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Abstract

A connected graph G of diameter diam(G) ≥ ℓ is ℓ-distance-balanced if
|Wxy| = |Wyx| for every x, y ∈ V (G) with dG(x, y) = ℓ, where Wxy is the set
of vertices of G that are closer to x than to y. We prove that the generalized
Petersen graph GP (n, k) is diam(GP (n, k))-distance-balanced provided that
n is large enough relative to k. This partially solves a conjecture posed by
Miklavič and Šparl [20]. We also determine diam(GP (n, k)) when n is large
enough relative to k.

Key words: generalized Petersen graph; distance-balanced graph; ℓ-distance-balanced
graph; diameter

AMS Subj. Class: 05C12

1 Introduction
If G = (V (G), E(G)) is a connected graph and x, y ∈ V (G), then the distance
dG(x, y) between x and y is the number of edges on a shortest x, y-path. The
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diameter diam(G) of G is the maximum distance between its vertices. The set Wxy

contains the vertices that are closer to x than to y, that is,

Wxy = {w ∈ V (G) : dG(w, x) < dG(w, y)} .

Vertices x and y are balanced if |Wxy| = |Wyx|. For an integer ℓ ∈ [diam(G)] =
{1, 2, . . . , diam(G)} we say that G is ℓ-distance-balanced if each pair of vertices x, y ∈
V (G) with dG(x, y) = ℓ is balanced. G is said to be highly distance-balanced if it is
ℓ-distance-balanced for every ℓ ∈ [diam(G)]. 1-distance-balanced graphs are simply
called distance-balanced graphs.

Distance-balanced graphs were first considered by Handa [11] back in 1999, while
the term “distance-balanced” was proposed a decade later by Jerebic et al. in [13].
The latter paper was the trigger for intensive research of distance-balanced graphs,
see [1, 3–6, 8, 12, 16–19, 23]. The study of distance-balanced graphs is interesting
from various purely graph-theoretic aspects where one focuses on particular prop-
erties of such graphs such as symmetry, connectivity or complexity aspects of algo-
rithms related to such graphs. Moreover, distance-balanced graphs have motivated
the introduction of the hitherto much-researched Mostar index [2, 7] and distance-
unbalancedness of graphs [15, 21, 22]. In this context, distance-balanced graphs are
the graphs with the Mostar index equal to 0.

In his dissertation [9], Frelih generalized distance-balanced graphs to ℓ-distance
balanced graphs. The special case of ℓ = 2 has been studied in detail in [10]. Among
other results it was demonstrated that there exist 2-distance-balanced graphs that
are not 1-distance-balanced. 2-distance-balanced graphs that are not 2-connected
were characterized as well as 2-distance-balanced Cartesian and lexicographic prod-
ucts. In this direction, ℓ-distance-balanced corona products and lexicographic prod-
ucts were investigated in [14]. In [20], Miklavič and Šparl obtained some general
results on ℓ-distance balanced graphs. They studied graphs of diameter at most 3
and investigated ℓ-distance-balancedness of cubic graphs, in particular of general-
ized Petersen graphs. Although generalized Petersen graphs are a family of cubic
graphs but it is difficult to determine whether they are ℓ-distance-balanced or not
for some ℓ. And that is what has stimulated the main interest in this article. Before
we explain this in more detail, let us define these graphs.

If n ≥ 3 and 1 ≤ k < n/2, then the generalized Petersen graph GP (n, k) is
defined by

V (GP (n, k)) = {ui : i ∈ Zn} ∪ {vi : i ∈ Zn},
E(GP (n, k)) = {uiui+1 : i ∈ Zn} ∪ {vivi+k : i ∈ Zn} ∪ {uivi : i ∈ Zn}.

GP (6, 2) is shown in Figure 1.
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Figure 1: The generalized Petersen graph GP (6, 2). The cycle u0u1u2u3u4u5 contains six
outer edges. v0v2, v1v3, v2v4, v3v5, v4v0 and v5v1 are six inner edges. Finally u0v0, u1v1,
u2v2, u3v3, u4v4 and u5v5 are six spokes.

Now, we recall the following conjecture and result, where the conjecture was
supported by an extensive computer search.

Conjecture 1. [20, Conjecture 5.2] If n ≥ 3, 2 ≤ k < n/2, and there exists j ∈ Zn

such that d(u0, vj) = diam(GP (n, k)), then either n = 4m and k = 2m− 1 for some
m ≥ 3, or (n, k) ∈ {(5, 2), (7, 2), (7, 3)}.

Proposition 2. [20, Proposition 5.3] If n ≥ 3, 2 ≤ k < n/2, and if Conjecture 1
holds, then GP (n, k) is diam(GP (n, k))-distance-balanced.

The main result of this paper reads as follows.

Theorem 3. If n and k are integers, where 3 ≤ k < n/2 and

n ≥


8; k = 3,
10; k = 4,
k(k+1)

2
; k is odd and k ≥ 5,

k2

2
; k is even and k ≥ 6,

then GP (n, k) is diam(GP (n, k))-distance-balanced.

Theorem 3 is proved in Section 2. In view of Proposition 2, to prove Theorem 3
it suffices to verify that Conjecture 1 holds true for the cases as listed in the theorem.
The difficulty in proving Conjecture 1 in general lies in the fact that the distance
function on generalized Petersen graphs is very difficult to manage and depends
heavily on n and k. In particular, as pointed out by Miklavič and Šparl in [20,
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p. 150], the diameter of GP (n, k) is not known in general. In Section 3 we then
determine diam(GP (n, k)) for the corresponding values of n and k. The rather
complicated result indicates that it is indeed difficult to control the diameter of
generalized Petersen graphs. Finally, in Section 4, we list some problems which are
worth studying in the future.

2 Proof of Theorem 3
Consider the generalized Petersen graph GP (n, k). The edges of the form uiui+1

are outer edges, the edges of the form vivi+k are inner edges, and edges of the form
uivi are spokes. To simplify the notation, set D = diam(GP (n, k)) throughout this
section. We will also omit the subscript in dGP (n,k))(x, y) as the graph GP (n, k) is
clear from the context.

As already stated at the end of the previous section, in order to prove Theorem 3,
it suffices to prove that if n and k are integers, where 3 ≤ k < n/2 and

n ≥


8; k = 3,
10; k = 4,
k(k+1)

2
; k is odd and k ≥ 5,

k2

2
; k is even and k ≥ 6,

then for any j ∈ Zn we have d(u0, vj) < D.
By the symmetry of GP (n, k) it suffices to consider d(u0, vj), where 0 ≤ j ≤ n/2.

Our aim is to find an index j∗, where 0 ≤ j∗ ≤ n/2, such that

d(u0, vj∗) = max{d(u0, vj) : 0 ≤ j ≤ n/2} ,

and prove that d(u0, vj∗) < D.
Let j be an integer such that 1 ≤ j ≤ n/2. Suppose j = m0k + j0 and n − j =

m1k+j1, where 0 ≤ j0, j1 < k. Four types of u0, vj-path are defined in the following.

P1 = u0u1u2 · · ·uj0vj0vk+j0v2k+j0 · · · vm0k+j0 ,

P2 = u0u−1u−2 · · ·u−(k−j0)v−(k−j0)vj0vk+j0 · · · vm0k+j0 ,

P3 = u0u−1u−2 · · ·u−j1v−j1v−(k+j1)v−(2k+j1) · · · v−(m1k+j1),

P4 = u0u1u2 · · ·uk−j1vk−j1v−j1v−k−j1 · · · v−m1k−j1 .

Note that u−i = un−i, so v−m1k−j1 = vn−m1k−j1 = vj = vm0k+j0 . Also note that all
P1, P2, P3, P4 have only one spoke. The length of P1 is j0 + m0 + 1, the length of
P2 is (k − j0) + m0 + 2, the length of P3 is j1 + m1 + 1, and the length of P4 is
(k − j1) +m1 + 2.
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In GP (6, 2), the u0, v3-path of type P1 is u0u1v1v3. The u0, u3-path of type P2 is
u0u−1v−1v1v3 = u0u5v5v1v3. The u0, u3-path of type P3 is u0u−1v−1v−3 = u0u5v5v3.
The u0, u3-path of type P4 is u0u1v1v−1v−3 = u0u1v1v5v3.

We first prove the following lemma about the u0, vj-path of GP (n, k).

Lemma 4. Suppose that two integers k, n and four paths P1, P2, P3, P4 are the
same as above. In GP (n, k), for any integer j where 1 ≤ j ≤ n/2, a u0, vj-path
of minimum length contains only one spoke and belongs to one of the four types
{P1, P2, P3, P4}.

Proof. For the convenience of computing the distance of the path in GP (n, k), we
divide the direction of the path into positive and negative direction, and use different
vertex subscripts marking method according to the direction of the path.

Suppose that there is a path from ui1 via outer edges. If the path from ui1 is of
positive direction, then the path is denoted by ui1ui1+1ui1+2 · · · . If the path from
ui1 is of negative direction, then the path is denoted by ui1ui1−1ui1−2 · · · . Using the
above vertex subscripts marking method, the distance of a ui1 , ui2-path (via both
directions) via outer edges is |i2 − i1|.

Similarly, suppose that there is a path from vi1 via inner edges. If the path from
vi1 is of positive direction, then the path is denoted by vi1vi1+kvi1+2k · · · . If the
path from vi1 is of negative direction, then the path is denoted by vi1vi1−kvi1−2k · · · .
Using the above vertex subscripts marking method, the distance of a vi1 , vi2-path
(via both directions) via inner edges is | i2−i1

k
|.

Whenever considering the path that connects ui1 to ui2 via outer edges, it is
always negative if i2 < i1, and positive otherwise. Same for the path that connects
vi2 to vi3 via inner edges.

Claim 1. A u0, vj-path of minimum length contains only one spoke.
Let J = j + rn where r is an integer. Note that vJ = vj.
Note that a u0, vJ -path cannot contain even number of spokes. Let P (1) be a

u0, vJ -path containing 3 spokes. Suppose that P (1) connects u0 and ui1 via outer
edges, then spoke ui1vi1 , then connects vi1 and vi2 via inner edges, then spoke vi2ui2 ,
then connects ui2 and ui3 via outer edges, then spoke ui3vi3 , and then connects vi3
and vJ via inner edges.

Let P (2) be the u0, vJ -path that connects u0 and ui1+i3−i2 via outer edges, then
spoke ui1+i3−i2vi1+i3−i2 , and then connects vi1+i3−i2 and vJ via inner edges.

Let LEN(P ) be the length of path P . Then

LEN(P (1)) = (|i1|+ 1 + |i2 − i1
k

|+ 1 + |i3 − i2|+ 1 + |J − i3
k

|),

LEN(P (2)) = (|i1 + i3 − i2|+ 1 + |J − i1 − i3 + i2
k

|).
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Because |a + b| ≤ |a| + |b| for two integers, |i1 + i3 − i2| ≤ |i1| + |i3 − i2| and
|J−i1−i3+i2

k
| ≤ |J−i3

k
| + | i2−i1

k
|. We get LEN(P (1)) − LEN(P (2)) ≥ 2. So P (1) is a

u0, vj-path but not of minimum length.
If a u0, vJ -path contains 5 or more than 5 spokes, similar transformation like

above can give a new u0, vJ -path which has smaller spokes and smaller length than
the original u0, vJ -path.

Claim 2. A u0, vj-path of minimum length belongs to one of the four types
{P1, P2, P3, P4}.

Let P (3) be a u0, vJ -path with one spoke. Suppose that P (3) connects u0 and ui1

via outer edges, then spoke ui1vi1 , and then connects vi1 and vJ via inner edges.
Firstly we prove that P (3) is not a minimum u0, vj-path if |i1| ≥ k. Suppose

|i1| ≥ k. Let i1 = sk + t such that s ≥ 1 and 0 ≤ t < k when i1 ≥ k, and s ≤ −1
and −k < t ≤ 0 when i1 ≤ −k.

Let P (4) be the u0, vJ -path which connects u0 and ut via outer edges (with the
same direction as the u0, ui1-path via outer edges in P (3)), then spoke utvt, and then
connects vt and vJ via inner edges (with the same direction as the vi1 , vJ -path via
inner edges in P (3)).

We discuss the following four cases.
(1) In P (3), the u0, ui1-path via outer edges is of positive direction and the vi1 , vJ -

path via inner edges is of positive direction.
Note that

LEN(P (3)) = |i1|+ 1 + |J − i1
k

| = i1 + 1 +
J − i1

k
,

LEN(P (4)) = |t|+ 1 + |J − t

k
| = t+ 1 +

J − t

k
.

LEN(P (3)) − LEN(P (4)) = s(k − 1) > 0. So P (3) is a u0, vj-path but not of
minimum length.

(2) In P (3), the u0, ui1-path via outer edges is of positive direction and the vi1 , vJ -
path via inner edges is of negative direction.

Note that

LEN(P (3)) = |i1|+ 1 + |J − i1
k

| = i1 + 1 +
i1 − J

k
,

LEN(P (4)) = |t|+ 1 + |J − t

k
| = t+ 1 +

t− J

k
.

LEN(P (3)) − LEN(P (4)) = s(k + 1) > 0. So P (3) is a u0, vj-path but not of
minimum length.

(3) In P (3), the u0, ui1-path via outer edges is of negative direction and the
vi1 , vJ -path via inner edges is of positive direction.
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Note that

LEN(P (3)) = |i1|+ 1 + |J − i1
k

| = −i1 + 1 +
J − i1

k
,

LEN(P (4)) = |t|+ 1 + |J − t

k
| = −t+ 1 +

J − t

k
.

LEN(P (3)) − LEN(P (4)) = −s(k + 1) > 0. So P (3) is a u0, vj-path but not of
minimum length.

(4) In P (3), the u0, ui1-path via outer edges is of negative direction and the
vi1 , vJ -path via inner edges is of negative direction.

Note that

LEN(P (3)) = |i1|+ 1 + |J − i1
k

| = −i1 + 1 +
i1 − J

k
,

LEN(P (4)) = |t|+ 1 + |J − t

k
| = −t+ 1 +

t− J

k
.

LEN(P (3)) − LEN(P (4)) = −s(k − 1) > 0. So P (3) is a u0, vj-path but not of
minimum length.

Secondly we prove that P (3) is not a minimum u0, vj-path if J > n or J < −n
(that is r ̸= 0,−1). Suppose that |i1| < k and r ̸= 0,−1. We discuss the following
four cases.

(1) 0 ≤ i1 < k and r ≥ 1.
In this case, the u0, ui1-path via outer edges is of positive direction and the

vi1 , vJ -path via inner edges is of positive direction. Note that
LEN(P (3)) = |i1|+ 1 + | j+rn−i1

k
| = i1 + 1 + j+rn−i1

k
.

(1.1) When k is odd and j0 ≤ k+1
2

, or k is even and j0 ≤ k
2
.

We compare LEN(P (3)) with LEN(P1).
If i1 ≥ j0, LEN(P (3)) − LEN(P1) = (i1 + 1 + j+rn−i1

k
) − (j0 + 1 + j−j0

k
) =

rn−(i1−j0)
k

+ (i1 − j0) > 0.
If i1 < j0, 1 ≤ j0 − i1 ≤ k+1

2
when k is odd (or 1 ≤ j0 − i0 ≤ k

2
when k is even).

Recall that n ≥ k(k+1)
2

when k is odd (or n ≥ k2

2
when k is even). Then

LEN(P (3))− LEN(P1) =
rn+ j0 − i1

k
− (j0 − i1)

>
rk(k + 1)/2

k
− k + 1

2

=
(r − 1)(k + 1)

2
≥ 0

7



when k is odd and

LEN(P (3))− LEN(P1) =
rn+ j0 − i1

k
− (j0 − i1)

>
rk2/2

k
− k

2

=
(r − 1)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(1.2) When k is odd and j0 >

k+1
2

, or k is even and j0 >
k
2
.

We compare LEN(P (3)) with LEN(P2).
If i1 ≥ j0, i1 > k − j0 and so i1 + j0 − k > 0. Then LEN(P (3)) − LEN(P2) =

(i1 + 1 + j+rn−i1
k

)− (k − j0 + 2 + j−j0
k

) = rn−(i1−j0)
k

+ (i1 + j0 − k − 1) > 0.
If i1 < j0, j0 − i1 ≥ 1. Recall that n ≥ k(k+1)

2
when k is odd (or n ≥ k2

2
when k

is even). Then

LEN(P (3))− LEN(P2) =
rn+ j0 − i1

k
− (k + 1− i1 − j0)

>
rk(k + 1)/2

k
− k + 1

2

=
(r − 1)(k + 1)

2
≥ 0

when k is odd and

LEN(P (3))− LEN(P2) =
rn+ j0 − i1

k
− (k + 1− i1 − j0)

>
rk2/2

k
− k

2

=
(r − 1)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(2) 0 ≤ i1 < k and r ≤ −2.
In this case, the u0, ui1-path via outer edges is of positive direction and the

vi1 , vJ -path via inner edges is of negative direction. Note that
LEN(P (3)) = |i1|+ 1 + | j+rn−i1

k
| = i1 + 1 + i1−(j+rn)

k
.

(2.1) When k is odd and j0 ≤ k+1
2

, or k is even and j0 ≤ k
2
.

We compare LEN(P (3)) with LEN(P1).
If i1 ≥ j0, LEN(P (3)) − LEN(P1) = (i1 + 1 + i1−(j+rn)

k
) − (j0 + 1 + j−j0

k
) =

i1+j0−rn−2j
k

+ (i1 − j0) > 0.
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If i1 < j0, 1 ≤ j0 − i1 ≤ k+1
2

when k is odd (or 1 ≤ j0 − i0 ≤ k
2

when k is even).
Recall that n ≥ k(k+1)

2
when k is odd (or n ≥ k2

2
when k is even). Then

LEN(P (3))− LEN(P1) =
i1 + j0 − rn− 2j

k
− (j0 − i1)

≥ i1 + j0 − rn− n

k
− k + 1

2

>
(−r − 1)k(k + 1)/2

k
− k + 1

2

=
(−r − 2)(k + 1)

2
≥ 0

when k is odd and

LEN(P (3))− LEN(P1) =
i1 + j0 − rn− 2j

k
− (j0 − i1)

≥ i1 + j0 − rn− n

k
− k

2

>
(−r − 1)k2/2

k
− k

2

=
(−r − 2)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(2.2) When k is odd and j0 >

k+1
2

, or k is even and j0 >
k
2
.

We compare LEN(P (3)) with LEN(P2).
If i1 ≥ j0, i1 > k − j0 and so i1 + j0 − k > 0. Then LEN(P (3)) − LEN(P2) =

(i1 + 1 + i1−(j+rn)
k

)− (k − j0 + 2 + j−j0
k

) = i1+j0−rn−2j
k

+ (i1 + j0 − k − 1) > 0.
If i1 < j0, j0 − i1 ≥ 1. Recall that n ≥ k(k+1)

2
when k is odd (or n ≥ k2

2
when k

is even). Then

LEN(P (3))− LEN(P2) =
i1 + j0 − rn− 2j

k
− (k + 1− i1 − j0)

>
i1 + j0 − rn− n

k
− k + 1

2

>
(−r − 1)k(k + 1)/2

k
− k + 1

2

=
(−r − 2)(k + 1)

2
≥ 0
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when k is odd and

LEN(P (3))− LEN(P2) =
i1 + j0 − rn− 2j

k
− (k + 1− i1 − j0)

≥ i1 + j0 − rn− n

k
− k

2

>
(−r − 1)k2/2

k
− k

2

=
(−r − 2)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(3) −k < i1 ≤ 0 and r ≥ 1.
In this case, the u0, ui1-path via outer edges is of negative direction and the

vi1 , vJ -path via inner edges is of positive direction. Note that
LEN(P (3)) = |i1|+ 1 + | j+rn−i1

k
| = −i1 + 1 + j+rn−i1

k
.

(3.1) When k is odd and j0 ≤ k+1
2

, or k is even and j0 ≤ k
2
.

We compare LEN(P (3)) with LEN(P1).
If −i1 ≥ j0, LEN(P (3)) − LEN(P1) = (−i1 + 1 + j+rn−i1

k
) − (j0 + 1 + j−j0

k
) =

rn−i1+j0
k

+ (−i1 − j0) > 0.
If −i1 < j0, 1 ≤ j0 + i1 ≤ k+1

2
when k is odd (or 1 ≤ j0 + i0 ≤ k

2
when k is even).

Recall that n ≥ k(k+1)
2

when k is odd (or n ≥ k2

2
when k is even). Then

LEN(P (3))− LEN(P1) =
rn+ j0 − i1

k
− (j0 + i1)

>
rk(k + 1)/2

k
− k + 1

2

=
(r − 1)(k + 1)

2
≥ 0

when k is odd and

LEN(P (3))− LEN(P1) =
rn+ j0 − i1

k
− (j0 + i1)

>
rk2/2

k
− k

2

=
(r − 1)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(3.2) When k is odd and j0 >

k+1
2

, or k is even and j0 >
k
2
.

We compare LEN(P (3)) with LEN(P2).
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If −i1 ≥ j0, −i1 > k−j0 and so −i1+j0−k > 0. Then LEN(P (3))−LEN(P2) =
(−i1 + 1 + j+rn−i1

k
)− (k − j0 + 2 + j−j0

k
) = rn−i1+j0

k
+ (−i1 + j0 − k − 1) > 0.

If −i1 < j0, j0 + i1 ≥ 1. Recall that n ≥ k(k+1)
2

when k is odd (or n ≥ k2

2
when

k is even). Then

LEN(P (3))− LEN(P2) =
rn+ j0 − i1

k
− (k + 1 + i1 − j0)

>
rk(k + 1)/2

k
− k + 1

2

=
(r − 1)(k + 1)

2
≥ 0

when k is odd and

LEN(P (3))− LEN(P2) =
rn+ j0 − i1

k
− (k + 1 + i1 − j0)

>
rk2/2

k
− k

2

=
(r − 1)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(4) −k < i1 ≤ 0 and r ≤ −2.
In this case, the u0, ui1-path via outer edges is of negative direction and the

vi1 , vJ -path via inner edges is of negative direction. Note that
LEN(P (3)) = |i1|+ 1 + | j+rn−i1

k
| = −i1 + 1 + i1−(j+rn)

k
.

(4.1) When k is odd and j0 ≤ k+1
2

, or k is even and j0 ≤ k
2
.

We compare LEN(P (3)) with LEN(P1).
If −i1 ≥ j0, LEN(P (3))− LEN(P1) = (−i1 + 1 + i1−(j+rn)

k
)− (j0 + 1 + j−j0

k
) =

i1+j0−rn−2j
k

+ (−i1 − j0) > 0.
If −i1 < j0, 1 ≤ j0 + i1 ≤ k+1

2
when k is odd (or 1 ≤ j0 + i0 ≤ k

2
when k is even).

Recall that n ≥ k(k+1)
2

when k is odd (or n ≥ k2

2
when k is even). Then

LEN(P (3))− LEN(P1) =
i1 + j0 − rn− 2j

k
− (j0 + i1)

≥ i1 + j0 − rn− n

k
− k + 1

2

>
(−r − 1)k(k + 1)/2

k
− k + 1

2

=
(−r − 2)(k + 1)

2
≥ 0

11



when k is odd and

LEN(P (3))− LEN(P1) =
i1 + j0 − rn− 2j

k
− (j0 + i1)

≥ i1 + j0 − rn− n

k
− k

2

>
(−r − 1)k2/2

k
− k

2

=
(−r − 2)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
(4.2) When k is odd and j0 >

k+1
2

, or k is even and j0 >
k
2
.

We compare LEN(P (3)) with LEN(P2).
If −i1 ≥ j0, −i1 > k−j0 and so −i1+j0−k > 0. Then LEN(P (3))−LEN(P2) =

(−i1 + 1 + i1−(j+rn)
k

)− (k − j0 + 2 + j−j0
k

) = i1+j0−rn−2j
k

+ (−i1 + j0 − k − 1) > 0.
If −i1 < j0, j0 + i1 ≥ 1. Recall that n ≥ k(k+1)

2
when k is odd (or n ≥ k2

2
when

k is even). Then

LEN(P (3))− LEN(P2) =
i1 + j0 − rn− 2j

k
− (k + 1 + i1 − j0)

>
i1 + j0 − rn− n

k
− k + 1

2

>
(−r − 1)k(k + 1)/2

k
− k + 1

2

=
(−r − 2)(k + 1)

2
≥ 0

when k is odd and

LEN(P (3))− LEN(P2) =
i1 + j0 − rn− 2j

k
− (k + 1 + i1 − j0)

≥ i1 + j0 − rn− n

k
− k

2

>
(−r − 1)k2/2

k
− k

2

=
(−r − 2)k

2
≥ 0

when k is even. So P (3) is a u0, vj-path but not of minimum length.
The proof of the lemma completes.
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Let d12(u0, vj) be the distance between u0 and vj in GP (n, k) via paths of type
P1 or P2. Let d34(u0, vj) be the distance between u0 and vj in GP (n, k) via paths of
type P3 or P4. Then

d(u0, vj) = min{d12(u0, vj), d34(u0, vj)}

and
d(u0, vj∗) = max{d(u0, vj) : 0 ≤ j ≤ n/2}.

We first find j1 such that d12(u0, vj1) = max{d12(u0, vj) : 0 ≤ j ≤ n/2}. If
d34(u0, vj1) ≥ d12(u0, vj1), then j∗ = j1. If d34(u0, vj1) < d12(u0, vj1), we can find j∗

around j1 such that |d12(u0, vj∗)−d34(u0, vj∗)| ≤ 1 and min{d12(u0, vj∗), d34(u0, vj∗)}
is as large as possible. Note that j∗ is not unique.

The following discussions are organized using a tree with depth 3. At depth
1, the discussions are according to the parity of k. At depth 2, the discussions are
according to the parity of n. At depth 3, the discussions are according to parameters
contained in the small cases.

Case 1: k is odd.
Notice that n ≥ 3k − 1 in this case. We will prove that there exist a j∗ such that
d(u0, vj∗) = max{d(u0, vj) : 0 ≤ j ≤ n/2} and k < j∗ ≤ n/2.

Case 1.1: n is even.
Suppose n/2 = m2k+ j2 where 0 ≤ j2 < k. From n ≥ 3k− 1, we know that m2 ≥ 2,
or m2 = 1 and j2 ≥ k−1

2
.

Case 1.1.1: j2 ≥ k−1
2

.
If 0 ≤ j ≤ k+1

2
, then d12(u0, vm2k+j) = m2 + 1 + j. If k+1

2
< j ≤ j2, then

d12(u0, vm2k+j) = m2 + k + 2 − j. Observe that d12(u0, v(m2−1)k+ k+1
2
) = m2 +

k+1
2

.
Because j2 ≥ k−1

2
, we infer that m2+1+ j ≥ m2+

k+1
2

when j = k−1
2

or j = k+1
2

. So
we just need to consider the distance between u0 and vm2k+j, where 0 ≤ j ≤ j2. Note
that d12(u0, vm2k+

k+1
2
) = m2 +

k+1
2

+ 1, d12(u0, vm2k+
k+1
2

−1) = d12(u0, vm2k+
k+1
2

+1) =

m2 +
k+1
2

, and so on.
Note that v−(m2+1)k = vn−(m2+1)k = vm2k+2j2−k. Observe that d34(u0, vm2k+2j2−k) =

m2 + 2, d34(u0, vm2k+2j2−k+1) = d34(u0, vm2k+2j2−k−1) = m2 + 3, and so on.
If j2 = k−1

2
, then j1 = m2k + k−1

2
. Because d34(u0, vj1) ≥ d12(u0, vj1), we get

j∗ = j1 = m2k + k−1
2

.
If j2 = k+1

2
, then j1 = m2k + k+1

2
. Because d34(u0, vj1) ≥ d12(u0, vj1), we get

j∗ = j1 = m2k + k+1
2

.
If 3 ≤ 2j2 − k ≤ k+1

2
, then j1 = m2k + k+1

2
and d34(u0, vj1) < d12(u0, vj1). We

get j∗ = m2k + j2.

13



vj v20 v21 v22 v23 v24 v25
d12(u0, vj) 5 6 7 8 7 6
d34(u0, vj) 7 6 5 4 5 6

Table 1: In GP (50, 9), the search of j∗. Because j1 = 23, d12(u0, v23) = 8, n−(m2+1)k =
23 and d34(u0, v23) = 4, so j∗ = 21 or j∗ = 25.

vj v12 v13 v14 v15 v16 v17
d12(u0, vj) 5 6 7 6 5 4
d34(u0, vj) 7 6 5 4 5 6

Table 2: In GP (42, 9), the search of j∗. Because j1 = 14, d12(u0, v14) = 7, n−(m2+1)k =
15 and d34(u0, v15) = 4, so j∗ = 13.

If 2j2 − k > k+1
2

, then j1 = m2k + k+1
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = m2k + j2 − k−1

2
.

Table 1 shows that how to find j∗ in GP (50, 9).

Case 1.1.2: j2 <
k−1
2

.
If 0 ≤ j ≤ j2, then d12(u0, vm2k+j) = m2+1+j. Note that d12(u0, v(m2−1)k+ k+1

2
) =

m2 +
k+1
2

. Because j2 < k−1
2

, we have m2 + 1 + j < m2 +
k+1
2

when 0 ≤ j ≤
j2. So we just need to consider the distance between u0 and v(m2−1)k+j, where
0 ≤ j ≤ k. Note that d12(u0, v(m2−1)k+ k+1

2
) = m2 +

k+1
2

, d12(u0, v(m2−1)k+ k+1
2

−1) =

d12(u0, v(m2−1)k+ k+1
2

+1) = m2 +
k+1
2

− 1, and so on.
Note that v−(m2+1)k = vn−(m2+1)k = v(m2−1)k+2j2 and 2j2 < k − 1. Moreover,

d34(u0, v(m2−1)k+2j2) = m2 + 2, d34(u0, v(m2−1)k+2j2+1) = d34(u0, v(m2−1)k+2j2−1) =
m2 + 3, and so on.

If j2 = 0 or j2 = 1, we set j1 = (m2−1)k+ k+1
2

. Because d34(u0, vj1) ≥ d12(u0, vj1),
we have j∗ = j1 = (m2 − 1)k + k+1

2
.

If 4 ≤ 2j2 ≤ k+1
2

, we have j1 = (m2 − 1)k + k+1
2

and d34(u0, vj1) < d12(u0, vj1).
We get j∗ = (m2 − 1)k + k+1

2
+ j2 − 1.

If 2j2 > k+1
2

, then j1 = (m2 − 1)k + k+1
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = (m2 − 1)k + j2 + 1.

Table 2 shows that how to find j∗ in GP (42, 9).

Case 1.2: n is odd.
Suppose (n − 1)/2 = m3k + j3 where 0 ≤ j3 < k. From n ≥ 3k − 1, we know that
m3 ≥ 2, or m3 = 1 and j3 ≥ k−2

2
.
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vj v20 v21 v22 v23 v24 v25
d12(u0, vj) 5 6 7 8 7 6
d34(u0, vj) 8 7 6 5 4 5

Table 3: In GP (51, 9), the search of j∗. Because j1 = 23, d12(u0, v23) = 8, n−(m3+1)k =
24 and d34(u0, v24) = 4, so j∗ = 21 or j∗ = 22.

Case 1.2.1: j3 ≥ k−2
2

.
Because k is odd, k−2

2
is not an integer and hence j3 ≥ k−1

2
. It suffices to consider

d(u0, vm3k+j), where 0 ≤ j ≤ j3. Note that d12(u0, vm3k+
k+1
2
) = m3 + k+1

2
+ 1,

d12(u0, vm3k+
k+1
2

−1) = d12(u0, vm3k+
k+1
2

+1) = m3 +
k+1
2

, and so on.
Note that v−(m3+1)k = vn−(m3+1)k = vm3k+2j3+1−k. Moreover, d34(u0, vm3k+2j3+1−k) =

m3+2, d34(u0, vm3k+2j3+1−k+1) = d34(u0, vm3k+2j3+1−k−1) = m3+3, d34(u0, vm3k+2j3+1−k+2) =
d34(u0, vm3k+2j3+1−k−2) = m3 + 4, and so on.

If j3 = k−1
2

, then select j1 = m3k + k−1
2

. Because d34(u0, vj1) ≥ d12(u0, vj1), we
have j∗ = j1 = m3k + k−1

2
.

If 2 ≤ 2j3+1− k ≤ k+1
2

, then j1 = m3k+
k+1
2

and d34(u0, vj1) < d12(u0, vj1). We
get j∗ = m3k + j3.

If 2j3 +1− k > k+1
2

, then j1 = m3k+
k+1
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = m3k + j3 − k−3

2
or j∗ = m3k + j3 − k−1

2
.

Table 3 shows that how to find j∗ in GP (51, 9).

Case 1.2.2: j3 <
k−2
2

.
It suffices to consider the distances d(u0, v(m3−1)k+j), where 0 ≤ j ≤ k. We infer

that d12(u0, v(m3−1)k+ k+1
2
) = m3+

k+1
2

, d12(u0, v(m3−1)k+ k+1
2

−1) = d12(u0, v(m3−1)k+ k+1
2

+1) =

m3 +
k+1
2

− 1, and so on.
Note that v−(m3+1)k = vn−(m3+1)k = v(m3−1)k+2j3+1 and 2j3+1 < k−1. Moreover,

d34(u0, v(m3−1)k+2j3+1) = m3+2, d34(u0, v(m3−1)k+2j3+1+1) = d34(u0, v(m3−1)k+2j3+1−1) =
m3 + 3, and so on.

If j3 = 0, then let j1 = (m3 − 1)k + k+1
2

. Because d34(u0, vj1) ≥ d12(u0, vj1), we
have j∗ = j1 = (m3 − 1)k + k+1

2
.

If 3 ≤ 2j3 + 1 ≤ k+1
2

, then j1 = (m3 − 1)k + k+1
2

and d34(u0, vj1) < d12(u0, vj1).
We get j∗ = (m3 − 1)k + k+1

2
+ j3 − 1 or j∗ = (m3 − 1)k + k+1

2
+ j3.

If 2j3 + 1 > k+1
2

, then j1 = (m3 − 1)k + k+1
2

and d34(u0, vj1) < d12(u0, vj1). We
get j∗ = (m3 − 1)k + j3 + 2 or j∗ = (m3 − 1)k + j3 + 1.

Table 4 shows that how to find j∗ in GP (43, 9).

Case 2: k is even.
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vj v12 v13 v14 v15 v16 v17
d12(u0, vj) 5 6 7 6 5 4
d34(u0, vj) 8 7 6 5 4 5

Table 4: In GP (43, 9), the search of j∗. Because j1 = 14, d12(u0, v14) = 7, n−(m3+1)k =
16 and d34(u0, v16) = 4, so j∗ = 13 or j∗ = 14.

vj v22 v23 v24 v25 v26 v27 v28
d12(u0, vj) 5 6 7 8 8 7 6
d34(u0, vj) 8 7 6 5 4 5 6

Table 5: In GP (56, 10), the search of j∗. Because j1 = 25, d12(u0, v25) = 8, n−(m4+1)k =
26 and d34(u0, v26) = 4, so j∗ = 23, j∗ = 24 or j∗ = 28.

Notice that n ≥ 3k − 2 in this case. We will prove that there exists j∗ such that
d(u0, vj∗) = max{d(u0, vj) : 0 ≤ j ≤ n/2} and k < j∗ ≤ n/2.

Case 2.1: n is even.
Suppose n/2 = m4k+ j4 where 0 ≤ j4 < k. From n ≥ 3k− 2, we know that m4 ≥ 2,
or m4 = 1 and j4 ≥ k−2

2
.

Case 2.1.1: j4 ≥ k−2
2

.
It suffices to consider the distances d(u0, vm4k+j), where 0 ≤ j ≤ j4. Note that

d12(u0, vm4k+
k
2
) = d12(u0, vm4k+

k+2
2
) = m4+

k
2
+1, d12(u0, vm4k+

k
2
−1) = d12(u0, vm4k+

k+2
2

+1) =

m4 +
k
2
, and so on.

Observe that v−(m4+1)k = vn−(m4+1)k = vm4k+2j4−k. Moreover, d34(u0, vm4k+2j4−k) =
m4+2, d34(u0, vm4k+2j4−k+1) = d34(u0, vm4k+2j4−k−1) = m4+3, d34(u0, vm4k+2j4−k+2) =
d34(u0, vm4k+2j4−k−2) = m4 + 4, and so on.

If j4 = k−2
2

, then j1 = m4k + k−2
2

. Because d34(u0, vj1) ≥ d12(u0, vj1), we have
j∗ = j1 = m4k + k−2

2
.

If j4 = k
2
, then j1 = m4k + k

2
. Because d34(u0, vj1) ≥ d12(u0, vj1), we have

j∗ = j1 = m4k + k
2
.

If 2 ≤ 2j4 − k ≤ k
2
, then j1 = m4k + k

2
and d34(u0, vj1) < d12(u0, vj1). We get

j∗ = m4k + j4.
If 2j4 − k ≥ k+2

2
, then j1 = m4k + k

2
and d34(u0, vj1) < d12(u0, vj1). We get

j∗ = m4k + j4 − k
2
+ 1 or j∗ = m4k + j4 − k

2
.

Table 5 shows that how to find j∗ in GP (56, 10).

Case 2.1.2: j4 <
k−2
2

.
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vj v12 v13 v14 v15 v16 v17 v18
d12(u0, vj) 4 5 6 7 7 6 5
d34(u0, vj) 6 5 4 5 6 7 8

Table 6: In GP (44, 10), the search of j∗. Because j1 = 15, d12(u0, v15) = 7, n−(m4+1)k =
14 and d34(u0, v14) = 4, so j∗ = 16 or j∗ = 17.

It is enough to consider the distances d(u0, v(m4−1)k+j), where 0 ≤ j ≤ k. Note
that d12(u0, v(m4−1)k+ k

2
) = d12(u0, v(m4−1)k+ k+2

2
) = m4 +

k
2
, d12(u0, v(m4−1)k+ k

2
−1) =

d12(u0, v(m4−1)k+ k+2
2

+1) = m4 +
k
2
− 1, and so on.

Note that v−(m4+1)k = vn−(m4+1)k = v(m4−1)k+2j2 and 2j2 < k − 2. We also have
d34(u0, v(m4−1)k+2j2) = m4 + 2, d34(u0, v(m4−1)k+2j2+1) = d34(u0, v(m4−1)k+2j2−1) =
m4 + 3, d34(u0, v(m4−1)k+2j2+2) = d34(u0, v(m4−1)k+2j2−2) = m4 + 4, and so on.

If j4 = 0 or j4 = 1, then j1 = (m4 − 1)k + k
2
. Because d34(u0, vj1) ≥ d12(u0, vj1),

we have j∗ = j1 = (m4 − 1)k + k
2
.

If 4 ≤ 2j4 ≤ k
2
, then j1 = (m4 − 1)k + k

2
and d34(u0, vj1) < d12(u0, vj1). We get

j∗ = (m4 − 1)k + k
2
+ j4 − 1 or j∗ = (m4 − 1)k + k

2
+ j4.

If 2j4 ≥ k+2
2

, then j1 = (m4 − 1)k + k
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = (m4 − 1)k + j4 + 1.

Table 6 shows that how to find j∗ in GP (44, 10).

Case 2.2: n is odd.
Suppose (n− 1)/2 = m5k + j5, where 0 ≤ j5 < k. From n ≥ 3k − 2, we know that
m5 ≥ 2, or m5 = 1 and j5 ≥ k−3

2
.

Case 2.2.1: j5 ≥ k−3
2

.
Because k is even, k−3

2
is not an integer and hence j5 ≥ k−2

2
. Again it suffices to

consider the distances d(u0, vm5k+j), where 0 ≤ j ≤ j5. Note that d12(u0, vm5k+
k
2
) =

d12(u0, vm5k+
k+2
2
) = m5 +

k
2
+ 1, d12(u0, vm5k+

k
2
−1) = d12(u0, vm5k+

k+2
2

+1) = m5 +
k
2
,

and so on.
Observe that v−(m5+1)k = vn−(m5+1)k = vm5k+2j5+1−k. Also, d34(u0, vm5k+2j5+1−k) =

m5+2, d34(u0, vm5k+2j5+1−k+1) = d34(u0, vm5k+2j5+1−k−1) = m5+3, d34(u0, vm5k+2j5+1−k+2) =
d34(u0, vm5k+2j5+1−k−2) = m5 + 4, and so on.

If j5 = k−2
2

, then j1 = m5k + k−2
2

. Because d34(u0, vj1) ≥ d12(u0, vj1), we have
j∗ = j1 = m5k + k−2

2
.

If j5 = k
2
, then j1 = m5k + k

2
. Because d34(u0, vj1) ≥ d12(u0, vj1), we infer that

j∗ = j1 = m5k + k
2
.

If 3 ≤ 2j5 +1− k ≤ k
2
, then j1 = m5k+

k
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = m5k + j5.
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vj v23 v24 v25 v26 v27 v28
d12(u0, vj) 6 7 8 8 7 6
d34(u0, vj) 8 7 6 5 4 5

Table 7: In GP (57, 10), the search of j∗. Because j1 = 25, d12(u0, v25) = 8, n−(m5+1)k =
27 and d34(u0, v27) = 4, so j∗ = 24.

vj v12 v13 v14 v15 v16 v17 v18
d12(u0, vj) 4 5 6 7 7 6 5
d34(u0, vj) 7 6 5 4 5 6 7

Table 8: In GP (45, 10), the search of j∗. Because j1 = 15, d12(u0, v15) = 7, n−(m5+1)k =
15 and d34(u0, v15) = 4, so j∗ = 17.

If 2j5 + 1 − k ≥ k+2
2

, then j1 = m5k + k
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = m5k + j5 + 1− k

2
.

Table 7 shows that how to find j∗ in GP (57, 10).

Case 2.2.2: j5 <
k−3
2

.
It suffices to consider the distances d(u0, v(m5−1)k+j), where 0 ≤ j ≤ k. Note

that d12(u0, v(m5−1)k+ k
2
) = d12(u0, v(m5−1)k+ k+2

2
) = m5 +

k
2
, d12(u0, v(m5−1)k+ k

2
−1) =

d12(u0, v(m5−1)k+ k+2
2

+1) = m5 +
k
2
− 1, and so on.

Note that v−(m5+1)k = vn−(m5+1)k = v(m5−1)k+2j5+1 and 2j5 + 1 < k − 2. We have
d34(u0, v(m5−1)k+2j5+1) = m5+2, d34(u0, v(m5−1)k+2j5+1+1) = d34(u0, v(m5−1)k+2j5+1−1) =
m5 + 3, d34(u0, v(m5−1)k+2j5+1+2) = d34(u0, v(m5−1)k+2j5+1−2) = m5 + 4, and so on.

If j5 = 0, then j1 = (m5 − 1)k + k
2
. Because d34(u0, vj1) ≥ d12(u0, vj1), we infer

that j∗ = j1 = (m5 − 1)k + k
2
.

If 3 ≤ 2j5 + 1 ≤ k
2
, then j1 = (m5 − 1)k + k

2
and d34(u0, vj1) < d12(u0, vj1). We

get j∗ = (m5 − 1)k + k
2
+ j5.

If 2j5 + 1 ≥ k+2
2

, then j1 = (m5 − 1)k + k
2

and d34(u0, vj1) < d12(u0, vj1). We get
j∗ = (m5 − 1)k + j5 + 2 or j∗ = (m5 − 1)k + j5 + 1.

Table 8 shows that how to find j∗ in GP (45, 10).
Suppose that P ∗ is a shortest u0, vj∗-path. Let P ∗ + vj∗uj∗ be the path obtained

from P ∗ by appending the edge vj∗uj∗ at vj∗ . Because k ≥ 3 and k < j∗ ≤ n/2,
the path P ∗+ vj∗uj∗ is a shortest u0, uj∗-path which contains vj∗ . We conclude that
d(u0, vj∗) < d(u0, uj∗) ≤ D.
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3 On the diameter of GP (n, k)

In the previous section we found a j∗, where 0 ≤ j∗ ≤ n/2, such that d(u0, vj∗) =
max{d(u0, vj) : 0 ≤ j < n}. In fact, the proof also reveals that

diam(GP (n, k)) = d(u0, uj∗) = d(u0, vj∗) + 1 ,

which in turn enables us to state the following theorem.

Theorem 5. If n and k are integers, where 3 ≤ k < n/2 and

n ≥


8; k = 3,
10; k = 4,
k(k+1)

2
; k is odd and k ≥ 5,

k2

2
; k is even and k ≥ 6,

then the following hold.

1. If k ≥ 3, k is odd, n is even, and n
2
= mk + j, where k−1

2
≤ j < k, then

diam(GP (n, k)) =


m+ 2 + j; j = k−1

2
or j = k+1

2
,

m+ 3 + k − j; 3 ≤ 2j − k ≤ k+1
2
,

m+ 2 + j − k−1
2
; 2j − k > k+1

2
.

2. If k ≥ 3, k is odd, n is even, and n
2
= mk + j, where 0 ≤ j < k−1

2
, then

diam(GP (n, k)) =


m+ 1 + k+1

2
; j = 0 or j = 1,

m+ 3 + k−1
2

− j; 4 ≤ 2j ≤ k+1
2
,

m+ 2 + j; 2j > k+1
2
.

3. If k ≥ 3, k is odd, n is odd, and n−1
2

= mk + j, where k−2
2

≤ j < k, then

diam(GP (n, k)) =


m+ 2 + k−1

2
; j = k−1

2
,

m+ 2 + k − j; 2 ≤ 2j + 1− k ≤ k+1
2
,

m+ 2 + j − k−1
2
; 2j + 1− k > k+1

2
.

4. If k ≥ 3, k is odd, n is odd, and n−1
2

= mk + j, where 0 ≤ j < k−2
2

, then

diam(GP (n, k)) =

{
m+ 2 + k−1

2
− j; 1 ≤ 2j + 1 ≤ k+1

2
,

m+ 2 + j; 2j + 1 > k+1
2
.
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5. If k ≥ 4, k is even, n is even, and n
2
= mk + j, where k−2

2
≤ j < k, then

diam(GP (n, k)) =


m+ 2 + j; j = k−2

2
or j = k

2
,

m+ 3 + k − j; 2 ≤ 2j − k ≤ k
2
,

m+ 2 + j − k
2
; 2j − k ≥ k+2

2
.

6. If k ≥ 4, k is even, n is even, and n
2
= mk + j, where 0 ≤ j < k−2

2
, then

diam(GP (n, k)) =


m+ 1 + k

2
; j = 0,

m+ 2 + k
2
− j; 2 ≤ 2j ≤ k

2
,

m+ 2 + j; 2j ≥ k+2
2
.

7. If k ≥ 4, k is even, n is odd, and n−1
2

= mk + j, where k−3
2

≤ j < k, then

diam(GP (n, k)) =


m+ 2 + k−2

2
; j = k−2

2
,

m+ 2 + k − j; 1 ≤ 2j + 1− k ≤ k
2
,

m+ 3 + j − k
2
; 2j + 1− k ≥ k+2

2
.

8. If k ≥ 4, k is even, n is odd, and n−1
2

= mk + j, where 0 ≤ j < k−3
2

, then

diam(GP (n, k)) =


m+ 1 + k

2
; j = 0,

m+ 2 + k
2
− j; 3 ≤ 2j + 1 ≤ k

2
,

m+ 2 + j; 2j + 1 ≥ k+2
2
.

4 Concluding remarks
In this paper we proved that GP (n, k) is diam(GP (n, k))-distance-balanced pro-
vided that n is large enough relative to k. In these cases we also determined
diam(GP (n, k)). For small values of k, we can strengthen these results as follows.

From [20] we know that GP (n, 2), n ≥ 5, is diam(GP (n, 2))-distance-balanced.
For k = 2 and n ≥ 5, diam(GP (n, 2)) can also be computed. First, diam(GP (5, 2)) =
2, diam(GP (6, 2)) = 4, and diam(GP (7, 2)) = 3. Moreover, if n = 4m or n =
4m + 1, then diam(GP (n, 2)) = m + 2, and if n = 4m + 2 or n = 4m + 3, then
diam(GP (n, 2)) = m+ 3.

It is straightforward to check that diam(GP (7, 3)) = 3 and that GP (7, 3) is
highly distance-balanced. Similarly, diam(GP (9, 4)) = 4 and GP (9, 4) is 4-distance-
balanced. In addition, from [20] we recall that diam(GP (11, 5)) = diam(GP (14, 5)) =
5, diam(GP (12, 5)) = diam(GP (13, 5)) = 4, and that GP (n, 5) is diam(GP (n, 5))-
distance-balanced for 11 ≤ n ≤ 14. Moreover, diam(GP (n, 6)) = 5 and GP (n, 6) is
5-distance-balanced for 13 ≤ n ≤ 17.
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Combining the above results with Theorems 3 and 5, the following result can be
stated.

Proposition 6. If k and n are integers, where 2 ≤ k ≤ 6 and n ≥ 2k + 1, then
GP (n, k) is diam(GP (n, k))-distance-balanced. Moreover, diam(GP (n, k)) can be
computed.

For k ≥ 7 the remaining cases to be solved are collected as follows.

Problem 7. Let k and n be two integers, where k ≥ 7. Moreover, if k is odd, then
2k + 1 ≤ n < k(k+1)

2
and if k is even, then k ≥ 8 and 2k + 1 ≤ n < k2

2
.

1. Is GP (n, k) diam(GP (n, k))-distance balanced?

2. Compute diam(GP (n, k)).

Moreover, the ℓ-distance-balancedness of GP (n, k), where ℓ < diam(GP (n, k)),
is widely open.

Problem 8. Let n and k be integers, where n ≥ 5 and 2 ≤ k < n/2. For 1 ≤ ℓ <
diam(GP (n, k)) determine whether GP (n, k) is ℓ-distance-balanced or not.
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