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Abstract

Nonlocal metric dimension dimnℓ(G) of a graph G is introduced as the
cardinality of a smallest nonlocal resolving set, that is, a set of vertices which
resolves each pair of non-adjacent vertices of G. Graphs G with dimnℓ(G) = 1
or with dimnℓ(G) = n(G)−2 are characterized. The nonlocal metric dimension
is determined for block graphs, for corona products, and for wheels. Two
upper bounds on the nonlocal metric dimension are proved. An embedding of
an arbitrary graph into a supergraph with a small nonlocal metric dimension
and small diameter is presented.
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1 Introduction

Let G = (V (G), E(G)) be a graph, X ⊆ V (G), and u, v ∈ V (G). Then u and v are
resolved by X if there exists x ∈ X such that dG(u, x) 6= dG(v, x), where dG(y, z)
denotes the shortest-path distance between vertices y and z of G. A set X such
that each pair of vertices of G is resolved by X is a resolving set of G. A smallest
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resolving set is a metric basis of G, its cardinality is the metric dimension of G
denoted by dim(G). This concept is one of the central ones in the field of metric
graph theory, and its popularity stems, among other things, from the fact that it has
found many applications in fields as diverse as computer science, chemistry, biology,
and social sciences. For a better understanding of the concept and its applications
see the recent survey [18], while for a comprehensive survey on its variants see the
other recent survey [11].

In 2010, Okamoto, Phinezy, and Zhang [12] introduced the local metric dimension
of a graph as a natural version of the metric dimension. In this version, which was
further researched in particular in [1, 2, 3, 6, 10, 13, 14, 17], we need to resolve
only pairs of adjacent vertices. The dual concept, in which all pairs of non-adjacent
vertices are to be resolved, has surprisingly not been considered in the literature. In
this paper we fill this gap.

If X ⊆ V (G) resolves each pair of non-adjacent vertices, then we speak of a
nonlocal resolving set. A smallest nonlocal resolving set is a nonlocal metric basis
of G, its cardinality is the nonlocal metric dimension of G and will be denoted by
dimnℓ(G). By definition,

dimnℓ(G) ≤ dim(G) (1)

holds for every graph G. The difference can be arbitrary large as already demon-
strated by complete graphs for which we have dimnℓ(Kn) = 0 and dim(Kn) = n− 1
for every n ≥ 1.

We proceed as follows. In the next section we first recall definitions, notation,
and a result needed later. Then we characterize the graphs with the nonlocal metric
dimension equal to 1, and show that dimnℓ(G) = dim(G) holds for bipartite graphs
G. In Section 3 we determine the nonlocal metric dimension for block graphs and
for corona products. The latter result is reduced to a join of a graph with K1. This
motivates us to determine the nonlocal metric dimension of wheels in Section 4. In
the subsequent section we prove two upper bounds on the nonlocal metric dimension
and characterize graphs G with dimnℓ(G) = n(G) − 2. In Section 6, we embed an
arbitrary graph into a supergraph with a small nonlocal metric dimension and small
diameter. In the concluding section directions for further study are indicated.

2 Preliminaries

Unless stated otherwise, graphs considered will be connected. The order of a graph
G will be denoted by n(G). If X = {x1, . . . , xk} and u ∈ V (G), then the metric rep-
resentation of u with respect to X is the vector r(u|X) = (dG(u, x1), . . . , dG(u, xk)).
The diameter diam(G) of G is the largest distance between pairs of vertices of G.
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The clique number of G is the order of a largest complete subgraph in G and denoted
by ω(G). As usual, the chromatic number of G is denoted by χ(G). The edge cover
number β ′(G) of G is the smallest number of edges such that each vertex is incident
with at least one of these edges. The join G + H of graphs G and H is obtained
from the disjoint union of a copy of G and a copy of H by adding an edge between
each vertex of G and each vertex of H . The complement of G will be denoted by
G. For a positive integer k we will use the notation [k] = {1, . . . , k}.

A vertex of degree at least 3 in a tree T is called a branch vertex. A leaf u of T
is called a terminal leaf of a branch vertex v of T if dT (u, v) < dT (u, w) for every
other branch vertex w of T . A branch vertex v of T is an exterior branch vertex of
T if it has at least one terminal leaf. The path from an exterior branch vertex to
its terminal leaf is called a terminal path. Let n1(T ) denote the number of leaves of
T , and let ex(T ) denote the number of exterior branch vertices of T . In [5, 7, 15] it
was proved that if T is a tree that is not a path, then

dim(T ) = n1(T )− ex(T ). (2)

We already mentioned that dimnℓ(Kn) = 0 for n ≥ 1. Moreover, as soon as G
is not complete, dimnℓ(G) ≥ 1. Clearly, dimnℓ(Pn) = 1 for n ≥ 3. It is also not
difficult to see that dimnℓ(Cn) = 2 for n ≥ 4.

To characterize graphs G with dimnℓ(G) = 1, we need the following concept. If
x ∈ V (G) and k ≥ 0, then Lk(x) = {u ∈ V (G) : dG(x, u) = k} is a distance level of
x. In particular, L0(x) = {x}, and L1(x) is the (open) neighborhood of x.

Proposition 2.1 If G is a non-complete graph, then dimnℓ(G) = 1 if and only
if there exists a vertex x such that Lk(x) induces a complete graph for every k ≤
diam(G).

Proof. Assume first that dimnℓ(G) = 1 and let {x} be a nonlocal metric basis. If
u, v ∈ Lk(x) for some k ≥ 1, then dG(x, u) = dG(x, v) = k and hence u and v must
be adjacent. Thus Lk(x) induces a complete graph. (L0(x) is trivially complete.)

Conversely, let x be a vertex whose all distance levels induce complete graphs.
Therefore, if u, v ∈ V (G) and uv /∈ E(G), then dG(x, u) 6= dG(x, v) and so u and v
are resolved by x. �

In general dimnℓ(G) can be arbitrary smaller than dim(G). This cannot happen
if G is bipartite as the next result asserts.

Proposition 2.2 If G is a bipartite graph with n(G) ≥ 3, then dimnℓ(G) = dim(G).
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Proof. By (1) we have dimnℓ(G) ≤ dim(G). Let X be a nonlocal metric basis of
G. As n(G) ≥ 3, G is not complete and hence |X| ≥ 1. Consider arbitrary vertices
u, v ∈ V (G). If uv /∈ E(G), then u and v are resolved by X because X is a nonlocal
resolving set. If uv ∈ E(G), then u and v are resolved by X since G is bipartite. It
follows that X is also a resolving set. Hence dim(G) ≤ |X| = dimnℓ(G) and we are
done. �

3 Block graphs and corona products

Proposition 2.2 implies that if T is a tree with n(T ) ≥ 3, then dimnℓ(T ) = dim(T ).
This fact generalizes to block graphs as follows. Let G be a block graph. The block-
cutpoint tree Ĝ of G is the tree whose vertices are the blocks and the cut-vertices of
G, and a block B is adjacent to a cut-vertex v if v ∈ V (B), cf. [19, Definition 4.1.20].

Theorem 3.1 If G is a block graph with n(G) ≥ 3, then dimnℓ(G) = dim(Ĝ).

Proof. We can extend the terminology for trees from the previous section to block
graphs as follows. Let G be a block graph. A block B of G is called a branch block if
the vertices of B have at least three independent neighbors outside of B. A branch
block B of G is an exterior branch block of G if in Ĝ there exist t ≥ 1 terminal paths
emanating from a cut-vertex of B. If so, we say that B has t rays.

Let now X be a nonlocal resolving set of G. If B is an exterior branch block
of G with t rays, then we claim that X has at least t − 1 vertices in these rays,
each one from a different ray. Indeed, otherwise there exist two rays R1 and R2

with no vertex from X . Let R1 and R2 be attached to B at vertices u1 and u2

(note that u1 = u2 is possible), and select neighbors v1 and v2 of u1 and u2 in
R1 and R2, respectively, Then v1 and v2 are not adjacent and have the same metric
representation with respect to X . This proves the claim. Each exterior branch block
of G corresponds to an exterior branch vertex of Ĝ. Since Ĝ is a tree, (2) implies

that dimnℓ(G) ≥ dim(Ĝ).

To prove that dimnℓ(G) ≤ dim(Ĝ) holds, let X be a metric basis of Ĝ. We may

without loss of generality assume that every element of X is a leaf of Ĝ. Then each
element x ∈ X corresponds to a terminal block Bx of G, that is, a block which
contains exactly one cut-vertex. For every x ∈ X , let wx be an arbitrary but fixed
vertex of Bx which is not a cut-vertex. Set Y = {wx : x ∈ X}. Since we do not
need to resolve adjacent vertices, it is straightforward to check that Y is a nonlocal
resolving set of G. Hence dimnℓ(G) ≤ |Y | = |X| = dim(Ĝ). �
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The metric dimension of block graphs was studied in [8]. It was proved that
the metric dimension of a block graph G is equal to the metric dimension of a tree,
obtained from G by replacing each block B of size at least 3 by a star whose leaves
are the vertices of B. The local metric dimension of block graphs was investigated
in [14].

Let G and H be graphs where V (G) = {g1, . . . , gn(G)}. The corona product of
G and H , denoted by G⊙H , is a graph obtained from the disjoint union of a copy
of G and n(G) copies of H , denoted by Hi, i ∈ [n(G)]. The product G⊙H is then
constructed by making gi adjacent to every vertex in Hi for each i ∈ [n(G)]. Let

further H̃i be the subgraph of G⊙H induced by V (Hi)∪{gi}. Clearly, H̃i
∼= H+K1.

We will use this notation in the rest of the section.
The metric dimension of corona products has been investigated in [9, 20]. The

local metric dimension of corona products has been studied in [13] and more gen-
erally of generalized hierarchical products in [10]. In particular, in [13] it is proved
for the local metric dimension dimℓ that if G is a connected graph and H is a
graph of radius at least 4, then dimℓ(G ⊙ H) = n(G) · dimℓ(H + K1). In general,
dimℓ(G ⊙ H) ≤ n(G) · dimℓ(H + K1), see [10]. Here we add the following formula
for the nonlocal metric dimension.

Theorem 3.2 If G is a graph and H a non-complete graph, then

dimnℓ(G⊙H) = n(G) · dimnℓ(H +K1).

Proof. Let X be a nonlocal metric basis of G ⊙ H and let Xi = X ∩ V (H̃i). If
u, v ∈ V (Hi) and w ∈ V (G ⊙ H) \ V (Hi), then dG⊙H(u, w) = dG⊙H(v, w). Since
also dG⊙H(u, gi) = dG⊙H(v, gi) = 1, any two non-adjacent vertices from Hi must be

resolved by some vertex from Hi. Therefore, Xi is a nonlocal resolving set of H̃i and
so |Xi| ≥ dimnℓ(H̃i) = dimnℓ(H +K1). Consequently,

dimnℓ(G⊙H) = |X| =

n(G)∑

i=1

|Xi| ≥

n(G)∑

i=1

dimnℓ(H̃i) = n(G) · dimnℓ(H +K1).

Let now Y be a nonlocal metric basis of H ⊙ K1. Since H is not complete,
|Y | ≥ 1. For each i ∈ [n(G)], let Yi be the copy of Y in H̃i. Note that gi /∈ Yi.

We claim that ∪
n(G)
i=1 Yi is a nonlocal resolving set of G ⊙ H . Indeed, if vertices u

and v from V (Hi) are non-adjacent, then they are resolved by some vertex from Yi.

Assume next u ∈ V (H̃i) and v ∈ V (H̃j), where i 6= j. If yi ∈ Yi, then d(yi, u) ≤ 2

and d(yi, v) ≥ 3, hence u and v are again resolved. We have thus seen that ∪
n(G)
i=1 Yi

is a nonlocal resolving set and henceforth,

dimnℓ(G⊙H) ≤ | ∪
n(G)
i=1 Yi| = n(G) · |Y | = n(G) · dimnℓ(H +K1).
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We conclude that dimnℓ(G⊙H) = n(G) · dimnℓ(H +K1). �

In the case when the second factor of a corona product is complete, we can bound
the nonlocal metric dimension as follows.

Theorem 3.3 If G is a graph and n ≥ 1, then

dim(G) ≤ dimnℓ(G⊙Kn) ≤ n(G).

Proof. To prove the upper bound we claim that V (G) is a nonlocal resolving set
of G ⊙ Kn. Indeed, let u, v ∈ V (G ⊙ Kn) \ V (G) be two non-adjacent vertices.
Then u ∈ Hi and v ∈ Hj for some i and j, where i 6= j. As dG⊙Kn

(u, gi) = 1 and
dG⊙Kn

(v, gi) ≥ 2, the claim follows. Hence dimnℓ(G⊙Kn) ≤ n(G).
Let now X be a nonlocal metric basis of G⊙H ; then |X| = dimnℓ(G⊙H). Let

Y ⊆ V (G) be the set obtained from X by replacing each vertex u ∈ X ∩ V (H̃i) by
gi. Note that this in particular means that if gi ∈ X , then also gi ∈ Y . Clearly,
|Y | ≤ |X|. We claim that Y is a resolving set of G. For this sake consider arbitrary
vertices gi, gj ∈ V (G) ⊆ V (G ⊙ H). Let u ∈ V (Hi) and v ∈ V (Hj). Since X is a
nonlocal metric basis of G ⊙ H and uv /∈ E(G ⊙ H), there exists a vertex w ∈ X

such that dG⊙H(u, w) 6= dG⊙H(v, w). If w ∈ H̃i ∪ H̃j, then gi ∈ Y or gj ∈ Y and

there is nothing to be proved. Suppose henceforth that w ∈ H̃k, where k 6= i, j. If
w 6= gk, then

1 + dG(gi, gk) + 1 = dG⊙H(u, w) 6= dG⊙H(v, w) = 1 + dG(gj, gk) + 1,

and if w = gk, then

1 + dG(gi, gk) = 1 + dG(gi, w)

= dG⊙H(u, w) 6= dG⊙H(v, w)

= 1 + dG(gj, w) = 1 + dG(gj , gk).

In either case we get dG(gi, gk) 6= dG(gj, gk). As gk ∈ Y , we have proved that Y is a
resolving set of G which in turn implies that

dim(G) ≤ |Y | ≤ |X| = dimnℓ(G⊙H)

and we are done. �

If r, s ≥ 3, then it can be checked that dimnℓ(Kr,s ⊙ Kn) = r + s − 2 =
dimnℓ(Kr,s) = dim(Kr,s). This shows the sharpness of the lower bound of Theo-
rem 3.3. On the other hand, if m ≥ 2 and n ≥ 1, then dimnℓ(Pm ⊙Kn) = 2. Since
dim(Pm) = 1 and n(Km) = m, the case m = 2 shows the tightness of the upper
bound, while the cases m ≥ 3 demonstrate that the intermediate values are also
attainable.
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4 Nonlocal metric dimension of wheels

In Theorem 3.2, the nonlocal metric dimension of a corona product G⊙H is reduced
to the nonlocal metric dimension of the join of H with K1. To determine the latter
deserves a special attention. Here we solve it for the join of a cycle with K1, that
is, for wheels. Recall that the wheel graph K1 + Cn of order n + 1 ≥ 4 is denoted
by W1,n.

As a consequence of [13, Corollary 5(iv)] we obtain dimℓ(W1,n) = ⌈n/4⌉. The
metric dimension of W1,n was independently studied in [4, 16], where it is proved
that if n ≥ 7, then

dim(W1,n) =

⌊
2n+ 2

5

⌋
.

Clearly, dimnℓ(W1,3) = 1 and dimnℓ(W1,4) = dimnℓ(W1,5) = dimnℓ(W1,6) = 2. The
main result of this section reads as follows.

Theorem 4.1 If n ≥ 7, then

dimnℓ(W1,n) =

⌊
2n

5

⌋
.

Note that if n ≥ 7, then dim(W1,n) = dimnℓ(W1,n) if and only if n mod 5 ∈
{0, 1, 3}. Otherwise, dimnℓ(W1,n) = dim(W1,n) − 1. In the rest of the section we
prove Theorem 4.1, for which some additional terminology is needed.

Let V (Cn) = {0, 1, . . . , n − 1} with natural adjacency. Operation with vertices
will be done modulo n. Let v be the central vertex of the wheel W1,n, where n ≥ 7.
Notice first that, v does not belong to any nonlocal metric basis, since for any
0 ≤ i ≤ n − 1, v and i are adjacent. Let X ⊂ V (Cn) be a set of vertices such that
|X| ≥ 2. A gap of X is a set of vertices Ai,j = {i + 1, . . . , j − 1}, |i − j| ≥ 1, of
Cn such that i, j ∈ X and {i + 1, . . . , j − 1} ∩ X = ∅. We call i and j neighboring
vertices of X . Two gaps Ai,j and Aj,k are called neighboring gaps.

Lemma 4.2 Let n ≥ 7, and let S be a nonlocal metric basis of W1,n. Then the
following hold.

(i) |Ai,j| ≤ 4 for each gap of S.

(ii) |Ai,j| ≥ 3 holds for at most one gap of S.

(iii) If |Ai,j| ≥ 2, then each of the two neighboring gaps of Ai,j contains at most
one vertex.
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(iv) Moreover, W1,n contains a nonlocal metric basis S ′ that fulfils conditions (i)-
(iii) and in addition has no gap of size 3.

Proof. (i) Consider the gap Ai,j and suppose that j ≥ i+6, where i ≤ n− 1. Then
the vertices i + 2 and i+ 4 have the same metric representation with respect to S.
As they are not adjacent, we have a contradiction.

(ii) Suppose there exist two distinct gaps Ai,i+k and Aj,j+k′, where k, k
′ ∈ {4, 5}.

Then for two non-adjacent vertices i+ 2 and j + 2 we have r(i+ 2|S) = r(j + 2|S),
a contradiction.

(iii) Let Ai,j be a gap with j ≥ i+ 3. Consider now a neighboring gap, without
loss of generality let it be Ai′,i, and suppose that i− i′ > 2. Then the vertices i− 1
and i+1 have the same metric representation with respect to S. Again, as they are
not adjacent, we have a contraction.

(iv) Assume that S contains a gap Ai,i+4. By (ii), this gap is the only gap of size
3. Moreover, by (iii), there are the following cases to be considered. Assume first
that i+5 /∈ S. Then i+6 must belong to S. Let S ′ = (S∪{i+5})\{i+4}. Having
in mind that i + 2 and i + 3 are adjacent, it is straightforward to verify that S ′ is
a required nonlocal metric basis. The case when i − 1 /∈ S is treated analogously.
The last case to consider is when i − 1, i + 5 ∈ S. Then i + 6 /∈ S and the set
S ′ = (S ∪ {i+ 6}) \ {i+ 4} is a required nonlocal metric basis. �

Lemma 4.3 Let n ≥ 7. If X ⊆ V (Cn) satisfies conditions (i)-(iii) of Lemma 4.2,
then X is a nonlocal resolving set of W1,n.

Proof. Notice that by Proposition 2.1, dimnℓ(W1,n) ≥ 2, for n ≥ 7. Let u ∈
V (W1,n) \ X . As the central vertex v is adjacent to any other vertex, we may
assume that u 6= v. We then distinguish three cases.

Case 1: u belongs to a gap Ai,i+2 (gap of size 1).
Then u = i+1 and u has distance 1 to i, i+2 ∈ X and distance 2 to all other vertices
of X . Hence any other vertex has different metric representation with respect to X
because n ≥ 7.

Case 2: u belongs to a gap Ai,i+3 (gap of size 2).
Let without loss of generality u = i+ 1. Then u has distance 1 to i and distance 2
to all other vertices of X . By condition (iii) from Lemma 4.2, there is no any other
vertex with the same metric representation.

Case 3: u belongs to a gap Ai,i+j, j ∈ {4, 5}.
If u = i + 1, then u has distance 1 to i and distance 2 to all the other vertices
of X . Hence, by condition (iii) of Lemma 4.2, there is no other vertex with the
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same metric representation. The case when u = i + j − 1 is done similarly. Now,
if u ∈ {i + 2, i + j − 2}, then r(u|X) = (2, . . . , 2). If j = 4, then there is only one
such vertex, and if j = 5, there are two such vertices. In the latter case these two
vertices are adjacent. By condition (ii) from Lemma 4.2, no other vertex has this
metric representation. �

We are now in a position to prove Theorem 4.1. We construct a set S ⊆ V (W1,n)
with |S| =

⌊
2n
5

⌋
depending on the residue class modulo 5.

Case 1: n mod 5 ∈ {0, 1}.
Then n = 5k or n = 5k + 1, where k ≥ 2. In both cases let S = {5i, 5i + 2 : i ∈
[k − 1]} ∪ {0, 5k − 1}. Notice that |S| = 2k =

⌊
2n
5

⌋
.

Case 2: n ≡ 2 mod 5.
Then n = 5k + 2, where k ≥ 1. Let S = {5i, 5i+ 2 : 1 ≤ i ≤ k − 1} ∪ {0, 5k}. Then
|S| = 2k =

⌊
2n
5

⌋
.

Case 3: n mod 5 ∈ {3, 4}.
Then n = 5k + 3 or n = 5k + 4, where k ≥ 1. In both cases let S = {5i, 5i+ 2 : i ∈
[k]} ∪ {0}. Then |S| = 2k + 1 =

⌊
2n
5

⌋
.

In each case, the set S fulfils the conditions of Lemma 4.3, hence S is a nonlocal
resolving set of W1,n and thus dimnℓ(W1,n) ≤

⌊
2n
5

⌋
.

To prove that dimnℓ(W1,n) ≥
⌊
2n
5

⌋
, consider an arbitrary nonlocal resolving set

X of W1,n. In view of Lemma 4.2(iv) we may without loss of generality assume that
X has no gaps of size 3. We distinguish two cases.

Case 1: |X| = 2r, where r ≥ 1.
By Lemma 4.2(iii), at most r gaps contain two or four vertices, and by Lemma 4.2(ii),
at most one of these gaps contains 4 vertices. Hence, there is at most 2(r−1)+4+r =
3r + 2 vertices belonging to the gaps. Since n ≤ 2r + (3r + 2), we have that
|X| = 2r ≥ 2

(
n−2
5

)
. Since 2r is an integer we conclude that |X| ≥

⌈
2
5
n− 4

5

⌉
=

⌊
2n
5

⌋
.

Case 2: |X| = 2r + 1, where r ≥ 1.
Again, By Lemma 4.2(iii), at most r gaps contain two or four vertices, and by
Lemma 4.2(ii), at most one of these gaps contains 4 vertices. Hence in this case
there is at most 2(r− 1)+4+ (r+1) = 3r+3 vertices belonging to the gaps. Since
n ≤ 2r + 1 + (3r + 3), we have that |X| = 2r + 1 ≥

⌈
2
5
n− 3

5

⌉
≥

⌊
2n
5

⌋
.

This proves Theorem 4.1.
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5 Upper bounds

In this section we prove two upper bounds on the nonlocal metric dimension. Along
the way we show that complete bipartite graphs can be characterized as the graphs
G with dimnℓ(G) = n(G)− 2.

Proposition 5.1 If G is a graph, then dimnℓ(G) ≤ n(G)− ω(G). In particular, if
n(G) ≥ 2, then dimnℓ(G) ≤ n(G)− 2.

Proof. Since dimnℓ(Kn) = 0 for n ≥ 1, the result holds for complete graphs. Hence
assume in the rest that G is not complete and n(G) ≥ 3.

Let Q be a clique of G of order ω(G). Then we claim that V (G) \ V (Q) is a
nonlocal resolving set. Indeed, let u and v be non-adjacent vertices. At least one of
them is not in Q, say u. Then dG(u, u) = 0 < dG(u, v) and since u ∈ V (G) \ V (Q),
the claim is proved. Hence dimnℓ(G) ≤ n(G) − n(Q) = n(G) − ω(G). The second
assertion, dimnℓ(G) ≤ n(G) − 2, follows using the same argument except that we
consider an arbitrary K2 as a complete subgraph. �

In view of Proposition 5.1 we next describe graphs that attain the bound n(G)−2.

Proposition 5.2 If G is a graph, then dimnℓ(G) = n(G)−2 if and only if G = Ks,t,
where s ≥ 1 and t ≥ 2.

Proof. If dimnℓ(G) = n(G) − 2, then by (1) we have dim(G) ≥ n(G) − 2. Since
the only graphs G with dim(G) = n(G) − 1 are complete graphs, we can restrict
our attention to the graphs G with dim(G) = n(G) − 2. In [5] it is proved that
dim(G) = n(G)−2 if and only if G is one of the following graphs: Ks,t (s ≥ 1, t ≥ 2),
Ks +Kt (s ≥ 1, t ≥ 2), and Ks + (K1 ∪Kt) (s ≥ 1, t ≥ 1). By (1) we know that in
each of these cases we have dimnℓ(G) ≤ n(G) − 2. Hence we need to determine in
which of these cases we have dimnℓ(G) ≥ n(G)− 2.

Consider first complete bipartite graphs Ks,t and let S and T be its bipartition
sets, where |S| = s and |T | = t. If u, v ∈ S, then u and v have the same distance
to all the other vertices. If follows that for each nonlocal metric basis X we have
|X ∩S| = s−1. Analogously we get |X ∩T | = t−1. Hence |X| = (s−1)+(t−1) =
n(Ks,t)− 2.

Consider next joins Ks + Kt, s ≥ 1, t ≥ 2. The case s = 1 has already been
treated in the above paragraph, so assume that s, t ≥ 2. Then ω(Ks+Kt) = s+1 ≥
3, and hence by Proposition 5.1 we have dimnℓ(Ks+Kt) ≤ n(Ks+Kt)−ω(Ks+Kt) <
n(Ks +Kt)− 2.

The last class of graphs to be considered is Ks + (K1 ∪ Kt), s ≥ 1, t ≥ 1. If
s = t = 1, then G = P3 which has already been considered earlier. And if s ≥ 2
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or t ≥ 2, then ω(G) ≥ 3 and we conclude as in the previous case that none of the
graphs qualifies for the theorem. �

Theorem 5.3 If G is a graph of girth at least 7, then dimnℓ(G) ≤ β ′(G) − 1.
Moreover, if G is a tree, then the equality holds if and only if G is obtained from a
star by subdividing all but one of the edges at most once.

Proof. Note first that the assertion is true for K2 since dimnℓ(K2) = 0. It is also
clear that the result holds for paths since dimnℓ(Pn) = 1 for n ≥ 3. Hence in the
rest n(G) ≥ 4 and ∆(G) ≥ 3.

Assume first that there exists an edge cover S of G with |S| = β ′(G) ≥ 2, such
that S contains edges xy and xy′, where y 6= y′. We distinguish two cases.

Case 1: degG(y) = degG(y
′) = 1.

Then degG(x) ≥ 3. We define a set X ⊂ V (G) as follows. Put into X all the
neighbors of x but y′. Complete the construction ofX by putting into it an arbitrary
vertex from each of the edges f ∈ S which has no vertex yet in X . Let x′ be
a neighbor of x different from y and y′. Since G is triangle-free, the vertex x′ is
covered either by the edge xx′, or by an edge x′x′′, where x′′ is not adjacent to x.
Therefore, |X| ≤ β ′(G)− 1. Note also that x /∈ X . We claim that X is a nonlocal
resolving set. For this sake select arbitrary vertices u, v /∈ X such that uv /∈ E(G).
If u ∈ {x, y′}, then because degG(y) = 1, the vertices u and v are resolved by
y. Assume next that u, v /∈ {x, y′}. Then there exist vertices u′ and v′ such that
uu′, vv′ ∈ E(G) and u′, v′ ∈ X . We claim that u and v are resolved by u′ and v′.
If this is not the case, then since dG(u, u

′) = 1 we have dG(v, u
′) = 1, and because

dG(v, v
′) = 1 we have dG(u, v

′) = 1. But this implies that uu′vv′u is a 4-cycle, a
contradiction with our girth assumption.

Case 2: degG(y) ≥ 2.
Let y′′ be a neighbor of y different from x. Then we infer that yy′′ /∈ S. Indeed, if
yy′′ ∈ S, then S ′ = S \ {xy} is an edge cover of G of cardinality β ′(G)− 1. Hence
y′′ is an end-vertex of some edge y′′y′′′ ∈ S. Define now a set X ⊂ V (G) as follows.
First put x and y′′ into X . In addition, for any edge f ∈ S \ {xy, xy′, y′′y′′′} put
into X an arbitrary vertex from f . Note that |X| ≤ β ′(G)− 1. We claim that X is
a nonlocal resolving set. Let u, v /∈ X such that uv /∈ E(G). Then we see that in
every case there exist vertices u′ and v′ such that uu′, vv′ ∈ E(G) and u′, v′ ∈ X . In
particular, if u = y and v = y′, then set u′ = y′′ and v′ = x. Similarly, if u = y and
v = y′′′, then select u′ = x and v′ = y′′. And if u = y′ and v = y′′′, then set u′ = x
and v′ = y′′. In any case we see that the vertices u, v, u′ and v′ lead to a 4-cycle.

Assume second that every edge cover G has cardinality n(G)/2. Let S be such
an edge cover. Again we distinguish two cases.
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Case 1: every edge from S has an end-vertex of degree 1.
Let S = {xiyi : i ∈ [n(G)/2]} and assume without loss of generality that deg(xi) = 1
for all i ∈ [n(G)/2]. Set X = {x2, . . . , xn(G)/2}. We claim that X is a nonlocal
resolving set. Let u and v be arbitrary non-adjacent vertices from V (G) \X . Then
at least one of u or v is from {y2, . . . , yn(G)/2}, say u = yi, i ≥ 2. But then xi resolves
u and v, and the claim is proved.

Case 2: there is an edge xy ∈ S such that degG(x) ≥ 2 and degG(y) ≥ 2.
Let x′ be a neighbor of x different from y, and let y′ be a neighbor of y different from
x. By the assumption on S, there exist vertices x′′ and y′′ such that x′x′′, y′y′′ ∈ S.
Let X ⊂ V (G) be the set containing x′, y′, and an arbitrary vertex from each edge
f ∈ S ′ = S \ {xy, x′x′′, y′y′′}. We claim that X is a nonlocal resolving set. Let
f = ww′ ∈ S ′, where w′ ∈ X . Then since dG(w,w

′) = 1 and since each of the
vertices x, y, x′′, and y′′ has either x′ ∈ X or y′ ∈ X as a neighbor, we get that
X resolves w from each of the vertices from {x, y, x′′, y′′}. Similarly we infer that
the pairs x′′, y, and x′′, y′′, and x, y′′ are resolved by X . The only pairs left to be
considered are x, x′′ and y, y′′. Suppose on the contrary that the pair x, x′′ is not
resolved by X . Since dG(x, y

′) = 2, we must have dG(x
′′, y′) = 2. Then y′x′ ∈ E(G),

or y′′x′′ ∈ E(G), or there is a new vertex z such that y′z, zx′′ ∈ E(G). In either case
we have a cycle of length at most 6 in G which is not possible. The other pair y, y′′

is treated analogously.

Let now G be a tree. Let W be the set of exterior branch vertices of T , and for
a vertex w ∈ W , let p(w) be the number of terminal paths of w. Then we have

β ′(T ) ≥
∑

w∈W

p(w).

On the other hand, by (2) and Proposition 2.2 we have

dimnℓ(T ) =
∑

w∈W

(p(w)− 1).

Hence dimnℓ(G) = β ′(G) − 1 can hold only when |W | = 1. Suppose hence that
G is a tree with only one exterior branch vertex. Then G is obtained from a star
K1,n, n ≥ 3, by subdividing each of its edges an arbitrary number of times. By (2),
dimnℓ(G) = n − 1. Moreover, if at least one edge of K1,n has been subdivided at
least two times, then β ′(G) ≥ n+ 1. Suppose next that each edge of K1,n has been
subdivided exactly once. Then β ′(G) = n+ 1. So we are left with trees G obtained
from K1,n by subdividing all but one of the edges at most once. In this case we have
dimnℓ(G) = n− 1 = β ′(G)− 1. �
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6 Embeddings

In our final result we prove that any graph can be embedded as an induced subgraph
into a supergraph with a small nonlocal metric dimension and small diameter. More
precisely, the following holds.

Theorem 6.1 Every connected graph G is an induced subgraph of a graph H with
dimnℓ(H) ≤

⌈
log(χ(G))

⌉
and diam(H) ≤ 4. Moreover, if 2k−1 ≤ χ(G) < 2k, for

some integer k, then diam(H) ≤ 3.

Proof. If χ(G) = 1, then G is an edge-less graph and hence G is complete. Then, by
definition, dimnℓ(G) = 0 and hence the conclusion holds in this case by embedding
the complete graph into itself. We may thus assume in the rest that χ(G) = s ≥ 2.
Let k be the unique integer with 2k−1 < s ≤ 2k.

Let X0, . . . , Xs−1 be the color classes of G under some optimal coloring of it.
By our assumption, 2k−1 < s ≤ 2k. Then the sets X0, . . . , Xs−1 respectively induce
complete subgraphs of G. Since G is connected, we may without loss of generality
assume that there exists an edge connecting a vertex from X0 by a vertex from Xs−1.
Construct now a graph H as follows. First take the disjoint union of G and Kk. For
each Xi write i in its binary representation, say i = i1 . . . ik. Then for each j such
that ij = 0, add all the edges between the vertex j ∈ V (Kk) and Xi. See Fig. 1 for
an example of the construction where G is the Petersen graph P . For it note that
χ(P ) = 5.

We claim that D = V (Kk) is a nonlocal resolving set of H . For this sake
let u and v be arbitrary non-adjacent vertices of H . If at least one of u and v
belongs to D, there is nothing to prove. Otherwise, u ∈ Xi and v ∈ Xj , where
i 6= j. If i = i1 . . . ik and j = j1 . . . jk are the binary representations of i and j,
then there exists p such that, without loss of generality, ip = 0 and jp = 1. Then
dH(p, u) = 1 6= 2 = dH(p, v), hence u and v are resolved. This proves the claim.
Since |D| = k = ⌈log(s)⌉ =

⌈
log(χ(G))

⌉
, we conclude that dimnℓ(H) ≤

⌈
log(χ(G))

⌉
.

To show that diam(H) ≤ 4, let again u and v be arbitrary vertices of H . Note
first that if u ∈ V (Kk), then dH(u, v) ≤ 2. Assume hence that u ∈ Xi and v ∈ Xj ,
where i < j. Suppose first j < 2k. Then each of u and v has a neighbor in V (Kk)
which implies that dH(u, v) ≤ 3. Note that this fact in particular implies that if
χ(G) < 2k, then diam(H) ≤ 3. Suppose second that j = 2k. By our selection of X0

and X2k , there is an edge v′w, where v′ ∈ X2k and w ∈ X0. As w is adjacent to all
the vertices of V (Kk) and u has at least one neighbor in V (Kk), we have a u, v-path
of length 4. �

A result for the standard metric dimension which would be parallel to Theo-
rem 6.1 is not possible. The reason is the following. Imagine a connected, non-
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Figure 1: Embedding the Petersen graph into a graph H as in the proof of The-
orem 6.1. A thick edge means that a bottom vertex is adjacent to both encircled
vertices.

complete graph G and having a color class (in an optimal coloring of it) of order 2r,
r ≥ 2. Then G contains a clique of the same order and hence in whichever graph H
we embed G as an induced subgraph, we have ω(H) ≥ 2r. Then [5, Theorem 1] which
asserts that if G is a graph with diam(G) = d, then f(n, d) ≤ dim(G) ≤ n−d, where
f(n, d) is the least positive integer k for which k+dk ≥ n, implies that dim(H) ≥ r.
So dim(H) can be arbitrary larger than

⌈
log(χ(G))

⌉
(actually, arbitrary larger than

χ(G) for that matter).

7 Concluding remarks

In this article we have introduced the concept of nonlocal metric dimension, which
seems to deserve wider interest, not least because it is in some sense a complementary
concept to the established local metric dimension. Many problems about this new
concept remain open, let us mention here just a few that follow from our results.

In Theorem 3.2 we have proved a formula for the local metric dimension of
corona products with the second factor being not complete. Extending this theorem
(as done in [10] for the local metric dimension) to generalized hierarchical products
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is open. In view of Theorem 3.3 it would be interesting to prove a formula for
dimnℓ(G ⊙Kn). Theorem 5.3 is proved for graphs of girth at least 7. We suspect
that the condition can be relaxed to girth at least 5. Moreover, the edge cover
number in triangle-free graphs (that is, of girth at least 4) is equal to the clique
cover number. Hence extending Theorem 5.3 to arbitrary graphs, where the upper
bound would be stated as a function of the clique covering number would be of
interest.
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puting the local metric dimension of a graph from the local metric dimension
of primary subgraphs, Int. J. Comput. Math. 92 (2015) 686–693.

[15] P. J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.

[16] B. Shanmukha, B. Sooryanarayana, K. Harinath, Metric dimension of wheels,
Far East J. Math. Sci. 8 (2002) 217–229.

[17] L. Susilowati, I.M. Slamin, N. Estuningsih, The similarity of metric dimension
and local metric dimension of rooted product graph, Far East J. Math. Sci. 97
(2015) 841–856.

[18] R.C. Tillquist, R.M. Frongillo, M.E. Lladser, Getting the lay of the land
in discrete space: A survey of metric dimension and its applications,
arXiv:2104.07201 [math.CO] (15 Apr 2021).

[19] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

16

http://arxiv.org/abs/2107.04877
http://arxiv.org/abs/2104.07201
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