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Abstract

A set of edges X ⊆ E(G) of a graph G is an edge general position set if no
three edges from X lie on a common shortest path. The edge general position
number gpe(G) of G is the cardinality of a largest edge general position set in
G. Graphs G with gpe(G) = |E(G)| − 1 and with gpe(G) = 3 are respectively
characterized. Sharp upper and lower bounds on gpe(G) are proved for block
graphs G and exact values are determined for several specific block graphs.
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1 Introduction

Edge general position sets in graphs occur as the edge variant of general position sets.
As we know, general position sets have already been extensively researched, see the
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seminal papers [9, 15], some of the subsequent ones [3, 4, 7, 12–14, 16], and references
therein. The edge version has been introduced in [10] and further studied in [5,11]. In
this paper we continue this direction of research.

Let G = (V (G), E(G)) be a graph. Then we say that X ⊆ E(G) is an edge general
position set if for any shortest path P of G and any three edges e, e′, e′′ ∈ X we have
|E(P )∩{e, e′, e′′}| ≤ 2. The edge general position number gpe(G) of G is the cardinality
of a largest edge general position set. An edge general position set of cardinality gpe(G)
is called a gpe-set of G.

The main results of the seminal paper [10] are the formulas for the edge general
position number of hypercubes and of Cartesian grids. As a point of interest, we would
like to add that the general position number of hypercubes is a notorious difficult
problem, cf. [6]. The paper is organized as follows: in Section 2, we characterize the
graphs G with gpe(G) = |E(G)|−1 and the graphs G with gpe(G) = 3. We also discuss
the graphs G with gpe(G) = 4. In Section 3 we focus on block graphs. We prove sharp
upper and lower bounds and determine exact values in several specific cases. In the
rest of the introduction we list some definitions and state a couple of results needed
later on.

Unless stated otherwise, the graphs considered are connected. If G is a graph and
R ⊆ V (G), then the subgraph of G induced by R is denoted by G[R]. The distance
dG(u, v) between vertices u and v of G is the number of edges on a shortest u, v-path.
A subgraph H of G is isometric if for each pair of vertices u, v ∈ V (H) we have
dH(u, v) = dG(u, v). The diameter of G is the maximum distance between pairs of
vertices of G and is denoted by diam(G). A shortest u, v-path in G is diametral if
dG(u, v) = diam(G). The order, the size, and the maximum degree of G are denoted
by n(G), m(G), and ∆(G), respectively. A block of G is a maximal connected subgraph
of G that has no cut-vertex.

If G is a graph, then the edges incident to a vertex form an edge general position
set, hence we have

gpe(G) ≥ ∆(G) . (1)

For later use we also recall the following results from [10]. For its statement recall that
an edge of a tree is a pendant edge if it is incident with a leaf and that Cn, n ≥ 3,
denotes the cycle of order n.

Proposition 1.1 (i) gpe(Cn) = n for 3 ≤ n ≤ 5 and gpe(Cn) = 4 for n ≥ 6.
(ii) If L is the set of pendant edges of a tree T , then gpe(T ) = |L|.
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2 Graphs with extremal edge general position num-

bers

In the main result of this section we characterize the graphs G with gpe(G) = m(G)−1.
We further characterize the graphs with the edge general position number equal to 3
and show that the variety of graphs with this number equal to 4 is large.

In [10] it was observed that if diam(G) = 2, then gpe(G) = m(G). A slightly more
general formulation of this fact reads as follows.

Lemma 2.1 If G is a graph, then gpe(G) = m(G) if and only if diam(G) ≤ 2.

To characterize graphs G with gpe(G) = m(G)− 1, we introduce the following two
families of graphs.

The family G1 consists of all the graphs G that can be obtained from an arbitrary
graph H with diam(H) = 2 by attaching a pendant edge to a vertex u of H with
degH(u) ≤ n(H) − 2. We will say that this pendant edge of G is the special edge of
G. Knowing how the graph G from G1 was constructed, there is no doubt which of its
edges is the special edge. On the other hand, if only G is given, then it might not be
clear which of its edges is the special one. For instance, K4 belongs to G1 since it can
be obtained from P3 by attaching a pendant edge to its vertex of degree 1. Then each
of the two pendant edges of P4 can be declared as the special one. In such a case we
select one such edge and fix it, so that the special edge of G is well-defined. In Fig. 1
the graph Z1 belongs to the family G1, where the top edge is the special edge of Z1.

The family G2 consists of all the graphs G constructed as follows. Let G0, G1, and
G2 be arbitrary graphs not necessarily connected. Then G is obtained from the disjoint
union of G0, G1, G2, and K2, where V (K2) = {x1, x2}, by adding all possible edges
between K2 and G0, adding the edges between x1 and all vertices from G1, and adding
the edges between x2 and all vertices of G2. We will say that the edge x1x2 of G is the
central edge of G. In Fig. 1 the graph Z2 belongs to the family G2. Note that for Z2

we have G0 = P3 ∪ P2, G1 = C4, and G2 = K2 ∪ 2K1. Another graph from the family
G2 is the graph G′ from Fig. 3, where G0 is the empty graph, G1 = K3, and G2 = K2.

Theorem 2.2 Let G be a (connected) graph with n(G) ≥ 4. Then gpe(G) = m(G)− 1
if and only if G ∈ G1 ∪ G2.

Proof. Assume first that G ∈ G1 ∪ G2. Then diam(G) = 3, and hence gpe(G) ≤
m(G)− 1. If G ∈ G1, then it is clear that E(G) \ {e} is an edge general position set of
G, where e is the special edge of G. Let next G ∈ G2. Then we claim that E(G)\{x1x2}
is an edge general position set of G, where x1x2 is the central edge of G. Indeed, this
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Z1 Z2

x1 x2

Figure 1: Graphs Z1 ∈ G1 and Z2 ∈ G2.

follows by the fact that every shortest path of G of length 3 passes through x1x2. In
both cases we have gpe(G) ≥ m(G)− 1 and we may conclude that gpe(G) = m(G)− 1.

Conversely, assume that gpe(G) = m(G)− 1.

Claim 1: diam(G) = 3.
By Lemma 2.1 we have diam(G) ≥ 3. Moreover, if diam(G) ≥ 4, then at least two
edges of an arbitrary diametral path of G do not lie in an arbitrary edge general position
set, hence gpe(G) ≤ m(G)− 2. We conclude that diam(G) = 3.

Claim 2: There exists an edge e ∈ E(G) which lies on every diametral path of G.
Let R1, . . . , Rℓ be the diametral paths of G. If V (Ri) ∩ V (Rj) = ∅, then every edge
general position set of G misses at least one edge of Ri and at least one edge of Rj.
Hence each two diametral paths share at least one edge.

Consider now arbitrary three diametral paths Ri, Rj and Rk. We claim that they
have at least one common edge. Suppose on the contrary that this is not the case and
let X be a largest edge general position set of G. Assume that E(Ri) ∩ E(Rj) = {e},
E(Ri) ∩ E(Rk) = {f}, and E(Rj) ∩ E(Rk) = {g}. If |{e, f, g}| ≤ 2, where we without
loss of generality have f = g, then the edge f lies on all three paths. Hence we must
have |{e, f, g}| = 3. Recall that at least one edge of Ri (as well as of Rj and of Rk)
is not in X. If this edge is e, then at least one additional edge of Rj is also not in X.
Similarly, if f /∈ X, then at least one additional edge of Rk is also not in X. Finally,
if the unique edge from V (Ri) \ {f, g} is not in X, then on each of Rj and Rk one
additional edge is not in X. Hence in all the cases we have gpe(G) < m(G) − 1, a
contradiction. We conclude that E(Ri) ∩ E(Rj) ∩ E(Rk) ̸= ∅.

Let e ∈ E(Ri)∩E(Rj)∩E(Rk) and let Rk′ be an arbitrary additional diametral path.
We are going to show that all these four paths have a common edge. If e ∈ E(Rk′),
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there is nothing to prove. Assume hence that e /∈ E(Rk′). We now consider two cases.
If e ∈ X, then on each of the paths Ri, Rj, Rk and Rk′ there lies at least one edge which
is not in X. If this is the same edge, we are done. Otherwise there exist two different
edges not in X, which is not possible as we have assumed that gpe(G) = m(G)− 1. In
the second case e /∈ X. Since e /∈ E(Rk′), the path Rk′ contains an edge different from
e not in X, which is again not possible. By induction we now conclude the truth of
Claim 2.

By Claim 2, G has an edge e = uv which lies on all diametral paths of G.
Assume first that e is the first edge of some diametral path with the first vertex

of it being u. Then e must be the first edge of every diametral path, for otherwise we
would have diam(G) ≥ 4 or there would exist another diametral path which would not
contain e. Moreover, by the same reason we see that degG(u) = 1. Let H = G − u.
Then diam(H) = 2 and hence, since diam(G) = 3, it follows that degH(v) ≤ n(H)− 2.
We conclude that G ∈ G1.

Assume second that e = uv is the middle edge of some diametral path P , let
P = xuvy. We claim that u is a cut-vertex of G. Suppose this is not the case and let
Q be a shortest x, y-path in G − u. Since diam(G) = 3 and Q does not contain the
edge uv, its length is at least 4. Consider the subpath Q′ of Q induced by its last four
vertices, say y1, y2, y3, and y4 = y. It is possible that y3 = v. We claim that Q′ is a
shortest path also in G. Since we have assumed that Q′ is shortest in G− u, the only
way Q′ is not shortest in G would be that there exists a shortest path in G between
y1 and y4 = y using the vertex u. But this would mean that uy ∈ E(G), which is not
possible as P is a diametral path. Hence Q′ is a shortest path in G of length 3 which
does not contain uv. This contradiction proves the claim, that is, u is a cut-vertex. By
symmetry of P we also deduce that v is a cut-vertex.

Consider now the block B of G containing the vertices u and v. Let w ̸= u, v be
an arbitrary vertex from B. We first show that at least one of the edges wu and wv
exist. Suppose not. Then assume without loss of generality that dG(w, u) ≤ dG(w, v).
If P is a shortest w, u-path, then this path (which must be of length 2) together with
an arbitrary edge between u and a vertex not in B is a diametral path which does
not pass uv, a contradiction. Suppose next that wu ∈ E(G) but wv /∈ E(G). Since
B is a block and wv /∈ E(G), there is another w, v-path in B which does not pass u.
Assuming that this is a shortest possible such path, the last two edges of it together
with the edge between v and a vertex adjacent to v not from B again gives a diametral
path not containing uv. It follows that each of u and v is adjacent to every vertex of
B. Then B \ {u, v} is the graph G0 required to show that G ∈ G2. Moreover, let G1

be the graph induced by the vertices of G which are not in B and are closer to u than
to v. Then u must be adjacent to each vertex of G1 because otherwise we would have
diam(G) ≥ 4. Analogously we can define G2 with respect to v and conclude that v
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must be adjacent to each vertex of G2. We conclude that G ∈ G2. □

In the second part of this section we consider graphs with small edge general position
number.

From Proposition 1.1(ii) we get that if T is a tree with m(T ) ≥ 2, then gpe(T ) = 2
if and only if T is a path. Moreover, if G is not a tree, then considering a shortest
cycle in G which is necessarily isometric, we infer that gpe(G) ≥ 3. Hence we have the
following easy result.

Proposition 2.3 If G is a graph with m(G) ≥ 2, then gpe(G) = 2 if and only if G is
a path.

We further have:

Proposition 2.4 Let G be a graph. Then gpe(G) = 3 if and only if G is K3 or a tree
with three leaves.

Proof. Clearly, gpe(K3) = 3. If G is a tree with three leaves, then gpe(G) = 3 by
Proposition 1.1(ii).

Conversely, assume that gpe(G) = 3. If G is a tree, then the conclusion follows
from Proposition 1.1(ii). Hence assume in the rest that G is not a tree. Let C be a
shortest cycle of G. If n(C) ≥ 4, then since C is isometric, Proposition 1.1(i) implies
that gpe(G) ≥ 4. Hence C must be a triangle. Let V (C) = {x, y, z}. If n(G) ≥ 4,
then we may without loss of generality assume that degG(x) ≥ 3. Let x′ be adjacent
to x, where x′ ̸∈ {y, z}. Then {xy, yz, xz, xx′} is an edge general position set of G. We
conclude that G = K3. □

For graphs G with gpe(G) = 4 we have the following.

Proposition 2.5 If G is a graph with gpe(G) = 4, then the following holds.

(i) ∆(G) ≤ 4.

(ii) If ∆(G) = 4, then G is bipartite.

Proof. We know from (1) that (i) holds. To prove (ii), consider an arbitrary vertex
v of G with degG(v) = 4 and consider the distance levels with respect to v. If there
exists two adjacent vertices in some of these distance levels, then the edge between
them together with the edges incident with v form an edge general position set. So we
would have gpe(G) ≥ 5. We conclude that the distance levels of v induce independent
sets which in turn means that G is bipartite. □
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Let Gk, k ≥ 1, be the graph consisting of a chain of k cycles C4 sharing a vertex,
see Fig. 2 where G5 is shown from which the formal definition of Gk should be clear.
Then it can be checked that gpe(Gk) = 4 for each k ≥ 1. More generally, the edge
general position number remains 4 if we replace each C4 of Gk by an arbitrary even
cycle.

Figure 2: Graph G5 with gpe = 4.

There are many other examples of graphs G with gpe(G) = 4. For instance, the
graph G which is obtained from the disjoint union of Cn, n ≥ 6, and Pm, m ≥ 2, by
identifying a vertex of Cn by a leaf of Pm, also has gpe(G) = 4.

3 Edge general position sets in block graphs

While investigating in the previous section the graphs with extremal edge general
position number, it turned out that cut-vertices are ubiquitous. In this section we thus
consider the edge general position number in block graphs. To state our results, some
preparation is needed.

We say that a block B of a graph G is thick if n(B) ≥ 3 and that B is pendant if
it contains exactly one cut-vertex of G. A graph is a block graph if every block of it is
complete. (See [1, 2, 8] for some current research on block graphs.)

A vertex of a graph is simplicial if its neighbourhood induces a complete subgraph.
The set of simplicial vertices in a graph G will be denoted by S(G) and the cardinality
of S(G) by s(G). A block B of a block graph is simplicial if B has at least one simplicial
vertex. An edge of a block graph is a simplicial edge if it is incident with at least one
simplicial vertex. The set of simplicial edges of G will be denoted by S ′(G) and its
cardinality by s′(G).

Let G be a block graph and let B1, . . . , Bk be its simplicial blocks. Set bi = n(Bi)
and si = |S(G) ∩ V (Bi)| for i ∈ [k]. Since an edge of Bi is not simplicial if and only if
its both endvertices are not simplicial, we infer that

s′(G) =
k∑

i=1

[(
bi
2

)
−
(
bi − si

2

)]
. (2)
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Let G be a graph and let p1, . . . , pk be the consecutive vertices of a path P in G,
where k ≥ 2. We say that P is an internal path of G if degG(p1) ≥ 3, degG(pk) ≥ 3, and
degG(pi) = 2 for 2 ≤ i ≤ k − 1. We say that P is a pendant path of G if degG(p1) ≥ 3,
degG(pk) = 1, and degG(pi) = 2 for 2 ≤ i ≤ k − 1.

Let G be a block graph. Then the reduction R(G) of G is constructed from G as
follows. For every internal path P of G, identify the end vertices of P (and remove all
the inner vertices of P ). Moreover, replace every pendant path P by a pendant edge
attached to R(G) in the same vertex as P is attached to G. Note that if G is a path,
then R(G) = G.

Theorem 3.1 If G is block graph, then gpe(G) = gpe(R(G)).

Proof. It is clear that an edge general position set of R(G) yields an edge general
position set of G of the same cardinality. It follows that gpe(G) ≥ gpe(R(G)). In the
rest we thus need to prove the reverse inequality.

If G is a path, then R(G) = G and there is nothing to prove. Assume in the
following that G is a block graph which is not a path. Then degG(v) ≥ 3 for some
v ∈ V (G). It follows that gpe(G) ≥ 3. Let X be an arbitrary gpe-set of G. Let P be
the set consisting of all internal and pendant paths of G. If P ∈ P , then P is isometric
subgraph of G and hence |X ∩ E(P )| ≤ 2. We hence distinguish the following two
cases.

Case 1. |X ∩ E(P )| ≤ 1 for any P ∈ P .
It is obvious that X is also an edge general position set of R(G) if |X ∩E(P )| = 0 for
any path P ∈ P . Next, assume that |X ∩ E(P ′)| = 1 for some path P ′ ∈ P and let
e ∈ X ∩E(P ′). If P ′ is a pendant path, then e can be replaced by the pendant edge of
R(G) corresponding to P ′, which keeps the property of being in edge general position.
If P ′ is an internal path, then let u and v be the end-vertices of P ′. Let u′ and v′ be
the respective neigbors of u and v which do not lie on P ′. Then at most one of the
edges uu′ and vv′ lie in X. Assume without loss of generality that uu′ /∈ X. Then
(X \{e})∪{uu′} is also an edge general position set. Repeating this procedure we end
up with an edge general position set X ′ of G in which no edge from the paths from P
lies in X ′. Since this set is also an edge general position set of R(G) we conclude that
gpe(G) ≤ gpe(R(G)).

Case 2. |X ∩ E(P )| = 2 for some path P ∈ P .
Let e, e′ ∈ X ∩ E(P ). Let e = xy and e′ = x′y′. Since G is not a path, there exists a
simplicial vertex v such that v /∈ V (P ). Let v′ be the neighbor of v such that the edges
e, e′, and vv′ lie on a common shortest path. Since e, e′ ∈ X, we clearly have vv′ /∈ X.
Now the set X ′ = (X \ {e}) ∪ {vv′} is an edge general position set of G. If vv′ is a
pendant edge of a pendant path P ′ of G, then E(P ′) ∩X = ∅, for otherwise an edge
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from E(P ′) ∩ X would lie on a shortest path together with e and e′. It follows that
when X ′ is constructed, the number of pendant paths which contain two edges from an
edge general position set is reduced by one. The same holds if P is an internal path.
Hence after repeating this procedure for every path from P with two edges from X we
end up with an edge general position set X ′′ of G such that |X ′′ ∩E(P )| ≤ 1 holds for
any P ∈ P . Now we can proceed as in Case 1. □

Next we prove general bounds for block graphs.

Theorem 3.2 If G is a block graph, then s′(G) ≤ gpe(G) ≤
(
s(G)
2

)
+ 1. Moreover, the

bounds are sharp.

Proof. Let ci be the number of cut-vertices from Bi in G and let Ei be the set of

simplicial edges from Bi for i ∈ [k]. Set X =
k⋃

i=1

Ei. Recall that s′(G) =
k∑

i=1

[(
bi
2

)
−(

bi−si
2

)]
. We claim that X is an edge general position set of G.

Consider an arbitrary shortest u, u′-path P from G and let u = u0, . . . , uℓ = u′ be
its consecutive vertices. Clearly, P does not contain three edges of X if ℓ ≤ 2. Hence
we may assume that ℓ ≥ 3. Since G is a block graph, the shortest path P is the unique
shortest u, u′-path. If u ∈ S(G), then it follows that |E(P ) ∩X| ≤ 2. Hence X is an
edge general position set of G. Similarly, we also get the same result if u′ ∈ S(G). If
u, u′ ̸∈ S(G), then |E(P ) ∩X| = 0 and X also is an edge general position set of G. In
consequence, we conclude that gpe(G) ≥ s′(G).

To prove the upper bound we use induction on t, the number of blocks of G. If
t = 1, then G is a complete graph, then hence gpe(G) =

(
s(G)
2

)
and the assertion holds.

Let now t ≥ 2 and let B be a pendant block of G. Let G′ be the block graph
obtained from G by removing the block B but keeping the corresponding cut-vertex.
Let R be an edge general position set of G of order gpe(G) and let R′ be the restriction
of R to G′. By the induction hypothesis, gpe(G

′) ≤
(
s(G′)
2

)
+ 1. Let v be the vertex

connecting G′ with B in G and let s(B) be the set of simplicial vertices of B in G.
Then s(B) = n(B)− 1. We distinguish the following two cases.

Case 1. v is not simplicial in G′.
In this case s(G) = s(G′)+s(B) and hence s(G′) = s(G)+1−n(B). Since n(B) < s(G),
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we can now estimate as follows:

|R| ≤ |R′|+ |E(B)|

≤
(
s(G′)

2

)
+ 1 + |E(B)|

=

(
s(G) + 1− n(B)

2

)
+ 1 +

(
n(B)

2

)
=

(s(G) + 1− n(B))(s(G)− n(B))

2
+

n(B)(n(B)− 1)

2
+ 1

=

(
s(G)

2

)
+ 1 + (n(B)− s(G))(n(B)− 1)

≤
(
s(G)

2

)
+ 1 .

Case 2. v is simplicial in G′.
In this case s(G) = s(G′) − 1 + s(B), which means that s(G′) = s(G) − n(B) + 2. If
n(B) ≥ 3, then

|R| ≤ |R′|+ |E(B)|

=

(
s(G′)

2

)
+ 1 + |E(B)|

=

(
s(G) + 2− n(B)

2

)
+ 1 +

(
n(B)

2

)
=

(
s(G)

2

)
+ 1 + (s(G)− n(B))(2− n(B)) + 1 .

Since n(B) ≥ 3, we have 2 − n(B) < 0. Moreover, because s(G) − n(B) ≥ 0, we can
continue the above estimation with |R| <

(
s(G)
2

)
+ 2− 1, hence |R| ≤

(
s(G)
2

)
+ 1.

If n(B) = 2, it follows that s(G) = s(G′). Assume, without loss of generality, that
V (B) = {v, v′}. If further vv′ ̸∈ R, then it is obvious that |R| = |R′| ≤

(
s(G)
2

)
+ 1.

Hence we may assume that vv′ ∈ R. If k = 2, we see that s(G) = n(G)− 1 and we can
conclude that |R| ≤

(
s(G)
2

)
+ 1. If k ≥ 3, let v′′ be a neighbor of v in G′. Then there

exists one shortest v, x-path P in G′ such that |E(P ) ∩R′| = 2. Otherwise R′ ∪ {vv′′}
is an edge general position set of G′ contradicting the maximality of R′ in G′. Hence
we have |R| ≤ |R′| ≤

(
s(G)
2

)
+ 1, completing the proof of the upper bound.

The lower bound is sharp on trees. Indeed, if T is a tree, then gpe(T ) is the
number of leaves of T , and this is equal to s′(T ). To show that the upper bound is
sharp, consider a graph G obtained from the complete graph Kn, n ≥ 2, by attaching
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selecting k ∈ [n] vertices of Kn and add a separate pendant path (of arbitrary length)
to each of the selected vertices. (See Fig. 3, where the graph G′′ is such a graph.)
Then we infer that s(G) = n. Moreover, the edges of Kn together with an arbitrary
additional edge of G form a largest edge general position set of G. Indeed, this set is
clearly an edge general position set. To see that it is largest, we can argue that if an
edge general position set X of G contains at least two edges from E(G) \E(Kn), then
all but one of these edges can be replaced by a unique edge from E(Kn) \X keeping
the property of being an edge general position set. □

G′ G′′

Figure 3: Block graphs G′ and G′′ with gpe(G
′) = 9 and gpe(G

′′) = 7.

We follow with a large class of block graphs which attain the lower bound of The-
orem 3.2. It is defined as follows. We say that a graph G is a thick-leaved tree if G is
obtained from a tree T by a sequence of the following operations. Let v be a leaf of T
and let v′ be its unique neighbor. Then replace the vertex v by a complete graph K,
and replace the edge v′v by an edge between v′ and one vertex of K. See Fig. 3 where
G′ is a thick-leaved tree. Note that a thick-leaved tree is a block graph. Note further
that a pendant block of a thick-leaved tree is either a thick block or a K2. Moreover,
its simplicial blocks coincide with its pendant blocks.

Proposition 3.3 If G is a thick-leaved tree and B1, . . . , Bk are its simplicial blocks,
then

gpe(G) =
k∑

i=1

(
n(Bi)

2

)
.

Proof. By Theorem 3.2, we know that gpe(G) ≥ s′(G). Since s′(G) =
k∑

i=1

(
n(Bi)

2

)
, the

lower bound follows.

To prove that gpe(G) ≤
k∑

i=1

(
n(Bi)

2

)
, consider an arbitrary edge general position set

X of G and suppose e = uv ∈ X, where u and v are cut-vertices of G. Let Gu and
Gv be the two components of G − e, where u ∈ Gu and v ∈ Gv. Then it follows that
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X ∩E(Gu) = ∅ or X ∩E(Gv) = ∅. Indeed, otherwise there exist edges e′ ∈ X ∩E(Gu)
and e′′ ∈ X ∩ E(Gv), but then e′, e, and e′′ would lie on the same shortest path in G.
Hence we may assume, without loss of generality, that X ∩ E(Gu) = ∅. Let f be an
arbitrary simplicial edge of Gu. Note that f may be adjacent to e. Then it is clear
that (X \ {e}) ∪ {f} also is an edge general position set of G. Repeating this process
we end up with an edge general position set of G which contains only simplicial edges
and has the same cardinality as X. We conclude that |X| ≤ s′(G). □
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This work has been supported by TÜBİTAK and the Slovenian Research Agency un-
der grant numbers 122N184 and BI-TR/22-24-20, respectively. Sandi Klavžar also
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