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Abstract

The transmission TrG(u) of a vertex u of a connected graph G is the sum
of distances from u to all other vertices. G is a stepwise transmission irregular
(STI) graph if |TrG(u) − TrG(v)| = 1 holds for any edge uv ∈ E(G). In this
paper, generalized STI graphs are introduced as the graphs G such that for
some k ≥ 1 we have |TrG(u)−TrG(v)| = k for any edge uv of G. It is proved
that generalized STI graphs are bipartite and that as soon as the minimum
degree is at least 2, they are 2-edge connected. Among the trees, the only
generalized STI graphs are stars. The diameter of STI graphs is bounded and
extremal cases discussed. The Cartesian product operation is used to obtain
highly connected generalized STI graphs. Several families of generalized STI
graphs are constructed.

Key words: graph distance; transmission of vertex; stepwise transmission irregular
graph; Cartesian product of graphs;
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1 Introduction

The shortest-path distance dG(u, v) between vertices u and v of a graph G is the
minumum number of edges on a u, v-path. The transmission TrG(u) of a vertex
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u is the sum of distances between u and all the other vertices in G. Two early
papers in which the transmission was considered are [22,24], where the interest was
on maximal transmission in several classes of graphs and on the behaviour of the
transmission under removing a vertex. Transmission plays an important role in the
investigation of distance-based graph invariants such as the the Wiener index [18]
and the Mostar index [3]. In particular, several measures on transmission irregularity
were posed in [3]. The fact that the transmission is a fundamental concept in metric
graph theory and wider is demonstrated by the fact that it is also known by other
names such as the total distance of a vertex [11,17] and the status of a vertex [2,23].

Interesting graph families have recently been defined based on the transmission.
Transmission irregular graphs are the graphs in which any two different vertices
G have different transmissions. Although (or perhaps because) almost no graph is
transmission irregular [5], the search for such graphs has become of interest to several
groups of researchers, some of the selected papers on this topic are [7, 10, 12, 26]. If
we further require that the vertex transmissions of a graph form a sequence of
consecutive integers, then we speak of an interval transmission irregular graph [8].

Stepwise transmission irregular graphs, STI graphs for short, are the graphs in
which for every edge the transmissions of its endpoints differ by 1. STI graphs were
introduced in [13]. The research was continued in [9] where a conjecture from [13] was
confirmed that all graphs from a certain family are STI. Moreover, a computational
support was provided for another conjecture from [13] asserting that each STI graph
has girth 4. In general, however, the conjecture remains open. STI graphs which
are extremal with respect to different metric invariants such as the diameter, the
Wiener index, and the eccentricity index, were characterized in [6].

In this paper we extend STI graphs to generalized STI graphs as follows. If k is
an arbitrary positive integer, then we say that a graph is a k-STI graph if for every
edge the transmissions of its endpoints differ by k. If G is a k-STI graph for some
k, then we say that G is a generalized STI graph. A 2-STI graph and a 3-STI graph
are shown in Fig. 1, where next to each vertex its transmission is written.
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Figure 1: A 2-STI graph (left) and a 3-STI graph (right)
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We proceed as follows. After this paragraph, some definition and a useful result
needed are stated. In the next section several properties of generalized STI are
established. Among other results we prove that generalized STI graphs are bipartite,
and that as soon a generalized STI graphs has δ(G) ≥ 2, it is 2-edge connected. We
also bound the diameter of generalized STI graphs and deduce that among trees the
only generalized STI graphs are stars. In Section 3 we prove that if G and H have
order n, then G�H is an (nk)-STI graph if and only if G and H are k-STI graphs.
Finally, In Section 4, several families of generalized STI graphs are constructed.

The graphs considered here are simple and connected. Let G = (V (G), E(G))
be a graph. Then the order of G, the degree of a vertex v, and the minimum degree
of G are denoted by n(G), deg(v), and δ(G) respectively.

A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for each
pair of vertices u, v ∈ V (H). The eccentricity eccG(u) of a vertex u ∈ V (G) is the
maximum distance from u to other vertices of G. The diameter diam(G) of G is
the maximum eccentricity of vertices in G. For an edge e = uv ∈ E(G), let Nu(e)
denote the set of vertices of G that are closer to u than to v. Similarly Nv(e) is
defined. Let further nu(e) = |Nu(e)| and nv(e) = |Nv(e)|. If the edge e lies in
different graphs and we consider it as an edge of a graph G, then we will specify
this notation to nu(e|G) and nv(e|G). As already said, TrG(u) =

∑

x∈V (G) dG(u, x).

For an edge e = uv we will further use the notation I(e) = |TrG(u) − TrG(v)| and
call I(e) the transmission imbalance of the edge e.

The following useful result goes back to [14].

Theorem 1.1 If G is a bipartite graph and e = uv ∈ E(G), then TrG(u)−TrG(v) =
nv(e)− nu(e).

2 Properties of k-STI graphs

Consider the complete bipartite graph Kp,q, where p ≥ q ≥ 1. Then the transmis-
sions of the vertices from the two bipartition sets are q+2p and p+2q, respectively.
Hence, if p > q, then Kp,q is a (p − q)-STI graph. For a given k ≥ 1, the graphs
Kn+k,n, n ≥ 1, thus form an infinite family of k-STI graphs.

Our first result collects the structural properties of k-STI graphs. To this end,
recall that vertices u and v are twins if for every w ∈ V (G) \ {u, v} we have uw ∈
E(G) if and only if vw ∈ E(G). Note that in our definition of twin vertices we put
no condition whether u and v are adjacent. We say that G is twin-free, if it contains
no twins.

Theorem 2.1 If k ≥ 1 and G is a k-STI graph, then the following hold.
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(i) G is a bipartite, twin-free graph.

(ii) n(G) ≡ k (mod 2).

(iii) If δ(G) ≥ 2, then G is 2-edge connected.

(iv) If k ∈ [2], then G is either 2-connected or G ∈ {P3, K1,3}.

Proof. (i) Suppose on the contrary that G contains an odd cycle v0v1 . . . v2p. As G
is a k-STI graph, we have TrG(v0) ≡ TrG(v2) (mod 2k), . . ., TrG(v2p−2) ≡ TrG(v2p)
(mod 2k), so that also TrG(v0) ≡ TrG(v2p) (mod 2k). Since v0v2p ∈ E(G), this is
not possible. Hence G is bipartite. It is straightforward to see that if u and v are
twins, then TrG(u) = TrG(v), thus G must also be twin-free.

(ii) Let e = uv ∈ E(G), and assume without loss of generality that TrG(u) =
TrG(v) + k. As just proved in (i), G is bipartite, hence Theorem 1.1 yields that
TrG(u)− TrG(v) = k = nu(e)− nv(e). Using once more that G is bipartite we also
have nu(e) + nv(e) = n(G). It follows that n(G) + k = 2nu(e) which means that
n(G) ≡ k (mod 2).

(iii) Suppose on the contrary that e = uv is a bridge of G. Let G− e = G1 ∪G2,
where u ∈ V (G1) and v ∈ V (G2). We may assume without loss of generality
that n1 = n(G1) ≥ n2 = n(G2). By (i) we know that G is bipartite, hence using
Theorem 1.1 we have

k = I(uv) = nu(e)− nv(e) = n1 − n2 .

Since δ(G) ≥ 2 and so also degG(v) ≥ 2, there exists a vertex w ∈ V (G2) such that
e′ = vw ∈ E(G2). Then

I(vw) = nv(e
′)− nw(e

′) ≥ (n1 + 1)− (n2 − 1) = k + 2 ,

a contradiction.
(iv) In [13, Proposition 5] is was proved that all 1-STI graphs but the path P3

are 2-connected. Hence it remains to consider the case k = 2. It is straightforward
to check that K1,3 is the only 2-STI graph of order at most 4. Assume in the rest
that G is a 2-STI graph with n = n(G) ≥ 5. If G has a pendant edge uv then
2 = |TrG(u) − TrG(v)| = n − 2 which is not possible since n ≥ 5. Thus δ(G) ≥ 2.
Suppose on the contrary that G contains a cut vertex v. Let G1 be a component of
G− v with the minimum order n1 = n(G1). Notice that n ≥ 2n1 + 1. As δ(G) ≥ 2,
we have n1 ≥ 2, and let w, z ∈ V (G1) such that vw, zw ∈ E(G). By (i) G is bipartite
and hence z is not adjacent to v. Thus

2 = TrG(z)− TrG(w) ≥ (n− n1 + 1)− (n1 − 1) = n− 2n1 + 2 ≥ 3 .
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This contradiction completes the argument. �

The assertions (i) and (ii) of Proposition 2.1 respectively extend [13, Proposition
1] and [13, Proposition 2] which assert that STI graphs are bipartite graphs of odd
order. The two examples of Fig. 1 imply that the assertion (iii) cannot be extended
in general to ℓ-edge connectedness for ℓ ≥ 3, while the graphs Kk+1,1 demonstrate
that the assumption δ ≥ 2 cannot be avoided. Finally, (iv) also does not extend
to k ≥ 3. For instance, consider the graph obtained from two disjoint 4-cycles by
identifying a vertex from each of them. This graph is a 3-STI graph with a cut
vertex. For further such examples see Proposition 4.1.

We next show:

Theorem 2.2 If G is a k-STI graph, k ≥ 1, then k ≤ n(G) − 2. Moreover, the
equality holds if and only if G ∼= K1,k+1.

Proof. Let e = uv be an edge of G. Since G is bipartite by Theorem 2.1(i), we
may assume without loss of generality (having Theorem 1.1 in mind) that nu(e) >
nv(e), so that nu(e) − nv(e) = k holds. Since nu(e) + nv(e) = n(G), we infer that
n(G) = k + 2nv(e) ≥ k + 2 with equality holding if and only if nv(e) = 1. This
implies that v is a pendant vertex. If w is another vertex adjacent to u, then
|TrG(u) − TrG(w)| = k = n(G) − 2. Thus w is also a leaf. We conclude that all
vertices adjacent to u are pendant which in turn implies that G ∼= K1,k+1. �

Corollary 2.3 If k ≥ 1, then a tree T is a k-STI graph if and only if T ∼= K1,k+1.

Proof. If e = uv ∈ E(T ), where v is a leaf of T , then I(uv) = nu(e) − nv(e) =
n(T )− 2. The result now follows from Theorem 2.2. �

To conclude the section we bound the diameter of k-STI graphs as follows.

Theorem 2.4 If G is an k-STI graph of order n ≥ 5, then

2 ≤ diam(G) ≤
n+ k

2
− 1 .

Moreover, the left equality holds if and only if G ∼= Kn+k
2

,n−k
2

.

Proof. Since G is bipartite and nG) ≥ 5, we have diam(G) ≥ 2. Moreover,
diam(G) = 2 if and only if G is a complete bipartite graph Kp,q, p > q. But
then p + q = n and p − q = k which yields that G ∼= Kn+k

2
,n−k

2

. This proves the

lower bound and the equality case.
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To prove the upper bound, we claim that G contains an edge g = xy such that
nx(g) ≥ diam(G) + 1. Let P be a diametral path in G with v and w its endpoints.
Let v′ be the neighbor of v on P and let w′ be the neighbor of w on P . We may
assume that v′ 6= w′, for otherwise diam(G) = 2 and the upper bound clearly holds.
Let e = vv′ and f = ww′. If deg(v) = 1, then nv′(e) ≥ diam(G) + 1 because
n ≥ 5 and therefore G is not a path. Similarly, nw′(e) ≥ diam(G) + 1 holds if
deg(w) = 1. Hence assume that deg(v) ≥ 2 and deg(w) ≥ 2. Let w′′ be a neighbor
of w, w′′ 6= w′. Note that all the vertices of P but v lie in Nv′(e). Hence, if also
w′′ ∈ Nv′(e), then nv′(e) ≥ diam(G) + 1. Assume hence that w′′ /∈ Nv′(e). Then
dG(v

′, w′′) = diam(G) and dG(v, w
′′) = diam(G)−1. Let Q be a shortest v, w′′-path.

If v′ lies on Q, then Q contains another vertex which is not on P and lies in Nv′(e),
hence nw′(e) ≥ diam(G) + 1 as required. Assume next that the neighbor v′′ of v
on Q is different from v′. Moreover, all the vertices on Q lie in Nv(e). Now, since
G is not a cycle, there exists a vertex z /∈ V (P ) ∪ V (Q). As G is bipartite, either
z ∈ Nv(e) or z ∈ Nv(e). In either case, the existence of a required edge is proved.

Assume now without loss of generality that nv(e) ≥ diam(G) + 1. Since G is
an k-STI graph, we have |nv(e) − nv′(e)| = k and nv + nv′ = n. Thus diam(G) ≤
nv(e)− 1 ≤ n+k

2
− 1. �

In [6, Lemma 3.1] an infinite family of graphs was constructed for which the
upper bound in Theorem 2.4 is attained. It would be of interest to construct such
families for each k ≥ 2 (or prove they do not exist). A sporadic example for k = 3
is the graph obtained from two 4-cycles by identifying a vertex from one by a vertex
from the other.

3 Graph operations and k-STI graphs

Using Theorem 2.1 one can show that many local or global graph operations do not
preserve the property of being generalized STI. For instance, by Theorem 2.1(i),
the line graph L(G) of a generalized STI graph G is not such except L(P4) =
P3. Similarly, by checking the small cases and by applying Theorem 2.1(i), the
complement of a generalized STI graph G is never a generalized STI graph.

In the previous section we observed that the graphs Kn+k,n, n ≥ 1, are k-STI
graphs. To obtained more involved highly connected generalized STI graphs, the
Cartesian product can be used. Recall that the Cartesian product of two graphs G
and H , denoted G�H , is the graph with vertex set V (G�H) = V (G)×V (H) and
vertices (u, v) and (x, y) are adjacent in G�H if either u = x and vy ∈ E(H) or
v = y and ux ∈ E(G), see [15] for more information on this graph operation.
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Theorem 3.1 Let G and H be graphs with n(G) = n(H) = n and let k ≥ 1. Then
G�H is an (nk)-STI graph if and only if G and H are k-STI graphs.

Proof. From [4] we recall that if x ∈ V (G) and u ∈ V (H), then

TrG�H((x, u)) = TrG(x)n(H) + TrH(u)n(G) . (1)

Assume first that G�H is an nk-STI graph. If xy ∈ E(G) and u ∈ V (H), then
(x, u)(y, u) ∈ E(G�H) and thus (1) yields

nk = |TrG�H((x, u))− TrG�H((x, v))|

= |TrG(x)n+ TrH(u)n− TrG(y)n− TrH(u)n|

= n|TrG(x)− TrG(y)| ,

and hence |TrG(x)− TrG(y)| = k. IT follows that G is a k-STI graph. Analogously
we see that H is k-STI graph.

Conversely, assume that G and H are k-STI graphs. If (x, u) and (x, v) are
adjacent vertices in G�H , then applying (1) once more we have

|TrG�H(x, u)− TrG�H(x, v)| = |TrG(x)n + TrH(u)n− TrG(x)n− TrH(v)n

= n|TrH(u)− TrH(v)| = nk .

Analogously we get the same conclusion for the edges of G�H whose endvertices
differ in the first coordinate. We conclude that G�H is an nk-STI graph. �

If G and H are graphs on at least two vertices, then the following formula applies
to the connectivity the connectivity κ(G�H) of G�H :

κ(G�H) = min{κ(G)n(H), κ(H)n(G), δ(G) + δ(H)} .

The formula was announced in 1978 in [21]. However, neither its proof was provided
nor did it appear afterwards. After several partial results, the formula was proved
in 2008 by Špacapan in [25]. An appealing consequence of the formula is that
κ(G�H) ≥ κ(G)+κ(H) holds for any connected graphs G and H , cf. [15, Exercise
25.4]. Another consequence of the formula is that if G is a connected graph of order
at least 2 and G� ,n denotes the Cartesian product of n copies of G, then for any
n ≥ 2 we have κ(G� ,n) = δ(G� ,n) = n δ(G) [16]. These two consequences together
with Theorem 3.1 guarantee the existence of numerous highly connected generalized
STI graphs.
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4 Some families of generalized STI graphs

In this section, some families of generalized STI graphs are constructed.
For a graph G and a vertex u ∈ V (G), let rG(u) denote the graph obtained from

r disjoint copies of G by identifying a copy of u in each of the copies. In Fig. 2 the
graph rC2q(u) is schematically presented, where u is an arbitrary, fixed vertex of the
even cycle C2q.

u

Figure 2: The graph rC2q(u)

A graph G is transmission regular if all its vertices have the same transmission,
cf. [1, 19, 20]. Now we have:

Proposition 4.1 Let G be a bipartite, transmision regular graph, u ∈ V (G), and
r ≥ 2. Then the graph rG(u) is a ((r − 1)(n− 1))-STI graph.

Proof. let e = vw be an arbitrary edge of G, and consider it in a copy G′ of G in
rG(u). As G is bipartite, we may without loss of generality assume that dG′(v, u) <
dG′(w, u). Moreover G is transmission regular it follows that nv(e|G

′) = nw(e|G
′).

Hence

IrG(u)(vw) = |nv(e|G
′)− nw(e|G

′)|+ (n− 1)(r − 1) = (n− 1)(r − 1)

and we are done. �

If p, q ≥ 2, then let Γp,q be the graph with the vertex set V (Γp,q) = {vi, wi,j : i ∈
[2q], j ∈ [p]} and the edge set

E(Γp,q) ={viwi,j, viwi−1,j : 2 ≤ i ≤ 2q − 1, j ∈ [p]} ∪ {viwi,j : i ∈ {1, 2q}, j ∈ [p]}

∪ {v1w2q,j, v2qw2q−1,j : j ∈ [p]} .
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w1,1

w1,2

w1,p

v1

Figure 3: The graph Γp,q

To put it more informally, Γp,q is obtained from 2q copies of K2,p by attaching them
in circular manner, see Fig. 3.

Proposition 4.2 If p, q ≥ 2, then Γp,q is a (2p− 2)-STI graph.

Proof. By the symmetry of the graph Γp,q we infer that I(viwi,j) is independent of
the section of i and j. Hence it suffices to compute I(v1w1,1). Setting e = v1w1,1 we
have

Nv1(e) = {v1} ∪ {w1,j : 2 ≤ j ≤ p} ∪ {vi : q + 2 ≤ i ≤ 2q}

∪ {wi,j : q + 1 ≤ i ≤ 2q, j ∈ [p]} .

Therefore, nv1(e) = 1 + (p − 1) + (q − 1) + (pq) = pq + p + q − 1 and nw1,1
(e) =

2q(p+ 1)− (pq + p + q − 1) = q(p+ 1)− p + 1. By Theorem 1.1 we conclude that

|I(v1w1,1)| = |nv1 − nw1,1
|

= |(pq + p+ q − 1)− (pq + q − p + 1)|

= 2p− 2 ,

hence the assertion. �

If p, q ≥ 2, then let Hp,q be the graph with the vertex set

V (Hp,q) = {vi : i ∈ [2q]} ∪ {w2r−1,j : r ∈ [q], j ∈ [p]} ∪ {w2r,j : r ∈ [q], j ∈ [2]}
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and the edge set A ∪B ∪ C, where

A = {v1w2q,j : j ∈ [2]} ,

B = {v2r−1w2r−1,j : r ∈ [q], j ∈ [p]} ∪ {v2r−1w2r−2,j : 2 ≤ r ≤ q, j ∈ [2]} ,

C = {v2rw2r,j : r ∈ [q], j ∈ [2]} ∪ {v2rw2r−1,j : r ∈ [q], j ∈ [p]} .

Informatively, Hp,q has a cyclic structure where K2,p and K2,2 alternate, see Fig. 4.

v1

v2v2q

w1,1w2q,1

w1,pw2q,2

w2,1

w2,2

Figure 4: The graph Hp,q

Proposition 4.3 If p ≥ 2 and q ≥ 3 is odd, then Hp,q is a p-STI graph.

Proof. For the rest of the proof set n = n(Hp,q) = q(p + 4), Considering the
symmetry of Hp,q, it is enough to determine the transmission imbalance for the
edges e1 = v1w1,1 and f1 = v1w2q,1. For the edge e1 = v1w1,1 we have

Nw1,1
(e1) ={w1,1} ∪ {vi : 2 ≤ i ≤ q + 1} ∪ {wr,j : r even, 2 ≤ r ≤ q, j ∈ 2}

∪ {wr,j : r odd, 3 ≤ r ≤ q, j ∈ p} .

Therefore nw1,1
(e1) = (q + 1) + 2( q−1

2
) + p( q−1

2
) and hence

I(e1) = |n− 2nw1,1
(e)| = |q(p+ 4)− 2(q + 1 + (p+ 2)(

q − 1

2
))| = p .

For the edge f1 = v1w2q,1 we have

Nv1(f1) ={w2q,2} ∪ {vi : i ∈ [q]} ∪ {wr,j : r even, 2 ≤ r ≤ q − 1, j ∈ [2]}

∪ {wr,j : r odd, r ∈ [q], j ∈ [p]} .
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Thus nv1(f1) = 1 + q + 2 q−1
2

+ p q+1
2

= 2q − 1 + p q+1
2

and we obtain that

I(f1) = |n− 2nv1(f1)| = |q(p+ 4)− 2(2q − 1 + p
q + 1

2
)| = p .

We conclude that Hp,q is a p-STI graph. �

We add that if q is even, then the transmission imbalances of the edges of Hp,q

are 2p− 2 and 2.
The last class of graphs we present is defined as follows. If r ≥ 2 and n ≥ 5,

then let Gn,r be the graph with the vertex set {v1, v2, . . . , vn} and the edge set
{vivi+1 : i ∈ [n− r − 1]} ∪ {v1vj , vn−rvj : n− r + 1 ≤ j ≤ n}, see Fig. 5.

vn−r

vn−r+1

v1

vn

Figure 5: The graph Gn,r

Proposition 4.4 If n ≥ 5, r ≥ 2, and n ≡ r−1 (mod 2), then Gn,r is a (r−1)-STI
graph.

Proof. Let vivj be an edge ofG = Gn,r, where vi is closer to one of two vertices v1 and
vn−r than to vj , that is, min{dG(vi, v1), dG(vi, vn−r)} < min{dG(vj , v1), dG(vj, vn−r)}.
Note that the cycle C : v1v2 · · · vn−rvtv1, where n− r + 1 ≤ t ≤ vn, is an even cycle
and then n(vi|C) = n(vj|C). Moreover the other vertices not on the cycle C are
closer to vi than to vj . Thus

I(vivj) = |nvi − nvj | =

∣

∣

∣

∣

(

n− r + 1

2
+ r − 1

)

−
n− r + 1

2

∣

∣

∣

∣

= r − 1

and we are done. �

11



Acknowledgements
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