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Abstract

The mixed metric dimension mdim(G) of a graph G is the cardinality of
a smallest set of vertices that (metrically) resolves each pair of elements from
V (G) ∪ E(G). We say that G is a max-mdim graph if mdim(G) = n(G).
It is proved that a max-mdim graph G with n(G) ≥ 7 contains a vertex of
degree at least 5. Using the strong product of graphs and amalgamations large
families of max-mdim graphs are constructed. The mixed metric dimension
of graphs with at least one universal vertex is determined. The mixed metric
dimension of graphs G with cut vertices is bounded from the above and the
mixed metric dimension of block graphs computed.
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1 Introduction

The metric dimension is an extremely prolific and at the same time interesting
area of graph theory, for several reasons. The main reason is certainly that the
theory is extremely useful in other areas of science, for instance in computer science,
chemistry, social networks, and biology, see respective papers [8, 4, 18, 17]. For more
information on the metric dimension and its applications see the recent survey [16].
On the other hand, various applications also give rise to certain modifications of the
basic concept, which leads to further intensive research to obtain additional insight
into the classical topic and between variants. For more information on this point
of view of the metric dimension see the other recent survey [7]. We also refer to a
recent application of the local metric dimension to delivery services from [6].

A very interesting version of the metric dimension was introduced in 2017 by
Kelenc, Kuziak, Taranenko, and Yero [5], namely mixed metric dimension, as follows.
Let G = (V (G), E(G)) be a graph. Then two elements x, y ∈ V (G) ∪ E(G) are
resolved by a vertex v ∈ V (G) if dG(x, v) 6= dG(y, v), where dG stands either for
the shortest-path distance between vertices, or the distance between an edge and
a vertex. The latter distance is, for an edge x = ww′ and a vertex v, defined by
dG(x, v) = min{dG(w, v), dG(w

′, v)}. A set of vertices W ⊂ V (G) is amixed resolving
set for G if any two elements (vertices or edges) x, y ∈ V (G)∪E(G) are resolved by
a vertex of W . We note that V (G) is always a mixed resolving set for G. A mixed
resolving set of the smallest cardinality is a mixed metric basis, its cardinality is
the mixed metric dimension mdim(G). After the seminal paper, the mixed metric
dimension was investigated in many papers, cf. [2, 9, 10, 11, 12, 14, 15].

Let G be a graph and x ∈ V (G). Then a neighbor y of x is a maximal neighbor
of x if y is adjacent to all neighbors of x. Denoting the order of G by n(G), we recall
the following result which is the main source of inspiration for this article.

Theorem 1.1 [5, Theorem 3.8] If G is a graph, then mdim(G) = n(G) if and only
if every vertex of G has a maximal neighbour.

Let us say that a graph G with mdim(G) = n(G) is a max-mdim graph. The-
orem 1.1 thus characterizes max-mdim graphs. The main purpose of this article is
to take a closer look at this class of graphs. We proceed as follows. In the rest of
the introduction some further definitions are listed and a result is stated to be used
later on. In the next section we prove that a max-mdim graph G with n(G) ≥ 7
contains a vertex of degree at least 5. This implies that if G is a chemical graph,
then mdim(G) ≤ n(G) − 1. Afterwards we apply the strong product and amalga-
mations to construct large families of max-mdim graphs. In particular, the strong
products Pn ⊠K2 are max-mdim graphs with ∆ = 5 where ∆ is the largest number
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of neighbors of a vertex in Pn ⊠ K2. We also determine the mixed metric dimen-
sion for graphs with universal vertices. In the concluding section we consider the
mixed metric dimension of graphs G with cut vertices and prove an upper bound
on their mixed metric dimension. As a consequence we determine the mixed metric
dimension of block graphs.

In this paper, we consider finite, simple and connected graphs. Let G be a graph.
The degree of v ∈ V (G) will be denoted by degG(v). The (open) neighborhood of
v will be denoted by NG(v). Then degG(v) = |NG(v)|. A pendant vertex of G is
a vertex with degree one. A vertex of degree n(G) − 1 is a universal vertex. The
minimum and the maximum degree of G are respectively denoted by δ(G) and ∆(G).
The number of cut vertices of a G is denoted by ζ(G) and the set of all cut vertices
by CV(G), so that |CV(G)| = ζ(G). A block of a graph is a nonseparable maximal
subgraph of the graph. A graph is 2-connected if it has no cut vertices. Note that if
G is 2-connected, then ζ(G) = 0. G is a block graph if each block of G is complete.
To conclude this article introduction, we state the following result which implicitly
follows from [5, Theorem 3.8].

Lemma 1.2 If W is a mixed resolving set for a graph G, and v ∈ V (G) has a
maximal neighbor, then v ∈ W .

2 Classes of max-mdim graphs and a maximum

degree bound

In this section we prove that max-mdim graphs necessarily contain a vertex of degree
at least 5 as soon as their order is at least 7. Then we use the strong product and
amalgamations to construct large families of max-mdim graphs. In particular, the
strong products Pn ⊠K2 are max-mdim graphs with ∆ = 5. We also determine the
mixed metric dimension for graphs with universal vertices.

Since every vertex of a complete graph has a maximal neighbour, by Theorem 1.1,
complete graphs are max-mdim graphs. Moreover, if G is obtained from a complete
graph by removing a matching, then G is also a max-mdim graph provided that it
contains at least two universal vertices. In particular, K4 − e is a max-mdim graph.
Another small example is shown in Fig 1.

In our first theorem we prove that a max-mdim graph contains a vertex of degree
at least 5 as soon as it is not very small.

Theorem 2.1 If G is a (connected) max-mdim graph with n(G) ≥ 7, then ∆(G) ≥
5.
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Figure 1: A max-mdim graph

Proof. Let G be a max-mdim graph with n(G) ≥ 7 and set ∆ = ∆(G) for the rest
of the proof.

Suppose ∆ = 2. If δ(G) = 1, the support vertex of a pendant vertex does
not admit a maximal neighbor. Otherwise G is a cycle which is not a max-mdim
graph. Suppose ∆ = 3. Let x be a vertex of G with deg(x) = 3 and let NG(x) =
{x1, x2, x3}. Without loss generality assume that x1 is a maximal neighbor of x, so
that x1x2, x1x3 ∈ E(G) and degG(x1) = 3. As n(G) ≥ 7 and G is connected, x2 or
x3 is also of degree 3. Assume without loss of generality that NG(x2) = {x, x1, x

′

2}.
Now, no matter which neighbor of x2 is its maximal neighbor, we get degG(x) ≥ 4
or degG(x1) ≥ 4, which is not possible.

Suppose ∆ = 4. Let x be a vertex of G with deg(x) = 4 and let y be its maximal
neighbor. Then NG(x) = NG(y), say NG(x) = NG(y) = {x1, x2, x3}. As n(G) ≥ 7,
there is another vertex of G, without loss of generality assume it is adjacent to x1,
denote it by x′

1. Consider now a maximal neighbor of x1. It cannot be x or y
because then x or y would be adjacent to x′

1 and hence x or y would be of degree at
least 5. For the same reason, a maximal neighbor of x1 cannot be x′

1. If there were
another neighbor x′′

1 of x1, it also cannot be a maximal neighbor of x1. So x1 must
have a maximal neighbor among the already introduced vertices and thus the fourth
neighbor of x1 is from {x2, x3}. If x1x3 ∈ E(G), then x3 is the only candidate for a
maximal neighbor of x1 and therefore x′

1x3 ∈ E(G), while if x1x2 ∈ E(G), then we
must have x′

1x2 ∈ E(G). But in both cases we get isomorphic graphs, see Fig. 2,
where the labeling presented is with respect to the second case.

y x2

x x1

x3 x′

1

Figure 2: The graph G6
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Hence, if ∆ = 4, then G necessary contains the graph G6 from Fig. 2 as an
induced subgraph. Since n(G) ≥ 7, there is another vertex, say x′′

1, and we may
assume without loss of generality that x′

1x
′′

1 ∈ E(G). We now infer that none of
the vertices x1, x2, x

′′

1, or a possible fourth new neighbor of x′

1 can be a maximal
neighbor of x′

1. So the only possibility is that x′

1x3 ∈ E(G) so that x3 would be a
maximal neighbor of x′

1. But then x3x1, x2x1 ∈ E(G) which means that x1 would
be of degree at least 5. �

Note that the proof of Theorem 2.1 implies that the graph G6 from Fig. 2 is the
unique max-mdim graph with n(G) = 6 and ∆(G) = 4.

In view of the applicability of the mixed metric dimension in chemistry [14], we
recall that a graph G is called a chemical graph if ∆(G) ≤ 4. Theorem 2.1 cleary
has the following application.

Corollary 2.2 If G is a chemical graph with n(G) ≥ 7, then mdim(G) ≤ n(G)−1.

The graphs in Figs. 1 and 2 motivate us to recall the definition of the strong
product G ⊠ H of graphs G and H . Its vertex set is V (G ⊠ H) = V (G) × V (H),
and vertices (g1, h1) and (g2, h2) are adjacent if h1 = h2 and g1 is adjacent to g2, or
g1 = g2 and h1 is adjacent to h2, or g1 is adjacent to g2 and h1 is adjacent to h2. A
standard reference for the strong product is the book [3]. The metric dimension of
strong products was investigated in [13], and the local metric dimension of strong
products in [1]. We now use this graph operation to significantly increase the variety
of max-mdim graphs.

Proposition 2.3 If G is a graph, then G⊠K2 is a max-mdim graph.

Proof. Let n = n(G), let V (G) = {v1, . . . , vn} and V (K2) = {0, 1}. Then by the
definition of the strong product, (vi, 1) is a maximal neighbor of (vi, 0), and (vi, 0)
is a maximal neighbor of (vi, 1) for each i ∈ [n]. Therefore, G⊠K2 is a max-mdim
graph by Theorem 1.1. �

The special case Pn⊠K2 of Proposition 2.3 gives an infinite family of max-mdim
graphs G with ∆(G) = 5. Hence Theorem 2.1 cannot be improved in general.

Another source for max-mdim graphs is the following construction. Let G and
H be disjoint graphs, eG ∈ E(G) and eH ∈ E(H). Then the graph A(G, eG;H, eH)
is obtained from the disjoint union of G and H by identifying the edges eG and eH .
(“A” stands here for an amalgamation.) Actually, this identification can be done in
two ways, but for our purposes any of these will do it.
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Proposition 2.4 If G and H are max-mdim graphs, and eG and eH are edges whose
endpoints are maximal neighbors for each other, then A(G, eG;H, eH) is a max-mdim
graph.

Proof. Set A = A(G, eG;H, eH). Let eG = gg′ and eH = hh′. If x ∈ V (G) \ {g, g′},
then its maximal neighbor in G is also a maximal neighbor of x in A. Similarly, a
maximal neighbor of y ∈ V (H) \ {h, h′} is a maximal neighbor of y in A. Finally,
g = h is a maximal neighbor of g′ = h′ in A, and g′ = h′ is a maximal neighbor of
g = h. �

Using Proposition 2.4, we can state the following result.

Theorem 2.5 If n ≥ t ≥ 5, then there exists a max-mdim graph G with n(G) = n
and ∆(G) = t.

Proof. Let Hr = Pr ⊠ K2, r ≥ 4, and let H−

r be the graph obtained from Hr by
removing a vertex of degree 3. Let Λk,r = A(Hr, e;Kk, f), where e is an edge of
Hr both of its endpoints are of degree 3, and f is an arbitrary (but fixed) edge of
Kk. The graph Λ−

k,r = A(H−

r , e;Kk, f) is defined analogously. See Fig. 3 where the

graphs H5, H
−

5 , Λ5,5, and Λ−

5,5 are presented.

(a)

(b)

(c)

(d)

Figure 3: Graphs H5 (a), H−

5 (b), Λ5,5 (c), and Λ−

5,5 (d)

By Proposition 2.4, each of the graphs Hr, H
−

r , Λk,r, and Λ−

k,r is a max-mdim
graph. If n− t+ 1 is even, then the graph Λt−1,n−t+3

2

is of maximum degree t, while

if n− t+ 1 is odd, the graph Λ−

t−1,n−t+4

2

is of maximum degree t.

To complete the argument note that n(Λt−1,n−t+3

2

) = (t− 1) + 2
(

n−t+3

2
− 1

)

= n

and n(Λ−

t−1,n−t+4

2

) = (t− 1) + 2
(

n−t+4

2
− 1

)

− 1 = n. �
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At the beginning of the section we have observed that a graph obtained from
a complete graph by removing a matching is a max-mdim graph provided that it
contains at least two universal vertices. This fact generalizes as follows.

Proposition 2.6 If G is a graph, then the following holds.

(i) If G has at least two universal vertices, then G is a max-mdim graph.

(ii) If G has exactly one universal vertex, then mdim(G) = n(G)− 1.

Proof. (i) Let x and y be arbitrary universal vertices of G. If u ∈ V (G) \ {x, y},
then x (or y for that matter) is a maximal neighbor of u. Moreover, x is a maximal
neighbor of y, and y is a maximal neighbor of x. By Theorem 1.1, G is a max-mdim
graph.

(ii) Assume now that x is the unique universal vertex of G. Let W be a mixed
resolving set for G. By Lemma 1.2 we get mdim(G) ≥ n(G) − 1. To complete the
argument we claim that V (G)\{x} is a mixed resolving set for G. To do this, let
{a, b} ⊆ V (G) ∪ E(G). If a ∈ V (G)\{x} and b = ax, then degG(a) ≤ n(G) − 2.
Thus V (G)\NG[a] 6= ∅ and 2 = dG(a, v) 6= dG(ax, v) = 1 for each v ∈ V (G)\NG[a].
Otherwise, there exists u ∈ V (G)\{x} such that dG(a, u) = 0 and dG(b, u) ≥ 1, or
dG(a, u) ≥ 1 and dG(b, u) = 0. Therefore, V (G)\{x} is a mixed resolving set for G.
�

3 Graphs with cut vertices

In this section we consider the mixed metric dimension of graphs G with cut vertices
and bound from the above their mixed metric dimension by n(G) − ζ(G). This of
course implies (as we already know) that no graph with a cut vertex is a max-mdim
graph. As a consequence we determine the mixed metric dimension of block graphs.

Theorem 3.1 If W is a mixed resolving set of a graph G, then the following holds.

(i) If v is a cut vertex of G, then W\{v} is a mixed resolving set of G.

(i) mdim(G) ≤ n− ζ(G). Moreover, equality holds if and only if each vertex from
V (G) \ CV(G) has a maximal neighbor in G.

Proof. (i) If v 6∈ W , then we have nothing to prove, hence assume in the remainder
that v ∈ W . Let G1, . . . , Gk, k ≥ 2, be the components of G−v, and for each i ∈ [k]
select a neighbor vi of v in Gi. Since v is a cut vertex, dG(vvi, x) = dG(v, x) for
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each x ∈ V (G)\V (Gi). As also dG(vvi, v) = dG(v, v) = 0, there must be a vertex in
W ∩ V (Gi) that distinguishes vvi and vi. For each i ∈ [k] select such a vertex wi.

Consider now two arbitrary elements a and b from V (G) ∩ E(G). Assume first
that a and b belong to some Gi. If dG(a, v) = dG(b, v), then a and b are necessarily
resolved by some vertex from W ∩V (Gi). On the other hand, if dG(a, v) 6= dG(b, v),
then a and b are resolved by each wj, where j 6= i. Assume next that a lies in Gi

and b belongs to Gj, where i 6= j. If dG(a, v) = dG(b, v), then a and b are resolved
by some vertex from W \ {v}. Assume that dG(a, v) 6= dG(b, v), let without loss of
generality dG(a, v) > dG(b, v) holds. Then we claim that a and b are resolved by wj .
Indeed, suppose on the contrary that dG(a, wj) = dG(b, wj). Then

dG(a, wj) = dG(a, v) + dG(v, wj) = dG(b, wj) ≤ dG(b, v) + dG(v, wj) ,

which in turn implies that dG(a, v) ≤ dG(b, v), a contradiction. We have thus proved
that each pair of elements from V (G)∩E(G) is resolved by some vertex fromW \{v},
hence (i) holds.

(ii) Since a mixed metric basis is a mixed resolving set of smallest cardinality, the
inequality mdim(G) ≤ n− ζ(G) follows immediately from (i). To prove the equality
part, suppose first that that each vertex from V (G)\CV(G) has a maximal neighbor.
Then Lemma 1.2 together with the already proved inequality mdim(G) ≤ n− ζ(G)
yields mdim(G) = n − ζ(G). Conversely, suppose that mdim(G) = n − ζ(G) and
suppose on the contrary that v ∈ V (G) \ CV(G) has no maximal neighbor in G.
Then we claim that V (G) \ (CV(G) ∪ {v}) is a mixed resolving set for G. Indeed,
we already know that V (G) \CV(G) is a a mixed resolving set, so the only problem
could be that a neighbor u of v would not be distinguished from the edge uv, because
G−v is a connected graph and by (i), V (G)\ (CV(G)∪{v}) is a mixed resolving set
for it. However, since v has no maximal neighbor, there exists x ∈ NG(v) such that
ux /∈ E(G). But then dG(x, uv) = 1 and dG(x, u) = 2. Hence V (G)\(CV(G)∪{v}) is
a mixed resolving set, a contradiction to the assumption that mdim(G) = n− ζ(G).
�

Clearly, no cut vertex can have a maximal neighbor. Hence the equality part of
Theorem 3.1(ii) can be rephrased by saying that mdim(G) = n(G) if and only if
every vertex of the graph G has a maximal neighbor, which is of course Theorem 1.1.
Theorem 3.1 also implies the following.

Corollary 3.2 If G is a block graph, then mdim(G) = n− ζ(G).

Proof. Just observe that if v ∈ V (G)\CV(G), then v is a simplicial vertex and hence
clearly has a maximal neighbor in G. The result then follows from Theorem 3.1(ii).
�
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Corollary 3.2 in turn implies that if T is a tree, then mdim(T ) is the number of
the leaves of T , a result first proved in [5, Theorem 4.3].
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[6] S. Klavžar, M. Tavakoli, Local metric dimension of graphs: Generalized hierar-
chical products and some applications, Appl. Math. Comp. 364 (2021) 124676.

9



[7] D. Kuziak, I.G. Yero, Metric dimension related parameters in graphs: A sur-
vey on combinatorial, computational and applied results, arXiv:2107.04877
[math.CO] (10 Jul 2021).

[8] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vision
Graphics Image Process. 25 (1984) 113–121.
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