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Abstract

The 2-packing number ρ2(G) of a graph G is the cardinality of a largest
2-packing of G and the open packing number ρo(G) is the cardinality of a
largest open packing of G, where an open packing (resp. 2-packing) is a set of
vertices in G no two (closed) neighborhoods of which intersect. It is proved
that if G is bipartite, then ρo(G�K2) = 2ρ2(G). For hypercubes, the lower
bounds ρ2(Qn) ≥ 2n−⌊logn⌋−1 and ρo(Qn) ≥ 2n−⌊log(n−1)⌋−1 are established.
These findings are applied to injective colorings of hypercubes. In particular,
it is demonstrated that Q9 is the smallest hypercube which is not perfect
injectively colorable. It is also proved that γt(Q2k ×H) = 22

k−kγt(H), where
H is an arbitrary graph with no isolated vertices.

Keywords: 2-packing number, open packing number, bipartite prism, hypercube,
injective coloring, (total) domination number
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1 Introduction

For many reasons, hypercubes are ubiquitous in theoretical computer science and in
combinatorics. Understanding their structure is therefore a fundamental problem.
Although hypercubes have a seemingly simple structure, we quickly encounter very
complex problems. For instance, one of them was the middle levels problem, which
was successfully dismissed [15]. On the other hand, the problem of determining the
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domination number of hypercubes is beyond the reach of existing methods. To date,
exact values of γ(Qn) are only known for n ≤ 9, where the value γ(Q9) = 62 was
obtained in [16], and for the following two infinite families.

Theorem 1.1. ([7, 19]) If k ≥ 1, then γ(Q2k−1) = 22
k−k−1 and γ(Q2k) = 22

k−k.

The values γ(Q2k−1) = 22
k−k−1 can be obtained from the fact that hypercubes

Q2k−1 admit 1-perfect codes, in which case the domination number coincides with
the cardinality of a 1-perfect code.

The most important variation of the domination number is the total domination
number; see a recent monograph [8] surveying domination theory with the two
invariants in the central role. Roughly speaking, domination operates with closed
neighborhoods while total domination with open neighborhoods, which often causes
a different behavior of the invariants. However, as proved in [1] by using hypergraph
transversals, γt(Qn+1) = 2γ(Qn) for all n, which makes the domination number and
the total domination number in hypercubes tightly connected. More generally, the
authors of [1] proved that γt(G�K2) = 2γ(G) as soon as G is a bipartite graph.

The concepts of packing number and open packing number of a graph are often
used in domination theory, since they present natural lower bounds on the domi-
nation number and the total domination number, respectively, of the graph. The
concept of packing was used back in 1975 by Meir and Moon in their classical the-
orem stating that in a tree the domination number equals the packing number [11].
On the other hand, open packing was introduced by Henning and Slater [9], and
was later used in [18] to prove a canonical formula for the total domination number
of the direct product of two graphs, which holds if one of the factors has the total
domination number equal to its open packing number. Similarly as total domination
is related to domination, open packing can be regarded as a version of packing in
which closed neighborhoods are replaced with open neighborhoods. See [12, 13, 14]
for some recent studies of (open) packings as well as [5] for their application.

Open packings are also related to the so-called injective colorings of graphs,
cf. [17]. More precisely, an injective coloring of a graph is exactly a partition of
its vertex set into open packings. In a recent paper [3], graphs that admit injective
colorings such that each of the color classes is a maximum open packing were consid-
ered. While proving this property for hypercubes of some small dimensions, it was
also proved for those whose dimension is a power of 2. Yet, nothing else was known,
including whether there exists a hypercube that does not satisfy this property. One
of the reasons for the difficulty of this question is that the open packing number
(i.e., the cardinality of a maximum open packing) has not been known.

We proceed as follows. In the remainder of this introduction, we provide the
definitions and concepts we need for the following. In Section 2 we prove that the
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open packing number of a prism over a bipartite graph G is twice the 2-packing
number of G. This result nicely complements [1, Theorem 1] which states that the
total domination number of a prism over a bipartite graph G is twice the domination
number of G. We also demonstrate that in general, the open packing number of a
prism over a graph G can be arbitrary larger that the 2-packing number of G. In
Section 3 we prove lower bounds on the 2-packing number and the open packing
number of hypercubes. The bounds are sharp for small dimensions and for two
infinite families, but are not sharp in general. In the subsequent section we apply
these findings to injective colorings of hypercubes. In particular we demonstrate
that Q9 is the smallest hypercube which is not perfect injectively colorable. In the
concluding remarks, we give an overview of the known values for the hypercube
invariants considered here and also derive the total domination number of the direct
product of Q2k and an arbitrary graph.

1.1 Preliminaries

Let G = (V (G), E(G)) be a graph and x ∈ V (G). The open neighborhood N(x) is
the set of vertices adjacent to x and the closed neighborhood is N [x] = N(x) ∪ {x}.
A set D ⊆ V (G) is a dominating set of G if each vertex of V (G) \D has a neighbor
in D. The cardinality of a smallest dominating set of G is the domination number
γ(G) of G. Similarly, D ⊆ V (G) is a total dominating set of G if each vertex of
V (G) has a neighbor in D. The cardinality of a smallest dominating set of G is the
total domination number γt(G) of G.

Let X ⊆ V (G). Then X is a 2-packing of G if N [x] ∩N [y] = ∅ for every pair of
distinct vertices x, y ∈ X . Similarly, if N(x) ∩ N(y) = ∅ for every pair of distinct
vertices x, y ∈ X , then X is an open packing of G. The cardinality of a largest
2-packing of G is the 2-packing number ρ2(G) of G and the cardinality of a largest
open packing of G is the open packing number ρo(G) of G. By a ρ2-set of G we mean
a 2-packing of G of cardinality ρ2(G). A ρo-set of G is defined analogously.

If X is a 2-packing such that V (G) = ∪x∈XN [x] then we say that X is a 1-perfect
code of G. In domination theory, 1-perfect codes are known as efficient dominating
sets, see [8, Chapter 9] and [10]. Since γ(G) ≥ ρ2(G) for every graph G, if X is a
1-perfect code of G, then X is also a dominating set of G. This observation leads
to the following well known fact.

Proposition 1.2. If G admits a 1-perfect code, then γ(G) = ρ2(G). If in addition

G is r-regular, then γ(G) = ρ2(G) = n(G)
r+1

.

The Cartesian product G�H of graphs G and H is the graph whose vertex
set is V (G)× V (H), and two vertices (g1, h1) and (g2, h2) are adjacent in G�H if
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either g1 = g2 and h1h2 is an edge in H or h1 = h2 and g1g2 is an edge in G. For a
vertex g of G, the subgraph of G�H induced by the set {(g, h) : h ∈ V (H)} is an
H-fiber and is denoted by gH . Similarly, for h ∈ H , the G-fiber, Gh, is the subgraph
induced by {(g, h) : g ∈ V (G)}. Cartesian product is commutative and associative.
The hypercube of dimension n, or the n-cube, is isomorphic to K2� · · · �K2, where
there are n factors K2, and is denoted by Qn. The equality Qn = Qn−1�K2 will
be used (at least implicitly) several times in the paper. Finally, the direct product
G×H of graphs G and H has the vertex set V (G)×V (H), and two vertices (g1, h1)
and (g2, h2) are adjacent in G×H if g1g2 is an edge in G and h1h2 is an edge in H .

2 Packing vs. open packing in bipartite prisms

In [1] it was proved that if G is a bipartite graph, then γt(G�K2) = 2γ(G). In this
section we prove an analogous result that connects the open packing number and
the packing number.

We begin with the following simple lemma, which holds in all graphs.

Lemma 2.1. If G is a graph, then ρo(G�K2) ≥ 2ρ2(G).

Proof. Let G be a graph, and let P be a ρ2-set of G. Then P × V (K2) is an open
packing of G�K2, hence the result.

In general, ρo(G�K2) can be arbitrary larger than 2ρ2(G). For an example
consider the family of graphs Gk, k ≥ 1, defined as follows. Gk contains 2k disjoint
cycles C5 connected in a row by an edge between two consecutive 5-cycles. This
informal definition of Gk should be clear from Fig. 1 where G2�K2 is drawn. As
an arbitrary packing of Gk contains at most one vertex of each C5 we infer that
ρ2(Gk) = 2k. On the other hand, repeating the pattern as shown in Fig. 1 for k = 2,
we get ρo(Gk �K2) ≥ 5k.

Figure 1: An open packing in G2�K2

For bipartite graphs, however, the above phenomena cannot occur as the main
result of this section asserts.
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Theorem 2.2. If G is a bipartite graph, then ρo(G�K2) = 2ρ2(G).

Proof. Let G be a bipartite graph with parts A and B forming the natural partition
of V (G). By Lemma 2.1, we have ρo(G�K2) ≥ 2ρ2(G). To prove the reversed
inequality, consider an open packing O in G�K2 such that |O| = ρo(G�K2). We
will show that O can be transformed into an open packing O′ of the form P ′×V (K2),
where P ′ is a subset of V (G). (Clearly, the latter also implies that P ′ is a 2-packing.)
Note that O can be presented as the disjoint union I ∪ R, where I is the set of
vertices that are isolated in the subgraph of G�K2 induced by O, while R is the set
of vertices that have exactly one neighbor in O. Clearly, at least one of the sets I
or R is non-empty. Set V (K2) = {1, 2}, and let Ii = I ∩ V (Gi) and Ri = R∩ V (Gi)
for all i ∈ [2]. In addition, let IAi = {(u, i) ∈ Ii : u ∈ A}, IBi = {(u, i) ∈ Ii : u ∈ B}
for i ∈ [2], and similarly let RA

i = {(u, i) ∈ Ri : u ∈ A}, RB
i = {(u, i) ∈ Ri : u ∈ B}

for i ∈ [2]. Next, we compare the two quantities |IA1 |+ |IB2 | and |IA2 |+ |IB1 |. We may
assume with no loss of generality that |IA1 |+ |IB2 | ≥ |IA2 |+ |IB1 |. Now, the announced
transformation of O to O′ is defined as follows:

• if (u, t) ∈ IA1 ∪ IB2 , then let {u} × V (K2) ⊆ O′;

• if (u, t) ∈ IA2 ∪ IB1 , then let ({u} × V (K2)) ∩ O′ = ∅;

• if (u, 1) ∈ R1 and (u, 2) ∈ R2, then let {u} × V (K2) ⊆ O′;

• if (u, 1) ∈ RA
1 and (v, 1) ∈ RB

1 , where uv ∈ E(G), then let {u} × V (K2) ⊆ O′

and ({v} × V (K2)) ∩ O′ = ∅;

• if (u, 2) ∈ RA
2 and (v, 2) ∈ RB

2 , where uv ∈ E(G), then let {v} × V (K2) ⊆ O′

and ({u} × V (K2)) ∩O′ = ∅.

We claim that |O′| ≥ |O|. Indeed, the first two rows in the above transformation
show that for every vertex (u, t) ∈ IA1 ∪ IB2 we get two vertices in O′, while for
every vertex (u, t) ∈ IA2 ∪ IB1 we get no vertices in O′, yet |IA1 ∪ IB2 | > |IA2 ∪ IB1 | by
the earlier assumption. By the last three rows of the above transformation, every
pair of vertices in R is replaced by two vertices in O′. This altogether implies that
|O′| ≥ |O|, so it remains to prove that O′ is an open packing in G�K2.

If (u, 1) ∈ IA1 and (v, 1) ∈ IA1 , then dG(u, v) ≥ 4, because the vertices belong toO,
which is an open packing, and u and v are both in A. Thus vertices in {u}×V (K2)
will be at distance at least 4 from the vertices in {v} × V (K2). By symmetry, we
get the same conclusion for vertices (u, 2) ∈ IB2 and (v, 2) ∈ IB2 . If (u, 1) ∈ IA1 and
(v, 2) ∈ IB2 , then dG(u, v) ≥ 3, because u and v belong to different parts, A and
B respectively, of the bipartition of V (G) and they belong to O, which is an open
packing. Thus, vertices in {u}×V (K2) will be at distance at least 3 from the vertices

5



in {v} × V (K2), as desired. Clearly, if (u, t) ∈ IA1 ∪ IB2 , then dG(u, v) ≥ 3 for any
v ∈ V (G) such that {(v, 1), (v, 2)} ⊂ R. This yields that vertices in {u} × V (K2)
will be at distance at least 3 from the vertices in {v} × V (K2). If (u, 1) ∈ IA1 and
(v, 1) ∈ RA

1 , we have dG(u, v) ≥ 4. On the other hand, if (u, 1) ∈ IA1 and (v, 2) ∈ RB
2

we have dG(u, v) ≥ 3. In either case, the corresponding vertices in O′ are at least
three apart. By symmetry, we can find that for vertices in IB2 and vertices in RA

1 ∪R
B
2

their distances are sufficiently large so that the corresponding K2-fibers that are in
O′ will be at distance at least 3. This completes the proof that the distance between
the vertices in O′ that appear in the first row of the above transformation to all
other vertices in O′ will be at least 3, except of course for two vertices in O′ that
belong to the same K2-fiber and are adjacent.

Vertices of O′ that appear in the third row of the transformation remain at
distance at least 3 from all other vertices in O′ (with the clear exception of two
adjacent such vertices). Therefore, it remains to consider the vertices in O′ that
appear in the last two rows of the above transformation. Suppose there are two
vertices in RA

1 (and a similar argument can be applied if they are in RB
2 ), say,

(u, 1) and (v, 1), which are not adjacent. Then dG(u, v) ≥ 4, and so {u} × V (K2)
will be at distance at least 4 from the vertices in {v} × V (K2) (by symmetry, the
same conclusion applies if (u, 2) and (v, 2) are in RB

2 ). Finally, let (u, 1) ∈ RA
1 and

(v, 2) ∈ RB
2 . Since O is an open packing, we have dG(u, v) > 1, and since they are in

different parts of the bipartition, we get dG(u, v) ≥ 3. We derive that {u} × V (K2)
will be at distance at least 3 from the vertices in {v} × V (K2), which concludes
the proof that O′ is an open packing. Since |O| = ρo(G�K2) and |O′| ≥ |O|, we
derive |O′| = |O| = ρo(G�K2). In addition, there exists a set P ′ ⊂ V (G) such
that O′ = P ′ × [2], where P ′ is a 2-packing of G. Hence, |P ′| ≤ ρ2(G), and so
|O′| = 2|P ′| ≤ 2ρ2(G), implying ρo(G�K2) ≤ 2ρ2(G).

3 (Open) packings in hypercubes

The following lemma follows by observing that the restriction of a 2-packing in
G�K2 to a G-layer is a 2-packing of that layer.

Lemma 3.1. If G is a graph, then ρ2(G�K2) ≤ 2ρ2(G).

We can now bound ρ2 and ρo of hypercubes as follows.

Theorem 3.2. If n ≥ 2, then

(i) ρ2(Qn) ≥ 2n−⌊logn⌋−1 and

(ii) ρo(Qn) ≥ 2n−⌊log(n−1)⌋−1.
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Proof. (i) Suppose first that n = 2k − 1, where k ≥ 2. As already mentioned, in
these cases Qn admits a 1-perfect code, say S. Then |S| = 22

k−1/2k = 22
k−k−1 and

consequently

ρ2(Qn) = |S| = 22
k−k−1 = 22

k−1−(k−1)−1 = 2n−⌊logn⌋−1 .

Consider now the hypercubes Qn, where k ≥ 3 and 2k−1 − 1 < n < 2k − 1. In
particular, if n = 2k − 2, then since Q2k−1 = Q2k−2�K2, Lemma 3.1 implies that

ρ2(Qn) = ρ2(Q2k−2) ≥
1

2
ρ2(Q2k−1) = 22

k−k−2 = 22
k−2−(k−1)−1 = 2n−⌊logn⌋−1 .

Inductively applying the lemma, the result holds for all n such that 2k−1 − 1 < n <
2k − 1. Therefore, (i) holds for all n ≥ 2.

(ii) Applying Theorem 2.2 and (i), we have

ρo(Qn) = 2ρ2(Qn−1) ≥ 2 · 2(n−1)−⌊log(n−1)⌋−1 = 2n−⌊log(n−1)⌋−1

for all n ≥ 2 and we are done.

If n ≤ 7, then equality holds in Theorem 3.2(i). The cases when n ∈ {2, 3, 4}
can be easily argued by case analysis. The equality in cases when n ∈ {5, 6} then
follow by combining Lemma 3.1 and Theorem 3.2(i). For n = 7, the equality holds
because Q7 has a 1-perfect code. One is thus tempted to conjecture that the lower
bound in Theorem 3.2(i) holds for all n. However, with the help of a computer, we
found the set

T = {00000000, 00001110, 00110010, 00111100, 01010110, 01011000,

01100100, 01101001, 01111111, 10010100, 10100101, 10101011,

11000111, 11001100, 11011011, 11100010, 11110001}

which is a 2-packing in Q8 with |T | = 17, hence ρ2(Q8) ≥ 17. By Theorem 2.2, this
in turn implies that ρo(Q9) ≥ 34. Hence also the lower bound in Theorem 3.2(ii)
is not sharp in general. It is sharp however for all n ≤ 8 because the lower bound
in Theorem 3.2(i) is sharp for n ≤ 7 and because of Theorem 2.2. Furthermore,
by using Theorem 2.2 and the fact that the lower bound in Theorem 3.2(i) is sharp
when n = 2k−1, it follows that the lower bound in Theorem 3.2(ii) is sharp for each
value of n that is a power of 2.
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4 Application to injective colorings

An injective coloring of a graph G is a partition of the vertex set of G into open
packings. The injective chromatic number, χi(G), of G is the minimum cardinality of
an injective coloring in G. The concept was introduced by Hahn, Kratochv́ıl, Širáň
and Sotteau [6] back in 2002, and has been considered by a number of authors,
cf. [2, 4]. In the recent paper [3], graphs that admit special types of injective
colorings were considered: a graph G is a perfect injectively colorable graph if it has
an injective coloring in which every color class forms a ρo-set of G. The authors
of [3] considered hypercubes that are perfect injectively colorable. They noticed
that such are the hypercubes Qn, where n ∈ [5], and proved that for all k ∈ N, the
hypercube Q2k is a perfect injectively colorable graph. Apart from the mentioned
cases, it was asked in [3, Problem 1] in which other dimensions the hypercube is
perfect injectively colorable. Since an answer to the question is closely related to
computing the value of the open packing number of hypercubes, it was also asked
in [3, Problem 2] what is the value of ρo(Qn) for n ≥ 6.
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Figure 2: Partition of V (Q6) into (maximum) 2-packings of Q6.

In this note, we give some partial answers to the above two questions. One
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can easily find that ρ2(Q5) = 4, which by Theorem 2.2 implies that ρo(Q6) =
8. In addition, Fig. 2 shows a maximum 2-packing of Q6 of cardinality 8, where
vertices of an arbitrary color in [8] form a maximum 2-packing. This gives, again by
Theorem 2.2, that ρo(Q7) = 16. In addition, recall that ρo(Q8) = 32, which follows
from the fact that Q7 has a perfect code. Now, by the observation from Section 3,
we have ρ2(Q8) ≥ 17. On the other hand, we claim that ρ2(Q8) ≤ 30. Suppose
to the contrary that ρ2(Q8) > 30, and let P be a ρ2-set of Q8. Then, partitioning
V (Q8) into Q and Q′, each of which induces Q7, we infer that either |Q ∩ P | or
|Q′ ∩ P | is equal to 16. We may assume that |Q ∩ P | = 16, and noting that Q ∩ P
is a 2-packing of Q7, this implies that Q ∩ P corresponds to a perfect code of Q7,
thus Q∩P is a dominating set of Q. This in turn implies that every vertex in Q′ is
at distance at most 2 from a vertex in Q ∩ P , which yields that P = Q ∩ P , and so
|P | = 16, a contradiction proving that ρ2(Q8) ≤ 30. Now, using Theorem 2.2, we get
34 ≤ ρo(Q9) ≤ 60. In particular, ρo(Q9) is not a power of 2, which readily implies
that Q9 does not admit a partition into ρo-sets, and is consequently not a perfect
injectively colorable graph. On the other hand, refer to Fig. 2 again, which shows
a coloring of Q6 in which each color class is a 2-packing of cardinality ρ2(Q6). By
applying Theorem 2.2 and the first part of its proof, one can construct an injective
coloring of Q7 in which each color class is a open packing of cardinality ρo(Q7).
Therefore, Q7 is perfect injectively colorable graph.

Summarizing the above, hypercubes Qn, where n ≤ 8, are perfect injectively
colorable graphs, and so Q9 is the first instance of a hypercube, which is not in this
class of graphs.

5 Concluding remarks

Table 5 presents values or bounds on the main domination and packing invariants
in hypercubes Qn, for all n, n ≤ 9. The values for γ and γt have been known earlier,
while some of the values and bounds for ρ2 and ρo have been obtained in this paper.

n 1 2 3 4 5 6 7 8 9

γ 1 2 2 4 7 12 16 32 62
γt 2 2 4 4 8 14 24 32 64
ρ2 1 1 2 2 4 8 16 17-30 ?
ρo 2 2 2 4 4 8 16 32 34-60

Table 1: Packing and domination invariants in hypercubes Qn, where n < 10.
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In addition, consider the value γt(Q2k) = 22
k−k, which follows from Theorem 1.1

combined with the formula γt(G�K2) = 2γ(G) from [1]. Now, compare this with
the bound ρo(Q2k) ≥ 22

k−k, which follows from Theorem 3.2(ii) when plugging
n = 2k. Since γt(G) ≥ ρo(G) for every graph G with no isolated vertices, we infer
that

γt(Q2k) = 22
k−k = ρo(Q2k), for all k ∈ N. (1)

Recall the result from [18] stating that γt(G×H) = γt(G)γt(H) whenever G is a
graph with ρo(G) = γt(G) and graphs G and H have no isolated vertices. Therefore,
from the discussion above we get that

γt(Q2k ×H) = 22
k−kγt(H) ,

where k ∈ N and H is an arbitrary graph with no isolated vertices. An additional
family of graphs with this property (that γt = ρo) can be found in [12]. It would
be interesting to establish if there are any hypercubes Qn of other dimensions than
those in (1) that satisfy the equality γt(Qn) = ρo(Qn).
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