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1 Introduction

Let G = (V (G), E(G)) be a connected and undirected graph, and X ⊆ V (G) a subset of
the vertices of G. If x, y ∈ V (G), then we say that x and y are X-visible, if there exists a
shortest x, y-path whose internal vertices are all not in X. X is a mutual-visibility set if
its vertices are pairwise X-visible. The cardinality of a largest mutual-visibility set is the
mutual-visibility number of G, and it is denoted by µ(G). Each largest mutual-visibility
set is also called µ-set of G.

These concepts were introduced by Di Stefano in [5]. They were in particular motivated
by the significance that mutual-visibility properties play within problems that arise in
mobile entity models. Some of the numerous works that deal with such models are [1, 2,
4, 11]. Mutual-visibility sets in graphs are in a way dual to general position sets in graphs,
the latter concepts being widely investigated in the last years [7, 8, 9, 10, 12].

Among other results, it was proved in [5] that the decision problem concerning the
mutual-visibility number is NP-complete and the invariant was determined for several
classes of graphs including block graphs, grids, and cographs. The research was continued
in [3] emphasizing on Cartesian products and graphs G with µ(G) = 3. Interestingly,
determining the mutual-visibility number of the Cartesian product of two complete graphs
turns out to be equivalent to a case of the celebrated Zarankiewicz’s problem which is a
long-standing open combinatorial problem. Continuing the investigation of the mutual-
visibility in graph products, we investigate in this paper strong products.

In the next section, we introduce the necessary concepts and recall some known results.
Then, in Section 3, we introduce total mutual-visibility sets which turned out to be useful
for the investigation of mutual-visibility sets in strong products, and give some basic
properties of total mutual-visibility sets. In the subsequent section, we first bound from
below the (total) mutual-visibility number of strong products. Then we determine the
mutual-visibility number for the strong grids of arbitrary dimension which shows the
tightness of the lower bound. In addition, we find families of strong product graphs
for which the bound is not tight and complete the section with another lower bound. In
Section 5 we focus on strong prisms where we give a couple of tight bounds for the mutual-
visibility number. We conclude our exposition with several open problems and directions
for further investigation.

2 Preliminaries

Since two vertices from different components of a graph are not mutually visible, all graphs
in the paper are connected unless stated otherwise.

For a natural number n, we set [n] = {1, . . . , n}. Given a graph G = (V (G), E(G)),
its order will be denoted by n(G). The distance function dG on a graph G is the usual
shortest-path distance. The subgraph G′ is convex if, for every two vertices of G′, every
shortest path in G between them lies completely in G′. The convex hull of V ′ ⊆ V (G),
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denoted as hull(V ′), is defined as the smallest convex subgraph containing V ′. A universal
vertex is a vertex that is adjacent to all other vertices of the graph.

The degree, degG(x), of a vertex x is the number of its neighbors. If X ⊆ V (G),
then X denotes the complement of X, that is the set containing all vertices of G not
in X. Moreover, G[X] denotes the subgraph of G induced by X, that is the maximal
subgraph of G with vertex set X. The subgraph of G induced by X is denoted by G−X,
and by G − v when X = {v}. Two vertices u and v are false twins if uv ̸∈ E(G)
and NG(u) = NG(v), where NG(x) is the open neighborhood of x, and are true twins if
uv ∈ E(G) and NG[u] = NG[v], where NG[x] is the closed neighborhood of x. Vertices
are twins if they are true or false twins. Adding a new vertex to a graph G that is
a true/false twin of an existing vertex of G is an operation called splitting. Another
one-vertex extending operation is that of attaching a pendant vertex, which is a vertex
connected by a single edge to an existing vertex of the graph.

A graph is a block graph if every block (i.e., a maximal 2-connected component) is a
clique. Block graphs can be generated by using true twins and pendant vertices. Notice
that the connected block graphs are exactly the graphs in which there is a unique induced
path connecting every pair of vertices.

A graph is called cograph whenever it is obtained by a sequence of splittings starting
from K1. From this generative definition, it follows a useful structural property. Let G
be a cograph, and let v1 be the starting vertex for a sequence of splitting operations that
build G. If G is connected, the first operation must be a true twin of v1 (that produces
v2 adjacent to v1). Let V1 = {v1} and V2 = {v2}. Now, for each further vertex v which
must be added to build G, if v is a twin of a vertex in V1 (V2, respectively), then add it
to V1 (to V2, respectively). We obtain that V (G) can be partitioned into V1 and V2 where
v′v′′ ∈ E(G) for each v′ ∈ V1 and v′′ ∈ V2.

Cographs include complete split graphs and complete k-partite graphs. A graph is a
complete split graph if it can be partitioned into an independent set and a clique such that
every vertex in the independent set is adjacent to every vertex in the clique. A k-partite
graph (alias k-chromatic graph) is a graph whose vertices are (or can be) partitioned into k
different independent sets; hence, a complete k-partite graph is a k-partite graph in which
there is an edge between every pair of vertices from different independent sets.

The strong product G⊠H of graphs G and H has vertex set V (G⊠H) = V (G)×V (H),
with vertices (g, h) and (g′, h′) being adjacent in G⊠H if either gg′ ∈ E(G) and h = h′,
or g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and hh′ ∈ E(H), see [6]. A G-layer through
a vertex (g, h) is the subgraph of G ⊠ H induced by the vertices {(g′, h) : g′ ∈ V (G)}.
Analogously H-layers are defined.

Finally, we recall the following result which is implicitly used throughout the paper.

Proposition 2.1 [6, Proposition 5.4] If (g, h) and (g′, h′) are vertices of a strong product
G⊠H, then

dG⊠H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}.
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3 Total mutual-visibility

The following definition introduces a variation of mutual-visibility. It will be useful to
provide bounds on the mutual-visibility number of strong product graphs, although we
consider that the concept might be also of independent interest.

If G is a graph and X ⊆ V (G), then X is a total mutual-visibility set of G if every
pair of vertices x and y of G is X-visible. The term “total” comes from observing that
if X is a total mutual-visibility set of G, then for every pair x, y ∈ V (G) there exists a
shortest x, y-path whose internal vertices are all not in X. The cardinality of a largest
total mutual-visibility set of G is the total mutual-visibility number of G and is denoted by
µt(G). Notice that there could be graphs G which do not contain total mutual-visibility
sets, for such situations we set µt(G) = 0. For the sake of brevity, we say that X is a
µt(G)-set (or µt-set if we are not interested in the graph) if it is a total mutual-visibility
set such that |X| = µt(G).

Clearly, every total mutual-visibility set is a mutual-visibility set, hence we have the
following inequality

0 ≤ µt(G) ≤ µ(G). (1)

In the following we show that such bounds can actually be achieved by the total mutual-
visibility number. Concerning the lower bound of (1), it can be easily checked that
µt(Cn) = 0 for n ≥ 5. The variety of graphs with this property appears to be large
as the next result confirms.

Proposition 3.1 Let G be a graph. If V (G) =
⋃k

i=1 Vi, where G[Vi] is a convex subgraph
of G and µt(G[Vi]) = 0 for each i ∈ [k], then µt(G) = 0.

Proof. Suppose on the contrary that G contains a total mutual-visibility set X with
|X| ≥ 1. Select an arbitrary vertex x ∈ X. Then there exists an i ∈ [k] such that x ∈ Vi.
Hence clearly, |X ∩G[Vi]| ≥ 1. However, since G[Vi] is convex, we get that X ∩G[Vi] is a
total mutual-visibility set of G[Vi], a contradiction to the assumption µt(G[Vi]) = 0. □

In what follows we show that there also exist graphs G with µt(G) = 0 such that they
belong to well-known graph classes and they are not covered by the Proposition 3.1. To
this end, recall that a cactus graph is a graph whose blocks are cycles and/or complete
graphs K2. Figure 1 shows four examples of cactus graphs.

Proposition 3.2 Let G be a cactus graph. Then µt(G) = 0 if and only if G has minimum
degree 2 and for each cycle C in G with n(C) ≤ 4 all the vertices in C have degree at least
3 in G.

Proof. (⇐) Assume that G does not contain pendant vertices and that for each cycle C
of G, either n(C) ≤ 4 and each vertex in C has degree at least 3, or n(C) ≥ 5. Suppose
now µt(G) > 0 and consider any total mutual-visibility set X of G with |X| ≥ 1 and
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let v ∈ X. If v does not belong to any cycle of G, since there are no pendant vertices,
then v must have at least two neighbors and such neighbors are not X-visible, which is
not possible. Thus, we may consider v belongs to a cycle C. If n(C) ≥ 5, then the two
neighbors of v belonging to C are not X-visible. If n(C) ≤ 4 and each vertex in C has
degree at least 3, then again there must exist a pair of neighbors of v which are non
X-visible, a contradiction again. Hence µt(G) = 0 must hold.

(⇒) It can be readily observed that each pendant vertex of G forms a total mutual-
visibility set of G. Thus, G has minimum degree 2, since µt(G) = 0. Moreover, if C is a
cycle in G such that n(C) ≤ 4 and there exists v ∈ V (C) with degG(v) = 2, then the set
{v} is a total mutual-visibility set of G, which is not possible. Therefore, the second claim
follows. □

Figure 1: Some cactus graphs. The first two on the left do not fulfil the conditions of Proposi-
tion 3.2, and hence their total mutual-visibility number is greater than zero.

As an application of this lemma, consider Figure 1. From the left, the first two cactus
graphs have total mutual-visibility number greater than zero since they both do not fulfill
the conditions of the above lemma. On the contrary, the other two graphs have total
mutual-visibility number equal to zero. Moreover, notice that among the cactus graphs
it is possible to find infinitely many graphs G with µt(G) = 0 which are not covered by
Proposition 3.1. For instance, if G is a cactus graph with minimum degree at least 2, girth
at least 5, and contains at least one path of length at least 2 whose edges lie in no cycle,
then µt(G) = 0 but G might not admit a proper convex cover as in Proposition 3.1. The
rightmost graph in Figure 1 is an example.

Concerning the upper bound in (1), we introduce the following definition. A graph G
is a (µ, µt)-graph if µ(G) = µt(G).

Proposition 3.3 Block graphs (and hence trees and complete graphs) and graphs con-
taining a universal vertex are all (µ, µt)-graphs.

Proof. If G is a complete graph, then µ(G) = µt(G) = n(G). If G is not complete and
has a universal vertex, then it can be easily observed that µ(G) = µt(G) = n(G)− 1.

5



Assume that G is a block graph. From [5, Theorem 4.2] we know that if G is a
block graph and X the set of its cut-vertices, then V (G) \ X is a µ-set of G and hence
µ(G) = |V (G) \X|. We now show that V (G) \X is also a µt-set of G. To this end, let
us first observe that (1) each vertex in V (G) \ X is adjacent to a vertex in X and that
(2) G[X] is a convex subgraph of G. Hence, every x, y ∈ V (G) are (V (G) \ X)-visible
regardless their membership to V (G) \X. This proves that V (G) \X is also a µt-set of
G. □

In the following, we characterize those cographs which are (µ, µt)-graphs. To this aim,
we first recall a result from [5].

Lemma 3.4 [5, Lemma 4.8] Given a graph G, then µ(G) ≥ n(G)− 1 if and only if there
exists a vertex v in G adjacent to each vertex u in G− v such that degG−v(u) < n(G)− 2.

In what follows, any vertex v of G fulfilling the condition in the above lemma will be
called enabling.

Proposition 3.5 A cograph G is a (µ, µt)-graph if and only if it has a universal vertex
or no enabling vertices.

Proof. (⇐) If G has a universal vertex, then clearly µt(G) = µ(G). If G has no enabling
vertices, then µ(G) < n(G) − 1 by Lemma 3.4. Since µ(G) ≥ n(G) − 2 by [5, Theorem
4.11], we get µ(G) = n(G)− 2. According to the structural property of cographs recalled
in Section 2, the vertices of G can be partitioned into two sets V1 and V2 such that each
vertex in V1 is adjacent to each vertex of V2. If v1 (v2, respectively) is an arbitrary vertex
in V1 (V2, respectively), then it can be easily observed that X = V (G) \ {v1, v2} is a total
mutual-visibility set. Hence, µt(G) = µ(G) = n(G)− 2.

(⇒) We show that G is not a (µ, µt)-graph by assuming that G has an enabling
vertex v but no universal vertices. In this case, V (G) can be partitioned in three sets:
A = {v}, B the set of neighbors of v, and C which contains all the remaining vertices.
Notice that C must be not empty otherwise v would be a universal vertex, against the
hypothesis. By definition of enabling vertex, B contains all the vertices u ∈ G such that
degG−v(v) < n(G)− 2. This implies that for each u ∈ C we have degG−v(u) ≥ n(G)− 2.
As a consequence, we have that (1) G[C] is a clique, and (2) bc ∈ E(G) for each b ∈ B
and c ∈ C. Then B ∪ C is a mutual-visibility set and hence µ(G) ≥ n(G)− 1. As G has
no universal vertices, µ(G) = n(G)− 1.

We now show that µt(G) cannot be equal to n(G) − 1. In fact, let u ∈ V (G) and
assume that X = V (G) \ {u} is a µt-set. Clearly, u ̸= v because v is not X-visible with
vertices in C. Vertex u cannot be in B since it is not a universal vertex and so there is
a vertex w ∈ B such that uw ̸∈ E(G). But then u and w are not X-visible. Finally, u
cannot be in C, because in this case u and v are not X-visible. □

The following result is a straightforward consequence of the characterization provided
by Proposition 3.5.
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Corollary 3.6 Complete split graphs and complete k-partite graphs (k ≥ 2) with at least
three vertices in each partition are (µ, µt)-graphs.

Observe that since µ(Cn) = 3 and µt(Cn) = 2 for n ≤ 4, the inequality µt(G) ≤ µ(G)
can be strict. Moreover, even if the equality is attained, it can happen that some µ-sets
are µt-sets but some are not. For an example consider the graph from Figure 2.

Figure 2: A graph G with two µ-sets (represented by red vertices). On the right-hand side a µ-set
which is also a µt-set is shown, while on the left-hand side the µ-set is not a µt-set (the pair of
vertices not in the µ-set are not visible).

4 Mutual-visibility in strong products

In this section, we show how the total mutual-visibility of factor graphs can be used to
provide lower bounds for the mutual-visibility number of their strong products. To this
end, we consider the following refinement of the total mutual-visibility. We say that a
total mutual-visibility set S of a graph G is feasible if any two adjacent vertices x, y ∈ S
have a common neighbor z /∈ S. Figure 2 (right side) shows a graph that admits a feasible
µt-set. Note that there could be graphs having no feasible total mutual-visibility set, say
C4. Moreover, if S is a feasible total mutual-visibility set of G and G is not trivial, then
it has cardinality at most |V (G)| − 1. Also, if S is an independent total mutual-visibility
set, then it is clearly feasible.

Theorem 4.1 If SG and SH are feasible total mutual-visibility sets of the non-trivial
graphs G and H, respectively, then there exists a feasible total mutual-visibility set S of
G⊠H such that

|S| ≥ |SG|n(H) + |SH |n(G)− |SG| · |SH | .

In particular, if both G and H admit feasible µt-sets, then

µt(G⊠H) ≥ µt(G)n(H) + µt(H)n(G)− µt(G)µt(H) .

Proof. Let S = (V (G) × V (H)) \ (SG × SH); see Figure 3 for an example of the
construction of S.

In the following we first prove that S is a total mutual-visibility set of G⊠H, and then
we observe that S is feasible. Let (g, h) and (g′, h′) be arbitrary but distinct vertices from
V (G ⊠H). Consider first the case in which dG(g, g

′) ≥ 2 and dH(h, h′) ≥ 2. Regardless
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Figure 3: A representation of G ⊠ P3, where G is the graph in the right side of Figure 2. The
represented µt-set is that defined by Theorem 4.1.

the membership of g, g′ to SG, since SG is a total mutual-visibility set of G there exists a
shortest g, g′-path PG in G such that no internal vertex of PG is in SG. Let the consecutive
vertices of PG be g = g0, g1, . . . , gk = g′, with k ≥ 1 since dG(g, g

′) ≥ 2. Similarly, there
is a shortest h, h′-path PH in H such that no internal vertex of PH is in SH . Let the
consecutive vertices of PH be h = h0, h1, . . . , hℓ = h′, with ℓ ≥ 1 since dH(h, h′) ≥ 2.
Assume without loss of generality that ℓ ≤ k. Then the vertices

(g, h) = (g0, h0), (g1, h1), . . . , (gℓ−1, hℓ−1), (gℓ, hℓ−1), . . . , (gk−1, hℓ−1)(gk, hℓ) = (g′, h′)

induce a shortest (g, h), (g′, h′)-path Q in G⊠H. Clearly, no internal vertex of Q is in S.
If dG(g, g

′) = 1 and dH(h, h′) = 1, then (g, g′) and (h, h′) are adjacent and we are done.
Thus, we may assume that either dG(g, g

′) ≥ 2 or dH(h, h′) ≥ 2.
Assume that dG(g, g

′) = 1 and dH(h, h′) ≥ 2. Consider again the h, h′-path PH defined
as above. If g /∈ SG, then the vertices

(g, h) = (g, h0), (g, h1), . . . , (g, hℓ−1), (g
′, hℓ) = (g′, h′)

induce a shortest (g, h), (g′, h′)-path Q′ in G⊠H, such that no internal vertex of Q′ is in S.
On the other hand, if g ∈ SG and g′ ∈ SG, then since SG is a feasible total mutual-visibility
set of G, the vertices g, g′ have a common neighbor w /∈ SG. If g ∈ SG and g′ ̸∈ SG, then
we set w = g′. Thus, the vertices

(g, h) = (g0, h0), (w, h1), . . . , (w, hℓ−1), (g
′, hℓ) = (g′, h′)

induce a shortest (g, h), (g′, h′)-path Q′′ in G⊠H, such that no internal vertex of Q′′ is in
S. Symmetrically, if dG(g, g

′) ≥ 2 and dH(h, h′) = 1, we obtain analogous conclusions to
the ones above.

Consider now the remaining case in which g = g′ or h = h′ (but not both). By the
commutativity of the strong product, we may without loss of generality assume h = h′

(and hence g ̸= g′). Let g = g0, g1, . . . , gk = g′ be a shortest g, g′-path in G, with k ≥ 1,
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such that each internal vertex (if any) is not in SG. If k = 1, then (g, h)(g′, h′) ∈ E(G⊠H)
and there is nothing to prove. Assume now k ≥ 2. Since H is non trivial and SH is feasible,
it holds |SH | < n(H). If h ̸∈ SH , then

(g, h) = (g0, h), (g1, h), (g2, h), . . . , (gk−1, h), (gk, h
′) = (g′, h′)

trivially shows that (g, h) and (g′, h′) are mutually visible. Instead, if h ∈ SH , since SH

is feasible, then there exists a vertex z /∈ SH such that hz ∈ E(H). Consider the path Q′

induced by the sequence of vertices

(g, h) = (g0, h), (g1, z), (g2, z), . . . , (gk−1, z), (gk, h
′) = (g′, h′) .

The length of Q′ is k, hence Q′ is a shortest (g, h), (g′, h′)-path. Moreover, as z ̸∈ SH we
get that each internal vertex of Q does not belong to S.

According to all the analyzed cases, we have shown that the set S is a total mutual-
visibility set. Since

|S| = n(G)n(H)− (n(G)− |SG|)(n(H)− |SH |)
= |SG|n(H) + |SH |n(G)− |SG| · |SH |

we are done with the first inequality. When SG and SH are µt-sets and G and H are
non-complete graphs, the second inequality follows directly from the first one.

To conclude the proof, we now show that S is feasible, that is, given two adjacent
vertices (g, h), (g′, h′) ∈ S, we prove that there exists a third vertex not in S which is
adjacent to both (g, h) and (g′, h′).

Consider first the case when g ̸= g′ and h ̸= h′. By the definition of the strong product,
gg′ ∈ E(G) and hh′ ∈ E(H). We now claim that there exists a clique KG of cardinality
2 or 3 as a subgraph of G that contains g, g′, and a vertex g′′ (which may coincide with
g or g′) not belonging to SG. If both g and g′ lie in SG, then since SG is feasible, there
exists a vertex g′′ ̸∈ SG such that g, g′, and g′′ induce a clique of order 3. If g ̸∈ SG or
g′ ̸∈ SG, then the property trivially holds, since gg′ ∈ E(G) induces a clique of order 2.
We have thus proved that claim, that is, we have a clique KG (of order 3 or 2) with a
vertex g′′ not in SG. By the commutativity of the strong product, there also exists a clique
KH as a subgraph of H that contains h, h′, and a vertex h′′ not belonging to SH (which
may coincide with h or h′). Since the strong product of KG and KH induces a clique of
G⊠H, the vertex (g′′, h′′) is adjacent to both (g, h) and (g′, h′). This part of the proof is
concluded by observing that (g′′, h′′) is not in S.

The second case to consider is when g = g′ or h = h′, we may without loss of generality
assume h = h′. As in the previous case, there exists a clique KG of cardinality 2 or 3 as a
subgraph of G that contains g, g′, and a vertex g′′ ̸∈ SG (which may coincide with g or g′).
Concerning H, since h = h′, there exists a clique KH of cardinality 2 or 1 as a subgraph
of H that contains h and a vertex h′′ (which may coincide with h) not belonging to SH . If
h ̸∈ SH , then V (KH) = {h} and we can set h′′ = h. If h ∈ SH , then given any neighbor h̄
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of h, either h̄ ̸∈ SH (so V (KH) = {h, h̄} and h′′ = h̄) or, since SH is feasible, there exists
h′′ ̸∈ SH adjacent to both h and h̄ (so V (KH) = {h, h′′}). We can again conclude that
(g′′, h′′) ̸∈ S and (g′′, h′′) is adjacent to both (g, h) and (g′, h′). □

Of course, when both G and H are (µ, µt)-graphs that admit feasible µt-sets, the lower
bound expressed by Theorem 4.1 can be reformulated as follows:

µ(G⊠H) ≥ µt(G⊠H) ≥ µ(G)n(H) + µ(H)n(G)− µ(G)µ(H) . (2)

Theorem 4.1 extends to an arbitrary number of factors as follows.

Corollary 4.2 Let Hk = G1 ⊠G2 ⊠ · · ·⊠Gk, k ≥ 2. If Gi is a non-complete graph that
admits a feasible µt-set for each 1 ≤ i ≤ k, then

µt(Hk) ≥
k∏

i=1

n(Gi)−
k∏

i=1

(n(Gi)− µt(Gi)).

Proof. For each 1 ≤ i ≤ k, let Xi be a feasible µt(Gi)-set. Let

Sk = (V (G1)× · · · × V (Gk)) \ (X1 × · · · ×Xk).

We prove that Sk is a total mutual-visibility set of Hk and proceed by induction on k.
By Theorem 4.1 we get that the assertion holds for k = 2: S2 is a feasible total mutual-

visibility set of H2. Let us assume it is true for Hk, k ≥ 2, and consider Hk+1 = Hk⊠Gk+1.
By the inductive hypothesis, Sk is a feasible total mutual-visibility set of Hk. By the proof
of Theorem 4.1, Sk+1 is a feasible total mutual-visibility set of Hk+1. Thus

µt(Hk+1) ≥ n(Hk)n(Gk+1)− (n(Hk)− µt(Hk))(n(Gk+1)− µt(Gk+1))
≥ n(Hk)n(Gk+1)−(

n(Hk)−
(∏k

i=1 n(Gi)−
∏k

i=1(n(Gi)− µt(Gi))
))

(n(Gk+1)− µt(Gk+1))

= n(Hk+1)−
(∏k

i=1(n(Gi)− µt(Gi))
)
(n(Gk+1)− µt(Gk+1))

= n(Hk+1)−
∏k+1

i=1 (n(Gi)− µt(Gi))

and we are done. □

The following result (cf. Theorem 4.4) shows that there are (µ, µt)-graphs for which
the lower bound provided by (2) coincides with the mutual-visibility number of the strong
product. Notice that it concerns the strong product of paths with at least three vertices,
whereas Theorem 5.4 (cf. Section 5 where strong prisms are considered) will provide the
exact value of µ(P2⊠G) for every block graph G (and hence also µ(P2⊠Pn) with n ≥ 2).

We first recall the following result that uses convex hulls to provide an upper bound
to µ(G).
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Lemma 4.3 [5, Lemma 2.3] Given a graph G, let V1, . . . , Vk be subsets of V (G) such that⋃k
i=1 Vi = V (G). Then, µ(G) ≤

∑k
i=1 µ(hull(Vi)).

Theorem 4.4 If Hk = Pn1 ⊠ · · ·⊠ Pnk
, where k ≥ 2 and n(Pni) ≥ 3 for i ∈ [k], then

µ(Hk) =

k∏
i=1

n(Pni)−
k∏

i=1

(n(Pni)− 2).

Proof. Let Xi ⊆ V (Pni) be the (total) mutual-visibility set of Pni formed by the end-
vertices of the path. Note that Xi is feasible. According to the proof of Corollary 4.2, we
get that

Sk = (V (Pn1)× · · · × V (Pnk
)) \ (Xi × · · · ×Xi) (3)

is a total mutual-visibility set of Hk. By the same corollary, we also get the following
lower bound:

µ(Hk) ≥ µt(Hk) ≥
k∏

i=1

n(Pni)−
k∏

i=1

(n(Pni)− µt(Pni)) =
k∏

i=1

n(Pni)−
k∏

i=1

(n(Pni)− 2).

Let the tuple (ℓ1, . . . , ℓk) denote the generic vertex of Hk, where ℓi ∈ [n(Pni)], i ∈ [k]. We
define the following two subsets of V (Hk):

• VInt = {(ℓ1, . . . , ℓk) : ∀ i ∈ [k], ℓi ̸= 1 and ℓi ̸= n(Pni)};

• VExt = {(ℓ1, . . . , ℓk) : ∃ i ∈ [k], ℓi = 1 or ℓi = n(Pni)}.

From these definitions, it can be easily observed that VInt and VExt form a partition of
V (Hk). Moreover, according to this notation, we get the following characterization of the
total mutual-visibility set Sk defined in (3):

Sk = VExt. (4)

To prove the upper bound for µ(Hk), we use Lemma 4.3. To this end, we determine the
(minimum) number of induced and convex diagonals which cover all the vertices of Hk. A
diagonal is either degenerated or non-degenerated : non-degenerated diagonals are paths of
Hk formed by at least two vertices and having the form ((ℓ1, . . . , ℓk), (ℓ1+1, . . . , ℓk+1), (ℓ1+
2, . . . , ℓk + 2), . . .), whereas each degenerated diagonal consists of a single vertex. These
two kinds of diagonals are formally defined as follows (see. Figure 4 for two examples):

(i) Each vertex in I = {(ℓ1, . . . , ℓk) : ∃ i ∈ [k], ℓi = 1 and ∀j ∈ [k], ℓj ̸= n(Pnj )} belongs
to non-degenerated diagonals. In particular, each vertex in I is the initial vertex
(i.e., one of its end-vertices) of such kind of diagonals.
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(ii) If (ℓ1, . . . , ℓk) belongs to a non-degenerated diagonal d, then also its neighbor (ℓ1 +
1, . . . , ℓk + 1) (if it exists in Hk) belongs to d. This property allows to define non-
degenerated diagonals, along all their maximal length, till some terminating vertex
having at least one coordinate ℓi such that ℓi = n(Pni). We denote by T all the
terminating vertices of non-degenerated diagonals.

(iii) The set D = {(ℓ1, . . . , ℓk) : ∃ i, j ∈ [k], ℓi = 1 and ℓj = n(Pnj )} contains all vertices
forming degenerated diagonals.

(1,1) (1,1,1)

Figure 4: Visualization of diagonals as defined in the proof of Theorem 4.4. (Left) In this strong
product H2 = P5 ⊠ P6, the thicker and bolder lines represent non-degenerated diagonals. (Right)
A representation of H3 = P5 ⊠ P6 ⊠ P6 as an “opaque rectangular cuboid” where the position of
the vertex with coordinates (1, 1, 1) is shown. Black vertices represent the elements of set I, that
is the starting point of non-degenerate diagonals; white vertices represent the elements of set D,
that is vertices forming degenerated diagonal. All such diagonals cover the whole graph H3.

Notice that the non-degenerated diagonals are pairwise vertex disjoint. The requested
covering of Hk is given by all the maximal non-degenerated diagonals along with all the
degenerated diagonals. Now, let X ⊆ V (Hk) be the set containing the end-vertices of each
non-degenerated diagonal and all the vertices forming degenerated diagonals; formally,
X = I ∪ T ∪ D. According to Lemma 4.3 we know that µ(Hk) ≤ |X|. By Eq. 4, we
complete the proof by showing that VExt = X.

• Let v = (ℓ1, , . . . , ℓk) ∈ VExt. By definition of VExt, there exists a coordinate ℓi of v
for which ℓi = 1 or ℓi = n(Pni). If both ℓi = 1 and ℓi = n(Pni) hold, then property
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(iii) in the definition of diagonals holds. This means that v ∈ D and hence v ∈ X.
If ℓi = 1 and ℓi ̸= n(Pni) hold, then property (i) in the definition of diagonals holds.
This means that v ∈ I and hence v ∈ X. If ℓi ̸= 1 and ℓi = n(Pni) hold for each i,
then consider the smallest coordinate ℓj of v. According to property (ii), the vertex
v′ = (ℓ1 − (ℓj − 1), . . . , ℓk − (ℓj − 1)) lies in the set I from which a non-degenerated
diagonal starts. This implies that v ∈ T and hence v ∈ X. So, in all cases, we have
v ∈ X.

• Let v = (ℓ1, . . . , ℓk) ∈ X. If v ∈ I ∪D, then v ∈ VExt trivially holds. Assume now
v ∈ T , that is v is the end-vertex of a non-degenerated diagonal d starting at some
vertex v′ = (ℓ′1, . . . , ℓ

′
k) for which (i) holds, and made maximal by iteratively applying

property (ii). According to (ii), an end-vertex of d must be in {n(Pn1), . . . , n(Pnk
)},

and hence v ∈ VExt.

This proves that VExt = X holds. □

It seems worth pointing out that the result of Theorem 4.4 for two- and three-dimensional
strong grids reads as follows:

µ(Pn1 ⊠ Pn2) = 2n1 + 2n2 − 4 ,

µ(Pn1 ⊠ Pn2 ⊠ Pn3) = 2(n1n2 + n1n3 + n2n3)− 4(n1 + n2 + n3) + 8 .

To conclude the analysis, notice there are examples of graphs for which the bound of
Theorem 4.1 is not sharp. An example of this situation is given in Figure 5.

Let T be the tree obtained from K1,3 by subdividing each of its edges three times.
Since both T and P5 admit feasible µt-sets, Theorem 4.1 implies µ(T ⊠P5) ≥ µ(P5)n(T )+
µ(T )n(P5)− µ(P5)µ(T ) = 35, but in Figure 5 we can see a mutual-visibility set of cardi-
nality 36 found by computer search. This example also shows that even when both factors
of a strong product are (µ, µt)-graphs, their strong product does not achieve the equality
in the bound of Theorem 4.1. Note that this particular example can be generalized to an
infinite family of graphs where the difference between the mutual-visibility number and
the bound of the theorem becomes arbitrarily large. This situation also suggests that
generalizing Theorem 4.4 (when k = 2) to the strong product of two arbitrary trees might
be a challenging problem.

Corollary 4.5 If G1, . . . , Gk are non-complete graphs, each containing a universal vertex,
then

µt(G1 ⊠ · · ·⊠Gk) =

k∏
i=1

n(Gi)− 1 .

Proof. Observe that if v is a universal vertex of Gi, then V (Gi)\{v} is a feasible µt-set of
Gi. Hence, since each Gi is a (µ, µt)-graph that admits a feasible µt-set, by Corollary 4.2
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Figure 5: The graph T ⊠ P5 and its mutual-visibility set of cardinality 36.

we get µt(G1 ⊠ · · · ⊠ Gk) ≥
∏k

i=1 n(Gi) − 1. The claim follows by simply observing that

G1 ⊠ · · ·⊠Gk is not a clique and hence µ(G1 ⊠ · · ·⊠Gk) <
∏k

i=1 n(Gi). □

We conclude the section with another lower bound on µ(G⊠H) in terms of the mutual-
visibility number of the factors.

Theorem 4.6 If G and H are graphs, then

µ(G⊠H) ≥ µ(G)µ(H) .

Proof. Let SG be a µ-set of G and SH be a µ-set of H. Then we claim that S = SG×SH

is a mutual-visibility set of G⊠H.
Let (g, h) and (g′, h′) be arbitrary two vertices from S. Since g, g′ ∈ SG, there exists a

shortest g, g′-path PG in G such that no internal vertex of PG is in SG. Let the consecutive
vertices of PG be g = g0, g1, . . . , gk = g′. Similarly, there is a shortest h, h′-path PH in
H such that no internal vertex of PH is in SH . Let the consecutive vertices of PH be
h = h0, h1, . . . , hℓ = h′. Note that it is possible that k = 0 or ℓ = 0 (but not both).
Assume without loss of generality that ℓ ≤ k. Then the vertices

(g, h) = (g0, h0), (g1, h1), . . . , (gℓ, hℓ), (gℓ+1, hℓ)), . . . , (gk, hℓ)) = (g′, h′)

induce a shortest (g, h), (g′, h′)-path Q in G⊠H. Clearly, no internal vertex of Q is in S,
hence we conclude that S is a mutual-visibility set. □
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5 Mutual-visibility in strong prisms

In this section we study the mutual-visibility number of strong prisms, that is graphs in
the form G⊠ P2. We begin with the following general lower bound.

Theorem 5.1 If G is a graph, then µ(G⊠ P2) ≥ max{n(G), 2µ(G)}.

Proof. Since µ(P2) = 2, by Theorem 4.6 we get µ(G ⊠ P2) ≥ 2µ(G). Assuming
V (P2) = {p, q}, we prove the statement by showing that S = V (G) × {p} is a mutual-
visibility set of G⊠ P2.

Let (g, p) and (g′, p), with g ̸= g′, be arbitrary two distinct vertices from S. Consider
a shortest g, g′-path PG in G. Let the consecutive vertices of PG be g = g0, g1, . . . , gk = g′.
Since g ̸= g′ we get k ≥ 1. If k = 1, then (g, p) and (g′, p) are connected and there is
nothing to prove. If k ≥ 2, then the vertices

(g, p) = (g0, p), (g1, q), . . . , (gk−1, q), (gk, p) = (g′, p)

induce a shortest (g, p), (g′, p)-path Q in G⊠ P2. Clearly, no internal vertex of Q is in S,
hence we conclude that S is a mutual-visibility set of G⊠ P2. □

Theorem 5.1 can be improved for (µ, µt)-graphs as we next show.

Theorem 5.2 If G is a (µ, µt)-graph that admits a feasible µt-set, then µ(G ⊠ P2) ≥
µ(G) + n(G).

Proof. Consider a feasible µt-set (which is also a µ-set) of G and a total mutual-visibility
set X for P2 composed by only one vertex. If G is trivial, then the statement clearly holds,
otherwise we can apply the first inequality of Theorem 4.1 and (2) as follows:

µ(G⊠ P2) ≥ µ(G)n(P2) + |X|n(G)− µ(G)|X|
= µ(G) · 2 + n(G)− µ(G)
= µ(G) + n(G).

□

Next we show that the lower bound of Theorem 5.2 is attained by block graphs (in
particular non-complete block graphs, which admit feasible µt-sets). To do so, we need
the following lemma.

Lemma 5.3 Let x be a cut vertex of a graph G. Then there exists a µ-set of G⊠P2 which
contains at most one copy of x in the two G-layers.

Proof. Let S be a µ-set of G ⊠ P2 and suppose that x′, x′′ ∈ S, where x′ and x′′ are
the copies of x in the G-layers. Let H and H ′ be two components of (G⊠ P2)− {x′, x′′}.
Then S ∩ V (H) = ∅ or S ∩ V (H ′) = ∅, say S ∩ V (H) = ∅, for otherwise S is not even a
mutual-visibility set. Now the set S′ = (S ∪ {z}) \ {x′}, where z is an arbitrary vertex of
H, is also a µ-set of G⊠ P2. □
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Theorem 5.4 If G is a block graph, then µ(G⊠ P2) = n(G) + µ(G).

Proof. Let X be the set of the cut vertices of G. By Lemma 5.3 there exists a µ-set
S with at most one copy of each vertex in X. We show that S includes one copy of any
vertex v of G if v is a cut vertex and two copies of v otherwise. This proves the statement.

Consider two vertices u, v of the same copy G′ of G and the shortest u, v-path in G.
If u and v belong to the same block then they are adjacent since a block is a clique by
definition. Otherwise, consider the shortest u, v-path in G′: it is unique and passes only
through cut vertices of G′. Since for each vertex in X only one copy is in S, there exists
a shortest u, v-path in G⊠P2 without internal vertices in S. Then u and v are X-visible.

Assume that u and v do not belong to the same copy of G. If they belong to two copies
of the same block, then they are adjacent. Otherwise, as above, there exists a shortest
u, v-path in G⊠P2 passing through copies of cut vertices of G and without internal vertices
in S. □

We conclude the paper by demonstrating the sharpness of the bound of Theorem 5.2.

Theorem 5.5 If n ≥ 3, then

µ(Cn ⊠ P2) =


6; n ∈ {3, 4, 5},
7; n = 6,

n; n ≥ 7.

Proof. Recall from [5] that µ(Cn) = 3, n ≥ 3. Hence, Theorem 5.2 implies that
µ(Cn ⊠ P2) ≥ 6 when n ≤ 6 and µ(Cn ⊠ P2) ≥ n for n ≥ 6.

We checked by computer that µ(Cn⊠P2) = 6 when n ≤ 5 and µ(C6⊠P2) = 7. Assume
in the rest that n > 6 which means that µ(Cn ⊠ P2) ≥ n. Let S be a µ-set of Cn ⊠K2.
We need to show that |S| ≤ n.

Let v0, v1, . . . , vn−1 and v′0, v
′
1, . . . , v

′
n−1 be the vertices of the two Cn-layers. Then

a pair vi, v
′
i is called a separating pair. S cannot contain three separating pairs since

|S| ≥ n ≥ 7 for otherwise a vertex from S which is not in three fixed separating pairs
cannot be in visibility with all the vertices in the separating pairs. Hence |S| ≤ n+ 2. If
|S| ∈ {n + 1, n + 2}, then consider one separating pair vj , v

′
j . Then there exists a vertex

in {vj−1, v
′
j−1} ∩ S and a vertex in {vj+1, v

′
j+1} ∩ S which are not S-visible. We conclude

that |S| ≤ n. □

6 Concluding remarks and future work

This work suggests some further research directions. We have shown that block graphs and
certain cographs are all (µ, µt)-graphs. Notice that cographs can be generated by using true
and false twins, and that block graphs can be generated by using true twins and pendant
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vertices. A superclass of both cographs and block graphs is that formed by distance-
hereditary graphs. In fact, these graphs can be generated by using true twins, false twins,
and pendant vertices. It would be interesting to characterize all the distance-hereditary
graphs that are (µ, µt)-graphs. We left open the general question about characterizing the
larger class G of graphs formed by (µ, µt)-graphs. In addition, another characterization
that would be of interest concerns finding all graphs G for which µt(G) = 0.

Concerning specific results, in view of Theorem 4.4 (when we consider k = 2), it would
be interesting to study µ(T ⊠ T ′) for any two trees T and T ′. Also, Theorem 5.2 provides
the lower bound µ(G⊠P2) ≥ µ(G)+n(G) for each (µ, µt)-graph G, whereas Theorem 5.4
states that the equality is attained in the case of block graphs. We wonder if this equality
holds for each (µ, µt)-graph.

Another interesting point is studying other possible variations of the general concept
of mutual-visibility sets and their relationships, as well as relationships with the concept
of general position sets.

It took a long time before we were able to produce a revised version of the present
paper. As we finalise it, we would just like to add that in the meantime, the concept of
total mutual-visibility has already given rise to several further studies, largely inspired by
the original concluding remarks above.
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