having its classical metric dimension equal
to 2 is one of the open problems in the area. See [3] for an example with partial con-
tributions in this direction. In this section we center our attention into those graphs
G with dimms(G) = 2. We propose a polynomial algorithm for their recognition and
describe their structure.

Lemma 3.1 If G is a graph with dimms(G) = 2 and S = {u, v} is an outer multiset

basis, then dG(u, v) ≤ 2.

Proof. Suppose that dG(u, v) > 2. Let P be a u, v-geodesic and let u′ ∈ N(u)∩V (P )
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and v′ ∈ N(v) ∩ V (P ). Then u′ and v′ have the same multiset representation with
respect to S, which is not possible. �

Lemma 3.1 leads to Algorithm 1 which decides in polynomial time whether
dimms(G) = 2 holds for a given graph G.

Algorithm 1 Deciding whether a graph G satisfies dimms(G) = 2

1: procedure OUTER-MULTISET-DIMENSION-EQUAL-TWO(G)
2: if G is a path then
3: return dimms(G) = 1
4: else
5: compute the distance matrix of G

6: for all u ∈ V (G) do
7: for all v ∈ V (G) : dG(u, v) ≤ 2 do
8: if multisets in {{{dG(u, x), dG(v, x)}} : x 6= u, v} are different then
9: dimms(G) = 2

10: else return dimms(G) > 2

11: end procedure

Theorem 3.2 Deciding whether a graph G of order n satisfies dimms(G) = 2 can

be done in O(n3) time.

Proof. By Lemma 3.1, we only need to verify each pair of vertices at distance at
most 2 whether it forms an outer multiset basis. This checking is implemented in
Algorithm 1 whose correctness it thus guaranteed by Lemma 3.1.

The distance matrix of the graph G of order n and size m can be computed in
time O(nm). Moreover, since we have shown above that the maximum degree of
G is bounded by a (small) constant, O(nm) = O(n2). (We can pre-process G by
checking the degrees of its vertices.) The main loop (Step 6) is performed n times,
while for each vertex u, the inner loop (Step 7) in performed a constant number of
times because the maximum degree of G and hence also the square of the maximum
degree are constant. Checking whether multisets in Step 8 are different can be done
in O(n2) time, hence the total complexity is O(n3). �

Despite the fact that deciding whether the outer multiset dimension of a graph
equals 2 is polynomial, it is of interest to have more insight into the structure of
such graphs. To do so, for a graph G, X ⊆ V (G), and k ≥ 0, we define

Lk(X) = {u ∈ V (G) : min
x∈X

dG(u, x) = k}.

Note that L0(X) = X , and that the sets Lk(X), k ≥ 0, partition V (G).
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Lemma 3.3 Let G be a graph with dimms(G) = 2 and let S be an outer multiset

basis of G. Then for every k ≥ 1 we have |Lk(S)| ≤ 3. Moreover, if the vertices of

S are adjacent, then |Lk(S)| ≤ 2 and |Lk+1(S)| ≤ |Lk(S)|.

Proof. Let S = {u, v}. Let k ≥ 1 and let x ∈ Lk(S). By definition of Lk(S), we
may without loss of generality assume that dG(x, u) = k. Since dG(u, v) ≤ 2 by
Lemma 3.1, we have dG(v, x) ∈ {k, k + 1, k + 2}. It follows that m(x|S) is one of
{{k, k}}, {{k, k + 1}}, and {{k, k + 2}}. As S is an outer multiset basis this in turn
implies that |Lk(S)| ≤ 3.

Assume in the rest that dG(u, v) = 1. Then dG(v, x) ∈ {k, k + 1} and we can
conclude similarly as above that |Lk(S)| ≤ 2. Suppose now that |Lk(S)| = 1 and
|Lk+1(S)| = 2 for some k ≥ 1. Let Lk+1(S) = {x, y} and Lk(S) = {z}. Then, by
the definition of the sets Li(S), we infer that z is adjacent to both x and y. But this
means that x and y have the same mutiset representation with respect to S. This
contradiction proves that |Lk+1(S)| ≤ |Lk(S)|. �

Based on Lemma 3.3, we next characterize the graphs G with dimms(G) = 2
having an outer multiset basis formed by two adjacent vertices. To this end, let
S = {u, v} be an outer multiset basis of G with uv ∈ E(G). By Lemma 3.3,
|Lk(S)| ≤ 2 for each k. Suppose now that for some k we have Lk(S) = {xk, yk} and
Lk+1(S) = {xk+1, yk+1}. Assume without loss of generality that m(xk|S) = {{k, k}},
m(yk|S) = {{k, k+1}}, m(xk+1|S) = {{k+1, k+1}}, andm(yk+1|S) = {{k+1, k+2}}.
Then xk is not adjacent to yk+1, but must be adjacent to xk+1. In addition, yk must
be adjacent to yk+1, and may be adjacent to xk+1. Finally each of the edges xkyk
and xk+1yk+1 may be present.

The above description together with the fact of Lemma 3.3 that for each k ≥ 1
we have |Lk+1(S)| ≤ |Lk(S)|, lead to the family F of graphs G constructed in the
following way. The vertex set of G ∈ F is V (G) = {u0, . . . , ur} ∪ {v0, . . . , vs} for
some r ≥ 0 and s ≥ 1, and the edges of G are given as follows.

• u0v0, u0v1 ∈ E(G).

• For every i ∈ [r] and every j ∈ [s], ui−1ui ∈ E(G) and vj−1vj ∈ E(G).

• For every i ∈ [min{r, s}], the edge uivi might exist or not in G.

• For every j ∈ [min{r, s− 1}], the edge uivi+1 might exist or not in G.

Note that for instance, if r = 0 and s = 1 in the construction, then G is precisely
the complete graph K3. If r = 0 and s = 2, then G is the paw, that is, the graph
obtained fromK3 by attaching a pendant edge to one of its vertices; and if r = s = 1,
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u0 u1 ur

v0 v1 vs

Figure 1: A fairly representative example of a graph from the family F .

then G is either K4 minus an edge, or the paw. For a representative example of a
graph from the family F see Fig. 1. The outer multiset basis is indicated bold.

The above discussion gives us the following result.

Theorem 3.4 A graph G has an outer multiset basis formed by two adjacent ver-

tices if and only if G ∈ F .

In view of Lemma 3.1 and Theorem 3.4, in order to complete the characterization
of the graphs G with dimms(G) = 2, it remains to describe how such graphs look like
for the case in which all their outer multiset bases are formed by two non adjacent
vertices. This can be done in a similar way as we did it when there exists an outer
multiset basis consisting of two adjacent vertices, however a formal description is
more technical and hence not given in detail. The reason for this is the fact that in
this subcase it is not satisfied the property |Lk+1(S)| ≤ |Lk(S)| which holds when
there exists an outer mutiset basis with two adjacent vertices. Nevertheless, we still
have that |Lk(S)| ≤ 3. Thus, instead of presenting a lengthy description, we only
show a typical example in Fig. 2 with its outer multiset basis again in bold.

{{1, 1}} {{2, 2}} {{3, 3}} {{4, 4}}

{{1, 2}}
{{2, 3}} {{4, 5}}

{{5, 6}}

{{1, 3}} {{2, 4}} {{3, 5}} {{4, 6}}

Figure 2: A fairly representative example of a graph G with dimms(G) = 2 and an
outer multiset basis formed by two non adjacent vertices.
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4 Lexicographic products and multiset distance

irregular graphs

In this section we consider the outer multiset dimension of lexicographic products
of graphs. Recall that the lexicographic product G ◦H of graphs G and H has the
vertex set V (G)×V (H) and edges (g, h)(g′, h′), where either g = g′ and hh′ ∈ E(H),
or gg′ ∈ E(G). If g ∈ V (G), then the set of vertices {(g, h) : h ∈ V (H)} induces a
subgraph of G ◦H isomorphic to H which is called an H-layer and denoted by gH .

The metric dimension of lexicographic products has been independently inves-
tigated in papers [8, 13]. The main tool used in these articles is that one of trans-
forming the metric dimension in the lexicographic product G ◦ H to the so-called
adjacency dimension of H . Indeed, the adjacency dimension was explicitly intro-
duced for the first time in [8] (and implicitly in [13]), for more information on it
see [10].

We say that a graph G is multiset distance irregular if for every two vertices
u, v ∈ V (G), the multisets mG(u|V (G)) and mG(v|V (G)) are different.

Theorem 4.1 If G is a graph with n(G) ≥ 2 and H ∈ {Kk, Kk}, k ≥ 2, then

dimms(G ◦H) ≥ n(G)(k − 1).

Moreover, equality holds if and only if G is multiset distance irregular.

Proof. Let V (G) = {g1, . . . , gn(G)}. For gi, i ∈ [n(G)], let di = eccG(gi) be the
eccentricity of gi which is the largest distance between gi and any other vertex of G.
Then write

mG(gi|V (G)) = {{0, 1i1, . . . , didi }}. (1)

Let (gi, h) and (gi, h
′) be different vertices from the giH-layer. Since H ∈ {Kk, Kk},

the vertices (gi, h) and (gi, h
′) are twins. By [6, Proposition 3.7] we know that every

outer multiset resolving set of G ◦ H contains at least one of (gi, h) and (gi, h
′).

Inductively, every outer multiset resolving set of G ◦ H contains at least k − 1
vertices from giH . As this H-layer was arbitrary, the inequality follows.

Suppose now that the equality holds and let S be an outer multiset basis of
G ◦ H . By the above argument, each layer giH contains exactly one vertex which
does not belong to S. We may without loss of generality assume that this vertex is
(gi, h), where h is some fixed vertex of H . In view of (1) we then have

mG◦H((gi, h)|S) = {{1i1(k−1), . . . , d
id(k−1)
i , 1(k−1)}} (2)

9



when H = Kk and

mG◦H((gi, h)|S) = {{1i1(k−1), . . . , d
id(k−1)
i , 2(k−1)}} (3)

when H = Kk. The above respective terms 1(k−1) and 2(k−1) reflect the distances
between (gi, h) and the other vertices from giH (which are all in S). Since S is an
outer multiset basis of G ◦H , we have mG◦H((gi, h)|S) 6= mG◦H((gj, h)|S) for each
i, j ∈ [n(G)], i 6= j. But then no matter whether we consider (2) or (3), we deduce
that mG(gi|V (G)) 6= mG(gj |V (G)) holds for each i, j ∈ [n(G)]. Hence G is a multiset
distance irregular.

Conversely, let G be a multiset distance irregular graph. Then, by definition,
mG(gi|V (G)) 6= mG(gj|V (G)) holds for each i, j ∈ [n(G)]. Let S ⊆ V (G ◦ H) be
a set that contains exactly k − 1 vertices of each H-layer. But then in view of (2)
or (3), mG◦H((gi, h)|S) 6= mG◦H((gj, h)|S) for each i, j ∈ [n(G)], i 6= j. This means
that S is a outer multiset resolving set. Since |S| = n(G)(k − 1) we are done. �

We believe that multiset distance irregular graphs are of independent interest.
First of all, they are closely related to transmission irregular graphs which are defined
as follows. The transmission TrG(v) of a vertex v of a graph G is the sum of distances
between v and all the other vertices of the graph. G is transmission irregular if the
vertices of G have pairwise different transmissions. (Transmission irregular graphs
are also known as status injective graphs, cf. [12].) This concept was first studied
in [1] with respect to the Wiener dimension because transmission irregular graphs
are the graphs with a largest possible Wiener dimension. For a selection of different
appealing constructions of transmission irregular graphs and results on these graphs
see [2, 5, 17].

Clearly, if mG(u|V (G)) = mG(v|V (G)), then TrG(u) = TrG(v). Hence trans-
mission irregular graphs form a subset of multiset distance irregular graphs. The
inclusion is strict as demonstrated by the graph X from Fig. 3 which is multiset
distance irregular but not transmission irregular. Next to each vertex u the multiset
mG(u|(V (X) \ {u}) is written as well as TrX(u). The multisets mG(u|V (X)) are
indeed pairwise different, but there are two pairs of vertices with the same trans-
mission.

5 Grid graphs

Let V (Pn) = {0, 1, . . . , n − 1} where i is adjacent to j if and only if |i − j| = 1.
The grid graph Ps ✷Pt is the Cartesian product of two paths Ps and Pt, that is
V (Ps✷Pt) = {(i, j) : 0 ≤ i ≤ s− 1 and 0 ≤ j ≤ t− 1} and (i, j)(k, ℓ) ∈ E(Ps✷Pt)
when |i− j|+ |k − ℓ| = 1.

10



{{11, 22, 32, 42}} {{13, 22, 32}} {{13, 24}} {{13, 23, 31}} {{11, 22, 33, 41}}

{{12, 24, 31}} {{14, 22, 31}} {{11, 23, 32, 41}}

19 13 11 12 18

13 11 17

Figure 3: A graph which is multiset distance irregular but not transmission irregular.

The metric dimension of grids were reported in several papers, among the earliest
ones are [9, 11]. Here we add the following result for the outer metric dimension of
grids.

Theorem 5.1 For all s ≥ t ≥ 2,

dimms(Ps✷Pt) = 3.

Proof. In order to simplify the notation, let G = Ps✷Pt. It clearly cannot be
dimms(G) = 1 since G is not a path. Also, notice that if s = t = 2, then by Theorem
2.1 we have that dimms(G) = 3. Accordingly, from now on we may w.l.g. assume
that s ≥ 3. If s = 3, then t ∈ {2, 3}. In such a case it can be easily checked that
the set {(0, 0), (2, 0), (2, 1)} is an outer multiset basis. Hence, from now we assume
that s ≥ 4.

Now, if dimms(G) = 2 and S = {(i, j), (i′, j′)} is an outer multiset basis, then
by Lemma 3.1, we have that dG((i, j), (i

′, j′)) ≤ 2. If i = i′, we readily observe
that the two vertices (i + 1, j), (i + 1, j′) (or the two vertices (i − 1, j), (i − 1, j′)
if i = s) have the same multiset representation with respect to S, which is not
possible. By symmetry, a similar conclusion is deduced if j = j′. It remains the
case dG((i, j), (i

′, j′)) = 2, i 6= i′ and j 6= j′. Thus, it must happen that (w.l.g.)
S = {(i, j), (i + 1, j + 1)}. Hence, (i + 1, j) and (i, j + 1) have the same multiset
representation with respect to S, and this is also not possible. As a consequence of
the two previous contradictions, we obtain that dimms(G) ≥ 3.

In order to show that dimms(G) ≤ 3, we claim that R = {(0, 0), (1, 0), (s− 1, 0)}
is an outer multiset resolving set for G. Let R′ = {(0, 0), (s− 1, 0)} and notice that
R′ is a metric basis for G, cf. [9]. Let (i, j), (i′, j′) be any two vertices in V (G) \ R.
We observe that the multiset representations of (i, j) and (i′, j′) with respect to R′

are:
mG((i, j)|R

′) = {{i+ j, s− 1− i+ j}}

11



mG((i
′, j′)|R′) = {{i′ + j′, s− 1− i′ + j′}}.

Since R′ is a metric basis, we have one of the following three situations.

Case 1: dG((i, j), (0, 0)) = dG((i
′, j′), (0, 0)) = α.

In such situation, it must happen β = dG((i, j), (s−1, 0)) 6= dG((i
′, j′), (s−1, 0)) = β ′

since R′ is a metric basis. On the other hand, since G is bipartite,

dG((i, j), (1, 0)) ∈ {dG((i, j), (0, 0))− 1, dG((i, j), (0, 0)) + 1},

and
dG((i

′, j′), (1, 0)) ∈ {dG((i
′, j′), (0, 0))− 1, dG((i

′, j′), (0, 0)) + 1}.

If dG((i, j), (1, 0)) = dG((i, j), (0, 0))+1 = α+1 and dG((i
′, j′), (1, 0)) = dG((i

′, j′), (0, 0))+
1 = α + 1, then we note that

mG((i, j)|R) = (α, β, α+ 1) 6= (α, β ′, α + 1) = mG((i
′, j′)|R)

since β 6= β ′. Similarly, if dG((i, j), (1, 0)) = dG((i, j), (0, 0))−1 and dG((i
′, j′), (1, 0)) =

dG((i
′, j′), (0, 0))− 1, then we note that mG((i, j)|R) 6= mG((i

′, j′)|R).
We now consider the subcase when dG((i, j), (1, 0)) = α+1 and dG((i

′, j′), (1, 0)) =
α−1. From the first equality, we deduce that i = 0 must occur. Thus, from the case
assumption we obtain that j = i+ j = dG((i, j), (0, 0)) = dG((i

′, j′), (0, 0)) = i′ + j′.
Notice that the multiset representations of (i, j) and (i′, j′) with respect to R are:

mG((i, j)|R) = {{i+ j, s− 1− i+ j, i+ j + 1}} = {{j, s− 1 + j, j + 1}},

and
mG((i

′, j′)|R) = {{i′ + j′, s− 1− i′ + j′, i′ + j′ − 1}}.

Recall that j = i′+j′ and that s−1+j 6= s−1−i′+j′. If mG((i, j)|R) = mG((i
′, j′)|R),

then it must happen that s − 1 + j = i′ + j′ − 1 and that j + 1 = s − 1 − i′ + j′.
However, since j = i′ + j′, from s− 1 + j = i′ + j′ − 1 we deduce that s = 0, which
is not possible. Thus, mG((i, j)|R) 6= mG((i

′, j′)|R).
To complete this case, we may assume dG((i, j), (1, 0)) = α−1 and dG((i

′, j′), (1, 0)) =
α+ 1. We again obtain a similar conclusion, by using a procedure analogous to the
one above, but taking into account that now it must first occur i′ = 0 instead of
i = 0.

Case 2: dG((i, j), (s− 1, 0)) = dG((i
′, j′), (s− 1, 0)).

In such situation, it must happen dG((i, j), (0, 0)) 6= dG((i
′, j′), (0, 0)) since R′ is a

metric basis. If mG((i, j)|R) = mG((i
′, j′)|R), then by using some similar arguments
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as in Case 1, it must happen that the multisets of (i, j) and (i′, j′) with respect to
R are either

mG((i, j)|R) = {{i+ j, s− 1− i+ j, i+ j + 1}},

and
mG((i

′, j′)|R) = {{i′ + j′, s− 1− i′ + j′, i′ + j′ − 1}};

or
mG((i, j)|R) = {{i+ j, s− 1− i+ j, i+ j − 1}},

and
mG((i

′, j′)|R) = {{i′ + j′, s− 1− i′ + j′, i′ + j′ + 1}}.

Moreover, i+ j = i′+ j′−1 and i′+ j′ = i+ j+1 must happen in the first situation,
as well as i+ j = i′ + j′ + 1 and i′ + j′ = i+ j − 1 in the second one.

In addition, in the first possibility we have that i = 0 must happen, while in the
second one i′ = 0 must happen instead. Since s− 1− i+ j = dG((i, j), (s− 1, 0)) =
dG((i

′, j′), (s− 1, 0)) = s− 1− i′ + j′, we obtain that either j = j′ − i′ (when i = 0),
or j′ = j − i (when i′ = 0). By using these equalities in i + j = i′ + j′ − 1 and
i+ j = i′ + j′ +1, we deduce that 2i′ = −1 and that 2i′ = 1, respectively, which are
both contradictions. Consequently, we again obtain mG((i, j)|R) 6= mG((i

′, j′)|R).

Case 3: dG((i, j), (0, 0)) 6= dG((i
′, j′), (0, 0)) and dG((i, j), (s−1, 0)) 6= dG((i

′, j′), (s−
1, 0)).
Clearly, if dG((i, j), (0, 0)) 6= dG((i

′, j′), (s−1, 0)) and dG((i, j), (s−1, 0)) 6= dG((i
′, j′), (0, 0)),

then we have that mG((i, j)|R) 6= mG((i
′, j′)|R), independently on which the dis-

tances dG((i, j), (1, 0)) and dG((i
′, j′), (1, 0)) are.

Now, if

i+ j = dG((i, j), (0, 0)) = dG((i
′, j′), (s− 1, 0)) = s− 1− i′ + j′

and
s− 1− i+ j = dG((i, j), (s− 1, 0)) = dG((i

′, j′), (0, 0)) = i′ + j′,

then we deduce that j = j′. Thus, since s ≥ 4 it must happen that dG((i, j), (1, 0)) 6=
dG((i

′, j′), (1, 0)), for otherwise we get either i = i′ or (w.l.g.) i = 0 and i′ = 2 (which
are contradictions). This leads to mG((i, j)|R) 6= mG((i

′, j′)|R).
To conclude the proof, we need to consider the case when

i+ j = dG((i, j), (0, 0)) = dG((i
′, j′), (s− 1, 0)) = s− 1− i′ + j′

and
s− 1− i+ j = dG((i, j), (s− 1, 0)) 6= dG((i

′, j′), (0, 0)) = i′ + j′.
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If mG((i, j)|R) = mG((i
′, j′)|R), then it must happen dG((i, j), (s−1, 0)) = dG((i

′, j′), (1, 0))
and that dG((i, j), (1, 0)) = dG((i

′, j′), (0, 0)). Moreover, since

dG((i, j), (1, 0)) = dG((i, j), (0, 0)) + 1 or dG((i, j), (1, 0)) = dG((i, j), (0, 0))− 1,

and

dG((i
′, j′), (1, 0)) = dG((i

′, j′), (0, 0)) + 1 or dG((i
′, j′), (1, 0)) = dG((i

′, j′), (0, 0))− 1,

it must be satisfied that |dG((i, j), (s− 1, 0))− dG((i
′, j′), (0, 0))| = 1. However, by

using the fact that i+j = dG((i, j), (0, 0)) = dG((i
′, j′), (s−1, 0)) = s−1−i′+j′ in the

difference dG((i, j), (s−1, 0))−dG((i
′, j′), (0, 0)) = (s−1−i+j)−(i′+j′), we obtain

that dG((i, j), (s − 1, 0)) − dG((i
′, j′), (0, 0)) = 2(j − j′), which is an even number,

a contradiction. Therefore, mG((i, j)|R) = mG((i
′, j′)|R). A similar conclusion is

obtained if i + j = dG((i, j), (0, 0)) 6= dG((i
′, j′), (s − 1, 0)) = s − 1 − i′ + j′ and

s− 1− i+ j = dG((i, j), (s− 1, 0)) = dG((i
′, j′), (0, 0)) = i′ + j′.

As a consequence of the arguments above, we conclude that R is an outer multiset
resolving set, which completes the proof. �

6 Concluding remarks

The discussion at the end of Section 2 indicates that it would be of interest to
investigate the outer multiset dimension of non-regular graphs of diameter 2. In
Section 4, a lower bound is proved for the lexicographic products in which the
second factor is complete or edgeless. Studying lexicographic products in general
is an open area. Another challenge is to extend Theorem 5.1 to multidimensional
grids, that is, to Cartesian products of several paths. In this direction, hypercubes
(that is, Cartesian products of paths of order 2) deserve a special attention. An
additional class for which it would be interesting to determine the outer multiset
dimension is the class of torus graphs Cs�Ct, s, t ≥ 3.
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A. N. M. Salman, M. Bača, The metric dimension of the lexicographic product
of graphs, Discrete Math. 313 (2013) 1045–1051.
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