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Abstract

A subset S of vertices of a graph G is a general position set if no shortest
path in G contains three or more vertices of S. In this paper, we generalise a
problem of M. Gardner to graph theory by introducing the lower general posi-
tion number gp~ (G) of G, which is the number of vertices in a smallest maximal
general position set of G. We show that gp™ (G) = 2 if and only if G contains a
universal line and determine this number for several classes of graphs, including
Kneser graphs K (n,2), line graphs of complete graphs, and Cartesian and di-
rect products of two complete graphs. We also prove several realisation results
involving the lower general position number, the general position number and
the geodetic number, and compare it with the lower version of the monophonic
position number. We provide a sharp upper bound on the size of graphs with
given lower general position number. Finally we demonstrate that the decision
version of the lower general position problem is NP-complete.
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1 Introduction

The general position problem originated in a puzzle by Dudeney in his book [16]. Tt
can be stated as follows: what is the largest number of pawns that can be placed on
an n x n chessboard such that no three pawns lie on a straight line? This geometrical
problem is also known as the no-three-in-line problem. An obvious upper bound is
2n, which is achieved for n < 46. However, for larger n the problem remains open.
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Erdés showed how to place n — o(n) pawns on the chessboard with no three in line

(see [35]), which was subsequently improved by Hall et al. to % — o(n) pawns [21].

It is conjectured that the true answer is 72 — o(n) in [20] (see [33] for a correction).
The problem has been called ‘one of the oldest and most extensively studied geometric

questions concerning lattice points’ [7].

The general position problem was generalised to the setting of graph theory inde-
pendently in [9] 28], 29] as follows.

Definition 1.1. A set S C V(G) is in general position if no shortest path in G contains
three or more vertices of S; such a set is a general position set. The general position
number gp(G) of G is the number of vertices in a largest general position set. The
general position problem asks for a largest general position set in a given graph.

Papers in this very active field of research include [19] 27, [31), 32}, 38, 140} 42]. Several
variations of the problem have been considered, including using the Steiner distance
instead of the regular graph distance [24], or confining attention to shortest paths of
bounded length [26]. Games involving general position sets have also been treated
n [10] and [25], a dynamic variant of the problem was considered in [23] and a local
version of general position sets was studied in [37].

The edge version of the general position problem has also been recently studied
n [30]. A related problem is the monophonic position problem obtained by replacing
‘shortest path’ in the general position problem by ‘induced path’, see [39]. Another
variant of the general position problem is the mutual visibility problem that asks for
a largest set of vertices S, such that for each pair of vertices in S there is a shortest
path connecting them that does not contain a third vertex of S, see [15].

A new slant on this old problem was given by Martin Gardner (the modern day
Dudeney), who asked the following question in his column in Scientific American:
‘Instead of asking for the maximum number of counters that can be put on an order-
n board, no three in line, let us ask for the minimum that can be placed such that
adding one more counter on any vacant cell will produce three in line’ [I7]. If a greedy
algorithm is used to produce a general position set, then the answer to Gardner’s
problem represents the worst-case output. This problem was treated in [3, 4, [14]. The
most recent of these articles, [4], refers to this problem as the geometric domination
problem and gives a lower bound of Q(n%) and an upper bound of 2 {gw foran n x n
grid.

In this paper we extend Gardner’s problem to graph theory by asking for the
smallest maximal general position sets, i.e. the smallest general position sets that
cannot be extended without creating three in a line.

Definition 1.2. A general position set S in a graph G is maximal if there is no general
position set of G containing S as a proper subset. The lower general position number
gp~ (G) of G is the number of vertices in a smallest maximal general position set of
G, also called a lower general position set.

An example of these concepts in the context of the Petersen graph P can be
seen in Fig. [l From [29] we know that gp(P) = 6; the set of white vertices in the
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figure represents a largest general position set, whilst the grey vertices form a smallest
maximal general position set, so that gp~(P) = 4.

Since any vertex of a (non-trivial) graph G is not a maximal general position set,
for any graph we have:

2<gp (G) < gp(G). (1)

It is not difficult to see that for any tree T' (or, more generally, any graph with a

bridge) we have gp~ (7') = 2, so it is possible to have equality with the lower bound

in Inequality [Il In Section 2] we will take a closer look at the graphs G which satisfy

gp~ (G) = 2. The upper bound in Inequality [Ilis also tight, since any complete graph
K, satisfies gp™ (K,) = n = gp(K,).

Figure 1: The Petersen graph with a maximum general position set (white) and a
lower general position set (grey)

We now provide some necessary definitions. All graphs considered in this paper are
finite, undirected and simple. The order and the size of a graph G will be denoted by
n(G) and m(G), respectively. We will write u ~ v if vertices u and v are adjacent. The
subgraph of G induced by a subset S C V(G) will be denoted by G[S]. The distance
dg(u,v) between vertices u and v of a graph G is the length of a shortest u, v-path.
The interval I[u,v] of u and v is the set of vertices that lie on at least one shortest
u,v-path. The geodetic closure I[S] of a set S C V(G) is the union |, ,cg I[u, v] and
S is geodetic if 1[S] = V(G). The geodetic number g(G) of G is the number of vertices
in a smallest geodetic set of G, see [§].

The cligue number w(G) is the number of vertices in a largest clique (i.e. set of
mutually adjacent vertices) of G, whilst w™(G) will represent the number of vertices in
a smallest maximal clique of G. A subset S C V(G) is an independent union of cliques
if each component of G[S] is a clique; the number of vertices in a largest independent
union of cliques is the independent union of cliques number o (G), whereas we will
denote the number of vertices in a smallest maximal independent union of at least two
cliques by o (G) (for convenience we do not count a clique as an independent union
of cliques here). The join of graphs G and H will be denoted by GV H. We also adopt
the convention that [n] stands for the set {1,...,n}.

The plan of this paper is as follows. In Section Pl we consider graphs having
lower general position number equal to two. In particular, we show that these graphs
coincide with the graphs that contain a universal line. In Section [3] we prove several
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realisation results involving the lower general position number, the general position
number and the geodetic number. We also give an upper bound on the size of a graph
with given lower general position number and characterise the graphs which attain
equality. In Section ] we prove that the decision version of the lower general position
problem is NP-complete. In Section [5l we determine the lower general position number
of the Kneser graphs K(n,2), the line graphs of complete graphs, and the Cartesian
and direct products of two complete graphs. In Section [0l we relate the lower general
position number to the lower monophonic position number. Finally in Section [7] we
suggest several avenues for further research.

2 Graphs G with gp™(G) =2

Based on the trivial lower bound in Inequality (), it is natural (as with many other
graph parameters) to consider characterising the family of graphs achieving equality.
However, as we now show, this appears to be a very challenging problem. To see
this, let us first invoke the following concept from the theory of metric spaces. Let
M = (X,dy) be an arbitrary metric space and z,y € X. Then the line Ly (z,y)
induced by z and y is the following set of points from M:

{ze€ X : dy(z,y) =du(x,z) +dy(z,y) or dy(x,y) = |dy(z, 2) — da(2,y)]}-

The line Ly (z,y) is universal if it contains the whole set X. Considering a graph G
as a metric space, these definitions transfer directly to G.

Let ¢(M) denote the number of distinct lines in M. Then Chen and Chvéatal [12]
conjectured that if /(M) < |X|, then M has a universal line. The problem remains
open; a summary of what is known about it up to 2018 can be found in [13]. For the
case of graphs, the Chen-Chvatal Conjecture has been verified in particular for a cer-
tain class of graphs containing both chordal graphs and distance-hereditary graphs [2],
for (q,q — 4)-graphs [36], and for graphs with no induced house or induced cycle of
length at least 5 [1J.

Closely related to the Chen-Chvétal Conjecture is an open problem [34, Problem
1.2] to determine necessary and sufficient conditions for a graph to have a universal
line. It turns out that the existence of a universal line in G is equivalent to gp~(G) = 2.

Proposition 2.1. Let G be a graph. Then gp~ (G) = 2 if and only if G has a universal
line.

Proof. Suppose first that gp™(G) = 2 and let {u, v} be a maximal general position set
of G. Then for every w € V(G) \ {u, v}, the triple of vertices u, v, w lies on a shortest
path. That is, one of the following equations applies: dg(u,v) = dg(u, w) + de(w,v),
dg(u,w) = dg(u,v) + dg(v,w), dg(v,w) = dg(v,u) + dg(u,w). This in turn implies
that Lg(u,v) = V(G), hence G has a universal line. Conversely, if G has a universal
line L (u,v), then by the same argument, {u, v} is a maximal general position set of
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Therefore the problem of the existence of universal lines considered in [34] is equiv-
alent to efficiently characterising connected graphs with lower general position number
2. Simple sufficient conditions for gp~(G) = 2 to hold are: (i) having a bridge; (ii)
g(G) = 2; (iii) being bipartite, see [6]. If G is a block graph, then gp=(G) = 2 if
and only if K, is a block of G, see [34, Corollary 3.4]. In the same paper, Rodriguez-
Veldzquez characterised Cartesian product graphs having a universal line. (For the
definition of the Cartesian product and its properties we refer to the book [22].) In
view of Proposition 2.] his result can be reformulated as follows.

Theorem 2.2. [34 Theorem 4.1] Let G and H be non-trivial, connected graphs. Then
gp (G O H) =2 if and only if one of the following conditions holds.

(i) G or H has a mazimal general position set consisting of two adjacent vertices.

(i) g(G) =2 and g(H) = 2.

Other graphs with lower general position number 2 are: (i) graphs formed from Cy
and any graph H by fixing a vertex u € V(C}) and joining it to at least one vertex
in every component of H and (ii) any complete multipartite graph with a part of
cardinality 2, cf. Proposition 23|(ii).

To conclude this section we determine the cycles and complete multipartite graphs
that have lower general position number equal to 2.

Proposition 2.3. (i) If n > 3, then

. n even,
3; n odd.

(it) Ift > 2 and ry > 1y > - > 1, > 2, then
gp_(Krl,...,rt) — Hlin{t, T‘t}.

Proof. (i) If n is even, then C,, is bipartite and hence gp~(C,,) = 2. Now let n be odd.
Identify the vertex set of C,, with Z,, in the natural manner. As gp(C,) = 3 for n =3
and n > 5, we have 2 < gp~(G) < 3 and the result will follow if we show that any set
of two vertices of (), can be extended to form a general position set of three vertices.
Without loss of generality, let this set be S = {0,7}, where i < n —i. Then it is easily
checked that if 7 is odd, then the set {0, 1, "T“} is in general position and if ¢ is even,

then {0,4, =1} is in general position.

(ii) Each of the partite sets of the complete multipartite graph is a maximal general
position set, so it follows that gp™ (K, ) < r¢. Suppose that S is a maximal general
position set containing vertices from different partite sets. Then S can contain at most
one vertex from each of the ¢ parts; hence S induces a clique and by maximality S
must contain ¢ vertices, one from each part. Hence gp~ (K, . ,,) = min{t, r:}. O



3 Realisation results

In this section we consider the relationship between the lower general position number,
the geodetic number and the general position number. We begin by determining the
lower general position number of the join of two graphs. Recall our convention that
when finding the smallest number of vertices in a maximal independent union of cliques
a” (G) we do not allow unions consisting of one clique.

Lemma 3.1. If G and H are graphs, then

gp (GV H)=min{w™ (G) +w (H),a* (G),a” (H)}.

Proof. Let S be a smallest maximal general position set of G V H. Suppose that S
contains vertices of both G and H; then both SN V(G) and SNV (H) must induce
cliques, since if u,u’ € V(G),v € V(H) and u ¢ «/, then u,v,u would be a path of
length two contained in S. Conversely, any such set is a clique in G V H that cannot
be extended to a larger general position set of GV H. Hence |S| < w™(G) +w™ (H).

Suppose now that SNV (H) = @ (the case SNV (G) = 0 is symmetrical). As all
vertices of V(G) are at distance at most two in G V H, S is in general position in
G V H if and only if it is an independent union of cliques. However, S will only be a
maximal general position set if it is a maximal independent union of at least two cliques
(otherwise we could extend S by adding any vertex from H). Thus gp~ (G V H) <
a¥ (G).

The result now follows upon taking the minimum amongst these forms of maximal
general position sets in GV H. U

We also use the following known lemma in our comparison of the geodetic number
and lower general position number. Recall that a vertex of a graph is simplicial if its
neighbours induce a complete subgraph.

Lemma 3.2. [11l Theorem A| Every geodetic set of G contains all simplicial vertices

of G.

Theorem 3.3. Let a > 2 and b > 2 be integers. Then there is a graph G with
gp (G)=a and g(G) =b if and only if 2<a <bord <b<a.

Proof. 1f a < b, then by Lemma [B1] the graph bK; V K, 1 has gp~ (bK; V K,_1) = a.
Moreover, by Lemma B.2] any geodetic set of bK; V K, 1 contains the b vertices of
bK7; since this set is geodetic, we obtain g(bK; V K,_1) = b. We can thus assume in
the remainder of the proof that b < a.

If b = g(G) = 2, then G has a universal line and hence gp~(G) = 2 by Proposi-
tion 2Tl Suppose that g(G) = 3 and let S = {x,y, z} be a geodetic set with |S| = 3,
so that I[z,y] U Iz, z] U I[y,z] = V(G). Suppose that S is not in general position,
say y lies on a shortest z, z-path P in G. Then we have I[x,y] U I[y, z] C I[z, 2], so
that {z, 2z} would be a geodetic set, a contradiction, implying that G would have a
maximal general position set of order at most three. Thus we cannot have b < a if

be {23}



Now we deal with the remaining case 4 < b < a. Let X1, X5, Y be cliques of orders
|1 X1| =Xz =a—2>2and |[Y|=0—3>1. Let 1 € X; and 5 € X5 be fixed. We
form a graph H(a,b) from these cliques as follows. Add all possible edges between X
and Y, join x1 to every vertex of X, and x5 to every vertex of X;. Add a new vertex w
and join it to every vertex of Xs. Finally we construct G(a, b) by adding a vertex z to
H(a,b) and joining it to every other vertex, i.e. G(a,b) = H(a,b) V K;. An example
is given in Fig.

(X | [ y X

>N\

N\

avay
N
-

Figure 2: The graph G(7,6).

Let S be a smallest geodetic set of G(a,b). Now each vertex in Y U {w} is a
simplicial vertex, so Lemma yields Y U{w} C S, and hence g(G(a,b)) > b — 2.
Furthermore Y U {z1, z9, w} is easily seen to be a geodetic set, so that g(G(a,b)) < b,
whilst if we add a single vertex to Y U {w} there is no way of including both x; and

xy in I[S]. Tt follows that g(G(a,b)) = b.

For the lower general position number, Lemma Bl implies that gp~(G(a,b)) =
min{w™(H(a,b)) + 1,a* (H(a,b))}. The set Xy U {w} induces a smallest maximal
clique of H(a,b), hence w™(H(a,b)) + 1 = a. To calculate o (H(a,b)), let S be a
smallest maximal independent union of at least two cliques. Suppose that z; € S.
Observe that in this case S cannot contain vertices from both (X7 \ {z1}) UY U {w}
and X5. Hence if S contains a vertex of X5, then S would be a clique, a contradiction,
so it follows that S C X; UY U{w}; as X; UY U{w} is an independent union of
cliques, we would have S = X; UY U {w} and |S| = a+ b —4 > a. Thus we can
assume that z; € S and similarly xo & S.

Thus S C (X; U Xy UY U{w}) \ {z1, 22}, from which it follows that S = (X; U
XoUY UA{w}) \ {z1,22} and |S| = 2a + b —8 > a. Hence o* (H(a,b)) > a and
gp~ (G(a,b)) = a. 0

Note that, by Proposition 2:3[(ii), for any 2 < a < b the complete multipartite

graph with one part of cardinality b and a — 1 parts of cardinality a has gp~(G) = a,
gp(G) = b and order b+ (a — 1)a. Also the graph bK; V K, 1 from the proof of
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Theorem B3 has gp~ (bK; V K, 1) = a and gp(bK; V K,_1) = b, but a smaller order
b+ a— 1. For a = b, trivially K, is the smallest possible such graph. We next show
that for 2 < a < b a smaller graph that fulfills the same conditions can be constructed.

Theorem 3.4. For any 2 < a < b there is a graph G with gp~ (G) = a, gp(G) = b,
and n(G) = b+ max{l,a — [2|}.
Proof. Let G be the join of K. U K;_,.. with K, .. Choose ¢ such that a < b —
a + 2c¢ < b; then gp~(G) = a and gp(G) = b. The smallest possible choice of ¢ is
max{1,a — [2]}. O
Finding the smallest graph with gp~(G) = a and gp(G) = b remains an open
problem. To conclude this section we prove the following bound on the size of a graph
with given lower general position number.

Theorem 3.5. If G is a graph with gp~ (G) =k > 2 and n(G) > 2k — 1, then

m(G) < (Z) k1.

Moreover, the unique graph that meets this bound is formed from a clique by deleting
k — 1 edges adjacent to a fixed vertex.

Proof. Let n > 2k — 1 and take a clique K,,. Choose a set S of k vertices of K, and
for some vertex u € S delete all edges between u and S\ {u} to form the graph G(k).
We claim that gp~ (G(k)) = k. Let S’ be an arbitrary maximal general position set of
G(k). Ifu ¢ S', then S” must be a clique with order n—1 > k, so suppose that u € 5’.
If (S\{u})nS" =0, then S" is the clique induced by G(k) \ (S'\ {u}), which contains
n—k+1>k vertices. If S’ contains a vertex v of S\ {u}, then SNV (G(k)\ S) =0,
as any vertex w € G(k)\ S is contained in a shortest path u,w,v. The set S is clearly
in general position, so it follows that gp~(G(k)) = k.

In fact we can show that this is the only graph with size (g) — k41 that has lower
general position number k. Assume that G is any such graph and let M be the set of
k — 1 edges deleted from K, to obtain G, i.e. G = K,, \ M. Let H be the subgraph
of K, induced by M. Also, let K be the set of vertices incident to the edges of M.
Observe that |K| < 2k—2. If H is connected, then |K| < k, and if H is not connected,
then there is a component of H with order at most k — 1; in either case, let H' be a
component of H with minimum order. Let u and v be two vertices of H’, so that u
and v are non-adjacent in G.

Let S be a maximal general position set of G containing {u,v}. S cannot contain
any vertex outside H', so H must be connected, for otherwise we have exhibited a
maximal general position set of G of order at most k—1. As gp~(G) = k and |K| < k,
we must have that |K| =k, S = K and H is a tree. If the diameter of H is at least
three, then there would be a path ug, uq,us,uz in H, so that wug,us,u; would be a
shortest path in G contained in S, which is impossible. We conclude that H must be
a star.



Suppose now that there is a graph G with m(G) > (}) — k + 2 and gp~ (G) = k.
Hence G can be formed by deleting a set A of at most k& — 2 edges from K,,. Let u ~ v
be any edge of A. Let A; be the set of edges of A incident with u (apart from u ~ v)
and Ay be the set of edges of A incident with v (again apart from u ~ v). Let By
be the set of endvertices of the edges in A; apart from wu, and let By be the set of
endvertices of the edges of Ay apart from v. There can be overlap between the sets B;
and By, but as we have deleted at most k — 2 edges we have |B; U By U{u,v}| < k—1.
Let S be a maximal general position set of G containing the set {u,v}. S cannot
contain any vertex of V(G)\ (B1UByU{u,v}) and so S C By U ByU{u,v}; this shows
that G' contains a maximal general position set containing at most k — 1 vertices, a
contradiction. O

4 Computational complexity

In Section Pl we have seen that gp~(G) = 2 if and only if G has a universal line.
The problem of characterising graphs that have universal lines is difficult and was
extensively investigated in [34]. In this section we complement these investigations
by proving that the lower general position problem is NP-complete. To this end, we
formally define the decision version of the problem:

Definition 4.1. LOWER GENERAL POSITION
INSTANCE: A graph G, a positive integer k < n(G).
QUESTION: Is there a lower general position set S for G such that |S| < k?

The problem is hard to solve, as shown by the following theorem.

Theorem 4.2. The LOWER GENERAL POSITION problem is NP-complete.

Proof. Let us observe that LOWER GENERAL POSITION is in NP since, given a set of
vertices .S, it can be tested in polynomial time if (1) S is in general position, (2) if it
is maximal and (3) if its cardinality is less than a given integer.

We prove that INDEPENDENT DOMINATING SET polynomially reduces to LOWER
GENERAL POSITION. Recalling that a dominating set of a graph G is a subset V' of
V(G) such that for all w € V(G) \ V' there is a v € V' such that uwv € E(G), we
provide a formal definition of the decision version of the problem:

An instance of INDEPENDENT DOMINATING SET is given by a graph G and
a positive integer k < n(G). The INDEPENDENT DOMINATING SET prob-
lem asks whether G' contains a dominating set K C V(G), of cardinality k
or less, which is also independent.

The NP-completeness of INDEPENDENT DOMINATING SET is reported in [I8]. We
polynomially transform an instance (G, k) of INDEPENDENT DOMINATING SET to
an instance (G’, k') of LOWER GENERAL POSITION. In particular, given (G, k) we
must construct a graph G’ and a positive integer &’ such that G has an independent



dominating set of cardinality & or less if and only if G’ has a lower general position
set of cardinality &’ or less.

Given an instance (G, k), the graph G’ is built as follows:
G = (@ U Kn(g)+1) VvV Ky

The graph G is thus the join of graphs G” = G U K,()4+1 and Ki, where G” is the
disjoint union of the complement of G and a clique graph with n(G)+1 vertices. Then
the construction of G’ can be achieved in polynomial time. As for &', we set k' = k+1.

We have to show that an instance (G, k) of INDEPENDENT DOMINATING SET has a
positive answer if and only if (G’, k'), the corresponding instance of LOWER GENERAL
PoSITION, has a positive answer.

By Lemma [B.1] the lower general position number of G’ is given by
gp (G') = min{w ™ (GU K, g)41) + w (K1), 0 (GU Kpy)11), o (K1)}

Considering that w™(K;) = 1, that o™ (GU Ky g)1+1) > w (GU Ky)+1) + 1 and that
a® (Ky) is not defined, we have that

gp (€)= w (G U Kyayr) +1 = w (G) + 1. (2)

Moreover, observe that a smallest maximal clique in a given graph is an independent
dominating set in the complement graph. Indeed, a clique is an independent set in the
complement graph and, as the clique is maximal, any vertex not in the independent
set of the complement graph must be adjacent to a vertex of the independent set, so
the independent set is also dominating.

Assume that the instance (G, k) of INDEPENDENT DOMINATING SET has a positive
answer. Then in G there is a maximal clique having cardinality at most k. Since
k < n(G), then w™ (G U K,g)+1) < k and hence by @), gp™ (G') = w™ (GU Ky g)41) +
1 <k+1=Fk, which in turn means that (G’, k'), the instance of LOWER GENERAL
PoSITION, has a positive answer.

Assume now that there is a maximal general position set S in G’ with cardinality
K’ or less, that is |S| < k’. By (@), if S contains a vertex in K41, then, as |S] is
maximal, it must contain all the vertices in K,(g)41 and at least one vertex in GV K.
So the cardinality of S is at least n(G) + 2 > k' + 1, a contradiction. Thus S does
not contain vertices in K, )4+1. It now follows from Lemma [B.1] that S consists of
the vertex of K; and a smallest maximal clique in G, implying that there exists an
independent dominating set in G of cardinality |S| — 1 < k. O

5 Lower general position number of some families

In this section we determine the lower general position number of the Kneser graphs
K (n,2), the line graphs of complete graphs, and the Cartesian and direct products of
two complete graphs.
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Recall that the Kneser graph K(n,2) is the graph with vertex set consisting of all
subsets of cardinality two of the set [n], with an edge between two such subsets if and
only if they are disjoint.

Theorem 5.1. Ifn > 3, then

3; ne{3,6,7},
_ 4; n€{5,8,9},
K(n,2)) =
gp (K(n.2)) 5, ne€{10,11},
6; n=4orn>12.

Proof. The result is trivial for n = 3,4. The case n = 5 is the Petersen graph. Hence
we can assume that n > 6. We divide our argument into three cases depending on
the structure of the general position set. By the result of [5], any general position
set is either a clique or an independent union of cliques (with a couple of additional
technical properties). Let K be any maximal general position set of K(n,2).

Case 1: The subgraph induced by K contains a clique W of order > 3.

Suppose in this case that the subgraph induced by K contains a component W' apart
from W and let {a, b} be a vertex of W’. Without loss of generality, let three vertices
of W be {1,2}, {3,4} and {5,6}. Then the set {a, b}, identifying a vertex of W’ must
have a non-empty intersection with each of these sets {1,2}, {3,4} and {5, 6}, which
is impossible. Thus K consists of a single clique W, which is maximal if and only if it

contains bJ sets. Thus in this case the maximal general position sets have order bJ

Case 2: K is an independent set.

As K(n,2) has diameter two any independent set is in general position. By the Erdés-
Ko-Rado Theorem the independence number of K (n,2) isn—1. Let {1, 2} be a vertex
of K. Any set containing only vertices of the form {1,¢} is independent (similarly for
a set containing only vertices of the form {2,i}), but the only maximal such set has
cardinality n — 1, as given by the Erdds-Ko-Rado Theorem, which is greater than
the maximal general position sets considered in Case 1 (unless n = 5, in which case
K(5,2) is triangle-free and an independent set of order 4 is best possible). The only
other maximal independent sets of K (n,2) have the structure {{1,2},{1,3},{2,3}};
However, this is not a maximal general position set, as the set {1,4} can be added to
make a larger general position set.

Case 3: K induces a clique K.

Without loss of generality, assume that the clique in question is {{1,2},{3,4}}. Then
any other vertex of K must be a subset of [4]. The set of 6 subsets of cardinality 2
of [4] does form a maximal general position set isomorphic to 3K5. In this case the
order of the maximal general position set is thus 6; this is a smallest possible maximal
general position set for n > 12. O

We continue with the line graphs of complete graphs, denoted by L(K,).
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Theorem 5.2. Ifn > 2, then

n even,

(LK) =4 2
gp ( ( )) {n+3. n odd.

2

Proof. The case n = 2 is trivial, so we assume that n > 3. Let S be a lower general
position set of L(K,). It is shown in [19] that the vertices of a maximal general position
set of L(K,,) correspond to edges in K, that induce a disjoint union of triangles and
stars containing either one or at least three edges. Let r be the number of triangles
in S. Observe that if n is even, then a perfect matching in K, is a maximal general
position set, whilst if n is odd the disjoint union of a triangle and a matching of
cardinality 2 is a maximal general position set. This shows that gp~(L(K,)) < 2 if

2

n is even and gp~ (L(K,)) < 252 if n is odd.

Suppose that each edge of K, in S lies in a triangle (in particular this requires
3|n); then |S| = n, which is larger than the maximal general position sets previously
constructed. Thus, we can assume that S contains at least one star. Suppose that
there is a vertex of K, that is not covered by an edge of S; since this vertex could be
joined to the centre of a star to form a larger general position set, this would contradict
the maximality of S. It follows that |S| = n —r. If n is even, it follows that r < %,
so that |S| > §. Now suppose that n is odd. If S contains no triangles, then since
S cannot contain an induced star of order 3 in K,,, S must contain a star on at least
five vertices of K,,, in which case r < "Tf?’ and |S| > "TJF?’ Thus we can assume that S
contains a triangle, in which case we again have r < "T_?’ O

We finally consider the Cartesian product of two complete graphs K, and K, with
r,s > 2.

Theorem 5.3. Ifr,s > 2, then
gp (K, O K,) = min{r, s}.

Proof. Since the vertices of any copy of K, or K, in K, [J K, form a maximal general
position set, trivially gp~ (K, O K,) < min{r, s}. Now, assume that there is a maximal
general position set S of K, [0 K of cardinality smaller than min{r,s}. First note
that S cannot be a proper subset of the vertex set of any copy of K, or of K,. Also,
there must exist a copy of K,, say Kﬁl), and a copy of K,, say WK, which do not
contain any vertex of S. This immediately allows us to observe that, independently
of the structure of S, the unique vertex of K, [J K, belonging to both copies K
and U)K, together with the set S would also form a general position set of K, O K.
Therefore, S is not maximal, which leads to the desired equality. O

Theorem [.3] should be compared with [19, Theorem 3.2] which asserts that if
r,s > 2, then gp(K, O K) =r+s— 2.

Continuing the theme of products of complete graphs, the direct product is also
of interest. Given two graphs G and H, the direct product of G and H is the graph
G x H whose vertex set is V(G) x V(G) and two vertices (g, h), (¢',h') € V(G x H)
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are adjacent in G x H if and only if g¢’ € E(G) and hh' € E(H). For any g € V(G)
we call the subgraph of G x H induced by {g} x H a H-layer of G x H (and similarly
if h € V(H) the subgraph induced by G x {h} is a G-layer). Note that, unlike the
case of Cartesian products, a G-layer will be isomorphic to G only if G is an empty
graph.

Theorem 5.4. If r,s > 2 with (r,s) # (2,2), then

gp (K, x K) = min{r, s,4}.

Proof. We can assume without loss of generality that 2 <r < s and s > 3. A subset
W of V(K, x K) induces a clique if and only if all vertices of W lie in distinct layers
of K, x K, whereas a subset A C V(K, x K,) is independent if and only if it lies
within a single layer.

We show first that any maximum clique W is a maximal general position set. Let
(z,y) € V(K, x K,) \ W; we must show that W U {(z,y)} is not in general position.
If » > 3, then W contains vertices (z,j1) and (is, jo) such that iy # = and js # y;
then (x,y), (i2, j2), (z,41) is a shortest path and (x,y) cannot be added to W to make
a larger general position set. If r = 2, let W = {(i1,71), (42, j2)}. Without loss of
generality, © = i;. If y # ja, then (i1, 1), (i2,72), (i1,y) is a shortest path, whereas
if j» =y, then for j € V/(K,) \ {j1,j2} the path (i2, j2), (i1, j1), (2, J), (i1, j2) = (z,y)
is a geodesic. This shows that gp™ (K, x K;) < min{r,s}. For r = 2, this yields
gp~ (Ky x Kg) = 2 = min{2, 5,4} and Ky x K, has a universal line. For r = 3, this
yields gp~ (K3 x K,) < 3.

For r > 3 any layer is a maximal general position set. Suppose that {i} x K is
a K,-layer (the argument for K,-layers is identical). The vertices of {i} x K lie at
distance 2 from each other, so the set is in general position, whilst if we add any vertex
(7', 7), " # 1, then for ji, jo € V(Ks) \ {j} the path (,71), (¢, 7), (i, j2) is a geodesic.

Therefore, as any pair of vertices either forms an independent set or a clique, for
r > 3 any set of two vertices of K, x K, can be extended to a larger general position set
and K, x K, does not have a universal line, so that gp~ (K, x K,) > 3. In particular,
it follows that gp~ (K3 x K,) = 3 = min{3, s,4} and we can assume that r > 4.

Consider the set S = {(4,7), (4,7"), (¢, 7), (', 5")} with ¢ # ¢ and j # j'. First
observe that the edges (i,7)(¢,7'), (¢,5')(7,7) are in E(K, x K,), and that none of
these four vertices belongs to a shortest path between two of the remaining ones.
Thus, S is a general position set of K, x K. Moreover, any other vertex (z,y) of
K, x K, not in S belongs to a shortest path between two vertices of S (without loss
of generality x # i and y # j, so (x,y) lies on a path of length 2 between either (i, )
and (i,7") or (4¢,7) and (¢/,j)). Consequently, S is a maximal general position set of
K, x K, which leads to 3 < gp™ (K, x K;) < 4.

Suppose that K, x K has a maximal general position set S of order 3. Asr > 4, by
the preceding argument if S is a clique or an independent set, then S could be extended
to a larger set, so, since a general position set is an independent union of cliques [5],
S must induce a graph isomorphic to K; U K3 (a graph on three vertices with only
one edge). If (7, 7) and (7', 5') are the vertices of the induced K, in S, then the vertex
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corresponding to the K7 must be either (¢, j) or (i, '), say (¢, j); however, in this case
S could be extended by adding (i, j') to give a general position set of order 4 with the
form discussed above. Therefore for r > 4 we have gp~ (K, x K;) = 4 = min{r, s, 4}
and the result is proven. O

6 Connection with lower monophonic position num-

ber

In this section we relate the lower general position number to the monophonic position
number mentioned in Section [[I The monophonic position number was introduced
in [39] as follows. A path P in a graph G is induced or monophonic if G contains
no chords between non-consecutive vertices of P. A set M C V(G) is in monophonic
position if no induced path in G contains three or more vertices of M; the monophonic
position number mp(G) of G is the number of vertices in a largest monophonic position
set. It was shown in [39] that for any graph G we have mp(G) < gp(G) and that for
any 2 < a < b there exists a graph with mp(G) = a and gp(G) = b. This question
was explored further in [41], which asked for the smallest possible order of a graph G
with mp(G) = a and gp(G) = b for given a < b.

Figure 3: The Petersen graph with a lower monophonic position set (grey)

By analogy with the lower general position number, we define the lower monophonic
position number mp~(G) of G to be the number of vertices in a smallest maximal
monophonic position set of G. For any graph G with order n > 2 we have mp~(G) >
2 and it is easily verified that the construction of Theorem [3.4] shows that for any
2 < a < b there is a graph G with mp~(G) = a and mp(G) = b. For an example
of this concept, see Figure 8l which displays a lower monophonic position set in the
Petersen graph P. Recall that gp~(P) = 4, so that in this case mp~(P) < gp~ (P).
Intuition might suggest that the relation mp~ (G) < gp~(G) holds generally, as with
the ‘ordinary’ general and monophonic position numbers. Interestingly, this turns out
to be false, as demonstrated by the graphs in Figure [l It remains an open question
for which values of a,b there exists a graph with mp~(G) = @ and gp~ (G) = b when
a > b. However, we were able to prove the following realisation result.

Theorem 6.1. For any 2 < a < b there ezists a graph G with mp~ (G) = a and
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Figure 4: A graph G with mp~(G) = 4 (left) and gp~(G) = 3 (right)

gp~ (G) =b.

Proof. If a = b then obviously the clique K, will suffice, so assume that b > a. Take a
cycle of length 6 and identify its vertex set with Zg in the natural way. Now expand
each vertex ¢ into a clique W, and add all possible edges between W, and W, for
0<i<5 (mod 6).

Suppose that a is even. Choose the cliques such that |Wy| = |[W3| = § and all other
cliques have order b — 3. In Fig. [ the construction for a = 4 and b = 6 is presented.

Figure 5: Construction for a = 4 and b = 6: the lower gp-set

As the monophonic position number of a cycle of length 6 is 2, it follows that the
lower mp-number of this graph is the sum of the orders of the two smallest cliques; as
b > a the lower mp number is a. Similarly it follows by Proposition 2.3 that the lower
gp number is the smallest element in the set

{IWil + [Wita] : 0<i <5 (mod 6)} U {[Wo| + [Wa| + [Wial, [Wh| + [Ws| + [W5]},

which is b. Therefore this graph has the required parameters.
If a is odd it can be verified that the graph with [W| = 41, W] = % and all

other parts of size b — %1 works. O
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7 Concluding remarks

In this paper we considered general position sets of smallest cardinality that are max-
imal with respect to the set inclusion property. We conclude by mentioning some
promising directions for future research suggested by our results.

e In Section [6] we exhibited a graph with mp~(G) > gp~ (G). Characterising the
pairs a,b with a > b such that there exists a graph satisfying mp~(G) = a and
gp~ (G) = b remains an open problem.

e For 2 < a < b, what is the smallest possible order of a graph with mp~(G) = a
and gp~ (G) = b7

e In connection with inequality (I) and the difficult problem of characterising
graphs G with gp~(G) = 2, it could be interesting to determine further families
of graphs that satisfy this property.

e Also in connection with inequality (), is it possible to characterise all graphs G
with gp~(G) = gp(G)?

e Most of the graphs studied in Section [fl have diameter two. The general position
numbers of graphs with diameter two were determined in [5]. This suggests
studying lower general position sets of graphs of diameter two in general.

e Cartesian products with universal lines were characterised in [34]. It would
therefore be of interest to study the value of the lower general position numbers
of Cartesian products.

e As discussed in Section [I], there are several noteworthy variations of the general
position number in the literature, including the mutual visibility number [15],
d-position sets [26], vertex position numbers [37], Steiner position numbers [24],
edge general position numbers [30], mobile position sets [23], etc. We suggest
studying lower versions of these parameters.
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