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Abstract

The mutual-visibility problem in a graph G asks for the cardinality of a largest set
of vertices S ⊆ V (G) so that for any two vertices x, y ∈ S there is a shortest x, y-path
P so that all internal vertices of P are not in S. This is also said as x, y are visible with
respect to S, or S-visible for short. Variations of this problem are known, based on
the extension of the visibility property of vertices that are in and/or outside S. Such
variations are called total, outer and dual mutual-visibility problems. This work is
focused on studying the corresponding four visibility parameters in graphs of diameter
two, throughout showing bounds and/or closed formulae for these parameters.

The mutual-visibility problem in the Cartesian product of two complete graphs is
equivalent to (an instance of) the celebrated Zarankievicz’s problem. Here we study
the dual and outer mutual-visibility problem for the Cartesian product of two complete
graphs and all the mutual-visibility problems for the direct product of such graphs as
well. We also study all the mutual-visibility problems for the line graphs of complete
and complete bipartite graphs. As a consequence of this study, we present several
relationships between the mentioned problems and some instances of the classical
Turán problem. Moreover, we study the visibility problems for cographs and several
non-trivial diameter-two graphs of minimum size.
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1 Introduction

The mutual-visibility problem in graphs has recently appeared in [16], and has remarkably
attracted the attention of several investigations, which can be seen in the series of articles
[4, 5, 7–13,26,34]. Some reasons of such interest might come from the following facts.

• The problem has some origin in a computer science application related to situations
arising in a framework of mobile entities in a network. That is, nodes of a network
having some “mutual-visibility” properties can be seen as entities of a network requir-
ing to communicate between themselves in a somehow confidential or private way.
Namely, satisfying that for any exchanged information there should be a channel
which does not pass through other entities. For some of these applied researches see
for instance [1, 2, 8, 15,31].

• A close relationship that exists between the mutual-visibility problem and the general
position problem [6,27], which is also a distance related topic of high interest in the
last recent years [21–23, 25, 30, 35, 37], see also [24, 28] for the edge version of the
general position problem in graphs.

• The connections that have appeared between the mutual-visibility problem with some
classical topics in combinatorics. For instance, while studying the mutual-visibility
problem in the Cartesian product of complete graphs, it has been noted that solving
such a problem turns out to be equivalent to solve an instance of the well-known
Zarankievicz’s problem (see [12]). Relatively similar to this, while considering the
lower version of this problem, a closed relationship with a classical Bollobás-Wessel
theorem was proved (see [4]). Also, for the case of the total variant of the mutual-
visibility, and the same families of graphs, it has been noted that it can be reformu-
lated as a Turán-type problem on hypergraphs (see [5]).

• The standard mutual-visibility problem can be (and sometimes even needs to be)
modified in several directions in order to consider different visibility situations. For
instance, while studying the mutual-visibility problem in general Cartesian product
graphs (see [12]), the notion of independent mutual-visibility was naturally required,
thus defined, and their first basic properties identified. In the article [13], a total
version of the mutual-visibility problem was needed, in order to study the strong
product of graphs. This total notion was also a first step into the work [11], where
this total version was further studied, together with two “partially” total ones that
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were introduced in order to close all the possible “visibility” situations that might
exist between the elements of a graph.

In a formal way, given a connected graph G and a set of vertices X ⊆ V (G), two
vertices x, y ∈ V (G) are called to be X-visible if there is a shortest x, y-path (also called
geodesic) whose interior vertices do not belong to X. With this idea in mind, for a given
set X ⊆ V (G) of a connected graph G, the following definitions are known from [11].

• Mutual-visibility set : if any two vertices of X are X-visible.

• Outer mutual-visibility set : if any two vertices x, y ∈ X and any two vertices x ∈ X
and y ∈ X are X-visible.

• Dual mutual-visibility set : if any two vertices x, y ∈ X and any two vertices x, y ∈ X
are X-visible.

• Total mutual-visibility set : if any two vertices x, y ∈ V (G) are X-visible.

Regarding such graph structures, the following parameters are defined as the cardinalities
of the largest (respectively) mutual-visibility sets from the above ones.

mutual-visibility number µ(G) dual mutual-visibility number µd(G)

outer mutual-visibility number µo(G) total mutual-visibility number µt(G)

If τ ∈ {µ, µd, µo, µt}, then we say that X ⊆ V (G) in a τ -set if |X| = τ(G).
In the present investigation, we are focused on giving some contributions on these four

mutual-visibility parameters on graphs of diameter two. Some motivations for this specific
study are coming from already established results on such class of graphs. For instance,
as already mentioned, the mutual-visibility problem in the Cartesian product of complete
graphs is proved to be equivalent to solve an instance of the well-known Zarankievicz’s
problem (see [12]), and such Cartesian products are of diameter two. In this sense, we
continue this research direction on graphs of diameter two, which will indeed show that
this problem, and the related variations, remain challenging while considering diameter-two
graphs in general.

In the remaining of this section we give some preliminary terminologies and notations
that shall be used throughout our exposition. In Section 2 we consider the Cartesian
and direct products of complete graphs. Specifically, we give formulas for the dual and
outer mutual-visibility numbers of the Cartesian product, which fulfills the existing gap
for the visibility numbers of such graphs. These results allow us, among other things,
to answer negatively a question in the literature regarding the relationship between the
mutual-visibility number and the outer mutual-visibility number. We also compute all
the mutual-visibility numbers of the direct products, showing that all of them achieve the
same value. Section 3 focuses on the line graphs of complete and complete bipartite graphs.
Through this study, we give several relationships between the mutual-visibility problems
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and some instances of the classical Turán problem. Among them, we for instance show
that the mutual-visibility number of the line graph of complete graphs equals the number
of edges of the Turán graph T (n, 3), and that the total mutual-visibility number of such
graphs equals the number of edges of the Turán related graph ex(n;C4). Connections
between the mutual-visibility problem on the line graphs of complete bipartite graphs and
the Zarankiewicz problem are also given in Section 3. Next, in Section 4 we consider the
class of cographs, by studying those graphs G that have values in their mutual-visibility
numbers equal to at least the order of G minus one. Section 5 is focused on non-trivial
diameter-two graphs of minimum size. That is, we compute the values of the mutual-
visibility parameters of the graphs belonging to this class. Finally, Section 6 gives some
concluding remarks together with some future research lines that can be of interest as a
continuation of this work.

1.1 Preliminaries

All graphs considered in this paper are finite and simple. The distance dG(u, v) between
vertices u and v of a graph G is the length of a shortest u, v-path. The degree of a vertex
v in G is denoted as degG(v). The girth, g(G), of a graph G is the length of a shortest
cycle of G. If G is a forest, then we set g(G) = ∞. For an integer k ≥ 1, we shall write
[k] = {1, . . . , k}. The order and the size of G will be respectively denoted by n(G) and
m(G). A vertex of G is universal if it is adjacent to all the other vertices of G.

A cograph is a graph which contains no induced path on four vertices. Cographs can
be characterized in many different ways, see [14]. For instance, cographs are precisely the
graphs that can be obtained from K1 by means of the disjoint union and join of graphs.

The Cartesian product G□H and the direct product G×H of graphs G and H both
have the vertex set V (G) × V (H). In G□H, vertices (g, h) and (g′, h′) are adjacent if
either g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). In G × H, vertices (g, h)
and (g′, h′) are adjacent if gg′ ∈ E(G) and hh′ ∈ E(H). In each of the two products, if
h ∈ V (H), then the set of vertices {(g, h) : g ∈ V (G)} forms a G-layer which is denoted
by Gh. For a given g ∈ V (G), the H-layer gH is defined analogously. Note that in G□H,
layers induce subgraphs isomorphic to G resp. H, while in G × H layers induce edgeless
graphs.

The union G∪H of G and H is the graph G′ with vertex set V (G′) = V (G)∪V (H) and
edge set E(G′) = E(G)∪E(H). The join G+H of G and H is the graph G′ with vertex set
V (G′) = V (G)∪V (H) and edge set E(G′) = E(G)∪E(H)∪{uv : u ∈ V (G), u ∈ V (H)}.

We conclude these preliminaries with the following result.

Lemma 1.1 If G is a connected graph of order at least 3 and with g(G) ≥ 5, then an
outer mutual-visibility set is an independent set.

Proof. Let X be an outer mutual-visibility set of G and suppose that X contains vertices
x and y such that xy ∈ E(G). Since G has at least three vertices and is connected, we
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may assume that z is a neighbor of y different from x. As g(G) ≥ 5, we must have z ∈ X,
for otherwise x ∈ X and z /∈ X are not X-visible. But then x, z ∈ X are not X-visible, a
contradiction. □

2 Products of two complete graphs

In this section we consider the four invariants of interest on Cartesian and direct products
of two complete graphs. The invariants µ and µt were already considered, here we add
formulas for µd and µo. Using these results we are able to answer in negative the question
from [11] whether µ(G) ≤ 2µo(G) holds for any graph G. On the other hand, the direct
product of (complete) graphs was not yet considered in this context, in this section we
prove the formula for it which is the same for all the four invariants.

In [12] it is proved that if m,n ≥ 2, then µ(Km□Kn) = z(m,n; 2, 2), where z(m,n; 2, 2)
is the maximum number of 1s that an m × n binary matrix can have, provided that it
contains no 2× 2 submatrix of 1s. To determine z(m,n; 2, 2) is a notorious open (instance
of) Zarankievicz’s problem. When n is sufficiently large, the value z(n, n; 2, 2) can be
bounded as follows [3, 17]:

n3/2 − n4/3 ≤ z(n, n; 2, 2) ≤ 1

2
n(1 +

√
4n− 3) ,

which demonstrates that the growth is faster than linear.
For the total mutual-visibility it was proved in [34] that if n,m ≥ 2, then

µt(Kn□Km) = max{n,m} .

For the dual and the outer mutual-visibility number, we have the following related respec-
tive results.

Theorem 2.1 If n,m ≥ 3, then

(i) µd(Kn□Km) = n+m− 1,

(ii) µo(Kn□Km) = n+m− 2.

Proof. Let V (Kk) = [k], so that V (Kn□Km) = {(i, j) : i ∈ [n], j ∈ [m]}. For the rest of
the proof set G = Kn□Km.

(i) It is straightforward to check that the set {(i, 1) : i ∈ [n]} ∪ {(1, j) : j ∈ [m]} is a
dual mutual-visibility set of cardinality n+m− 1, thus µd(G) ≥ n+m− 1.

To prove the reverse inequality, suppose for a purpose of contradiction that there exists
a dual mutual-visibility set X of G of cardinality n + m. Let x = (i, j) be an arbitrary
vertex from X. Since the union of the two layers containing x contains n+m− 1 vertices,
there exists a vertex x′ = (i′, j′) ∈ X, where i ̸= i′ and j ̸= j′. By the symmetry of G
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we may without loss of generality assume that x′ = (i + 1, j + 1). (Here and later below,
indices are computed modulo n and m if necessary.) As X is a dual mutual-visibility set,
at least one of the vertices (i+1, j) and (i, j+1) must belong to X, for otherwise they are
not X-visible. We may without loss of generality assume that y = (i + 1, j) ∈ X. Then
(i, j + 1) /∈ X. In Fig. 1(a) the situation so far is schematically presented, where we use
the convention that the vertices from X are shown in black, and the vertices not from X
in white.

(a)

i i+ 1

j

j + 1

x y

x′

(b)

i i+ 1

j

j + 1

j′′

x y

z

x′

(c)

i i+ 1 i′′

j

j + 1

j′′

x y

x′

z

(d)

i i+ 1 i′′

j

j + 1

j′′

x y

x′

z

Figure 1: Cases from the proof of Theorem 2.1(i)

Consider now the vertex y = (i+1, j). By the above argument used for x, there exists
a vertex z ∈ X which does not lie in the union of the two layers containing y. Assume
first that z = (i, j′′), where j′′ ̸= j. Then clearly we also have j′′ ̸= j + 1. Now we must
have (i+1, j′′) ̸∈ X, for otherwise y and z are not X-visible. But then none of the vertices
(i+ 1, j′′) and (i, j + 1) lies in X and are not X-visible, a contradiction. This situation is
shown in Fig. 1(b).
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If z = (i′′, j + 1), then by symmetry, we also arrive to a contradiction.
Assume now that z = (i′′, j′′), where i′′ ̸= i, i + 1 and j′′ ̸= j, j + 1. Considering the

vertices z = (i′′, j′′) ∈ X and x′ = (i + 1, j + 1) ∈ X, we see that one of (i′′, j + 1) and
(i+1, j′′) belongs to X; for otherwise we get a contradiction, since these two vertices are not
X-visible. Suppose that (i′′, j+1) ∈ X, see Fig. 1(c). Consider the vertices x = (i, j) ∈ X,
(i′′, j + 1) ∈ X, and (i, j + 1) /∈ X to realize that (i′′, j) ∈ X. But then (i′′, j) and x′ are
not X-visible. This implies that (i′′, j + 1) /∈ X, and consequently (i + 1, j′′) ∈ X, see
Fig. 1(d). Now (i, j′′) /∈ X, for otherwise these vertex cannot see y. Similarly, (i′′, j) /∈ X,
see Fig. 1(d) again. But now the vertices (i, j′′) /∈ X and (i′′, j) /∈ X, are not X-visible.
This final contradiction implies that µd(G) ≤ n+m− 1 which proves (i).

(ii) It is straightforward to verify that the set {(i, 1) : 2 ≤ i ≤ n}∪{(1, j) : 2 ≤ j ≤ m}
is an outer mutual-visibility set of cardinality n+m− 2, thus µo(G) ≥ n+m− 2.

Let X be an arbitrary outer mutual-visibility set of G. We may assume without loss
of generality that (1, 1) /∈ X. Let x = (i, j) be an arbitrary vertex of X. Then in one
of the layers (Kn)

j and i(Km), the vertex x is the only vertex from X. Indeed, if we
would have (i, j′) ∈ X, j′ ̸= j, and (i′, j) ∈ X, i′ ̸= i, then no matter whether (i′, j′)
lies in X or not, the vertex x would not see (i′, j′). We are now going to assign to each
vertex x ∈ X a unique variable as follows. If x = (i, 1) ∈ X, then assign to x the variable
ai and if x = (1, j) ∈ X, then assign to x the variable bj . In addition, if i, j ≥ 2 and
x = (i, j) ∈ X, then in the case that X ∩ V ((Kn)

j) = {x}, we assign to x the variable
bj , and if X ∩ V (i(Km)) = {x}, then we assign to x a variable ai. Note that if, say,
(i, 1) ∈ X and (i, j) ∈ X, j ̸= 1, then (i, 1) is assigned ai and (i, j) is assigned bj . Since
to each vertex of X we assign a different variable and, having in mind that (1, 1) /∈ X, the
variables used are a2, . . . , an and b2, . . . , bm, we have |X| ≤ n+m− 2. We conclude that
µo(G) ≤ n+m− 2. □

By Theorem 2.1 and the discussion before it, as soon as n and m are not small, we
have

µt(Kn□Km) < µo(Kn□Km) < µd(Kn□Km) < µ(Kn□Km) . (1)

In [11] a question was posed whether µ(G) ≤ 2µo(G) is true in general. We can
now answer this question in negative because µo(Kn□Kn) = 2n − 2 and µ(Kn□Kn) ≥
n3/2 − n4/3.

We now turn our attention to the direct product of complete graphs and prove the
following result.

Theorem 2.2 If n,m ≥ 5, then µt(Kn ×Km) = µ(Kn ×Km) = nm− 4.

Proof. Let V (Kk) = [k], so that V (Kn × Km) = {(i, j) : i ∈ [n], j ∈ [m]}. Set G =
Kn ×Km for the rest of the proof.

We claim first that µ(G) ≤ nm−4. Suppose on the contrary that there exists a mutual-
visibility set X with |X| = nm − 3. Let V (G) \X = {x, y, z}. By the symmetry of G, it
suffices to consider the following four cases.
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Suppose that x = (i, j), y = (i′, j′), z = (i′′, j′′), where |{i, i′, i′′}| = 3 and |{j, j′, j′′}| =
3. In this case we see that the vertices (i′, j) and (i′, j′′) belong to X but are not X-visible.
Hence this case is not possible.

In the second case, suppose that x = (i, j), y = (i′, j), z = (i′, j′), where i ̸= i′ and
j ̸= j′. Now we infer that the vertices (i − 1, j) and (i − 1, j′) belong to X but are not
X-visible.

In the third case, suppose that x = (i, j), y = (i, j′), z = (i′, j′′), where i ̸= i′ and
|{j, j′, j′′}| = 3. Now consider the vertices (i′, j) and (i′, j′) which both belong to X but
are not X-visible.

In the last case, suppose that x = (i, j), y = (i′, j), z = (i′′, j), where |{i, i′, i′′}| = 3.
Now consider two vertices (k, j) and (k′, j), where k and k′ are selected in such a way that
|{i, i′, i′′, k, k′}| = 5. (Such values k and k′ exist since we have assumed that n,m ≥ 5.)
But now the vertices (k, j) and (k′, j) belong to X, and they are not X-visible.

We can conclude that no matter how the set X lies in G, it cannot form a mutual-
visibility set. This proves that µ(G) ≤ nm− 4.

Let Y = {(1, 1), (2, 2), (3, 3), (4, 4)} and let X = V (G) \ Y . We claim that X is a total
mutual-visibility set of G. Let x = (i, j) and y = (i′, j′) be arbitrary vertices of G. Assume
first that x, y ∈ X. If i ̸= i′ and j ̸= j′, then xy ∈ E(G) and there is nothing to prove.
Otherwise, i = i′ or j = j′. Assume without loss of generality that i = i′ and let k ∈ [4] be
such that k ̸= i, j, j′. Then (i, j)(k, k) ∈ E(G) and (k, k)(i, j′) ∈ E(G), hence x and y are
X-visible. We proceed similarly in the case when x ∈ X and y ∈ Y . Finally, if x, y ∈ Y ,
then xy ∈ E(G). We have thus demonstrated that X is a total mutual-visibility set of G.

By the above, µt(G) ≥ mn − 4. Combining this inequality with the earlier proved
inequality µ(G) ≤ nm− 4, we have

nm− 4 ≤ µt(G) ≤ µ(G) ≤ nm− 4 ,

hence the equality holds everywhere and we are done. □

Corollary 2.3 If n,m ≥ 5, then

µt(Kn ×Km) = µo(Kn ×Km) = µd(Kn ×Km) = µ(Kn ×Km) .

Proof. Combine Theorem 2.2 with the facts following directlty from definitions that for
any graph G we have µt(G) ≤ µo(G) ≤ µ(G) and µt(G) ≤ µd(G) ≤ µ(G), cf. [11]. □

Note that Corollary 2.3 is in sharp contrast to (1).

3 Line graphs

Given a graph G, the line graph L(G) of G has vertex set V (L(G)) = {euv : uv ∈ E(G)},
and two vertices euv, eu′v′ are adjacent in L(G) if and only if the edges uv, u′v′ are incident in
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G. From now on, given a set of edges F ⊆ E(G), we set SF = {euv ∈ V (L(G)) : uv ∈ F}.
Also, by GF we represent the subgraph of G whose edges are those ones in F and vertices
are those from the edges of F .

In this section we focus on the line graphs of complete graphs and of complete bi-
partite graphs. Notice that if n ≥ 4, then diam(L(Kn)) = 2, and if m,n ≥ 2, then
diam(L(Km,n)) = 2. More generally, if diam(G) ≤ 2, then diam(L(G)) ≤ 3. We begin
with a characterization of mutual visibility sets in line graphs L(G) for graphs G with
diam(G) = 2.

Lemma 3.1 Let G be a graph of diameter 2 and F ⊆ E(G). Then SF ⊆ V (L(G)) is a
mutual-visibility set of L(G) if and only if for any two independent edges uv, u′v′ ∈ F one
of the following conditions is satisfied.

(i) There is an edge xy /∈ F incident with both uv and u′v′, or

(ii) dL(G)(euv, eu′v′) = 3 and there is a vertex z ∈ V (G) adjacent to (w.l.g.) u and u′ in
G, such that uz, u′z /∈ F .

Proof. (⇒) Assume SF is a mutual-visibility set of L(G), and let uv, u′v′ ∈ F be two inde-
pendent edges. Since diam(G) = 2, we have dL(G)(euv, eu′v′) ∈ {2, 3}. If dL(G)(euv, eu′v′) =
2, then because SF is a mutual-visibility set, there exists a vertex exy /∈ SF such that
euvexyeu′v′ is a geodesic. Thus (i) holds as xy is incident to uv and to u′v′. If dL(G)(euv, eu′v′) =
3, then there must be a vertex z ∈ V (G) adjacent to (w.l.g.) u and u′ in G. Clearly, since
SF is a mutual-visibility set, there must be such vertex z with euz, eu′z /∈ SF , hence (ii)
holds.

(⇐) We need to show that any two vertices euv, eu′v′ ∈ SF are SF -visible in L(G).
There is nothing to prove if euveu′v′ ∈ E(L(G)). Assume that dL(G)(euv, eu′v′) = 2. Then
(ii) does not apply, hence by (i) there is an edge xy incident with both uv, u′v′ such that
exy /∈ SF . Thus, euvexyeu′v′ is a geodesic whose internal vertices are not in SF , and so,
euv, eu′v′ ∈ SF are SF -visible. Assume next that dL(G)(euv, eu′v′) = 3. Then (ii) applies, so
that there is a vertex z ∈ V (G) adjacent to u and u′ in G, such that euz, eu′z /∈ SF . Hence,
euveuz, eu′zeu′v′ is a geodesic in L(G) whose interior vertices are not in SF . This euv, eu′v′

are SF -visible in L(G) in this case as well. Since diam(L(G)) ≤ 3 we are done. □

Lemma 3.1 reduces the verification whether a set of vertices of L(G), where diam(G) ≤
2, is a mutual-visibility set to the search for the set of edges of largest cardinality in G
satisfying the conditions of the lemma. This can be interpreted as an instance of a Turán-
type problem. The first striking example of this claim is the following result. For its
statement recall that the Turán graph T (n, r) is a complete r-partite graph of order n in
which sizes of the r parts are as equal as possible.

Theorem 3.2 Let n ≥ 3 be an integer and F ⊆ E(Kn). Then SF ⊆ V (L(Kn)) is a µ-set
of L(Kn) if and only if (Kn)F ∼= T (n, 3).
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Proof. For n = 3 we have L(K3) = K3 and the assertion is clear. Suppose in the rest that
n ≥ 4. Then diam(L(Kn)) = 2 and thus Lemma 3.1 implies that if SF is a mutual-visibility
set of L(Kn), then for any two independent edges uv, u′v′ ∈ F there is an edge xy incident
with both uv, u′v′ such that xy /∈ F . This can be equivalently reformulated by saying that
SF is a mutual-visibility set of L(Kn) if and only if (Kn)F does not contain a K4. Turán’s
theorem (see [36, Theorem 11.1.3]) completes the argument. □

Since the Turán graph T (n, r) has (1 − 1
r + o(1)) n2

2 edges, we deduce the following
consequence of Theorem 3.2.

Corollary 3.3 If n ≥ 3, then µ(L(Kn)) = (23 + o(1)) n2

2 .

Now, with respect to the remaining mutual-visibility parameters of the graph L(Kn),
we note the following facts. If F is a set of edges of Kn, then the corresponding set SF in
L(Kn) has the (total, outer or dual) mutual-visibility properties based on the existence of
certain structures obtained from pairs of not incident edges from E(Kn), F , or E(Kn)\F .
Recall that a pair of not incident edges uv, u′v′ ∈ E(Kn) are SF -visible in L(Kn) whenever
there is an edge xy /∈ F such that (w.l.g.) x = u and y = u′. These facts, the definitions
of (total, outer or dual) mutual-visibility sets and the structure of L(Kn) allow to readily
observe the following result, whose proof is rather simple and left to the reader.

Lemma 3.4 Let n ≥ 3 be an integer and let F ⊆ E(Kn). Then,

(i) SF is a total mutual-visibility set of L(Kn) if and only if for any two not incident
edges uv, u′v′ ∈ E(Kn) the subgraph induced by u, v, u′, v′ has at least one edge not
in F different from uv and u′v′.

(ii) SF is a dual mutual-visibility set of L(Kn) if and only if

– for any two not incident edges uv, u′v′ ∈ E(Kn) \ F the subgraph induced by
u, v, u′, v′ has at least one edge not in F different from uv and u′v′, and

– for any two not incident edges xy, x′y′ ∈ F the subgraph induced by x, y, x′, y′

has at least one edge not in F different from xy and x′y′.

(iii) SF is a outer mutual-visibility set of L(Kn) if and only if

– for any two not incident edges uv, u′v′ with uv ∈ E(Kn) \ F and u′v′ ∈ F the
subgraph induced by u, v, u′, v′ has at least one edge not in F different from uv
and u′v′, and

– for any two not incident edges xy, x′y′ ∈ F the subgraph induced by x, y, x′, y′

has at least one edge not in F different from xy and x′y′.

By using Lemma 3.4, we can give the following conclusions on the (total, outer or dual)
mutual-visibility number of L(Kn).

10



Proposition 3.5 For any integer n ≥ 3, µt(L(Kn)) ≥ n− 1 +
⌊
n−1
2

⌋
.

Proof. Let w ∈ V (Kn) and let A = {vw ∈ E(Kn) : v ∈ V (Kn) \ {w}}. Also, let G′ be
the complete graph induced by V (Kn) \ {w}, and let M be a maximum matching in G′.
Now, consider the set of edges F = A∪M of Kn. Observe that SF satisfies the properties
of Lemma 3.4 (i). Thus SF is a total mutual-visibility set of L(Kn), and the bound follows
since |SF | = n− 1 +

⌊
n−1
2

⌋
. □

By using a computer we have checked that the bound of Proposition 3.5 is tight for
n ∈ {4, 5, 6, 7}. On the other hand, the equality does not hold in general. For instance, the
set {01, 12, 23, 34, 45, 56, 67, 78, 89, 90, 04, 19, 26, 38, 57, 79} of vertices of L(K10), or equiva-
lently, edges of K10, where we have taken V (K10) = {0, 1, . . . , 9}, is a total mutual-visibility
set of L(K10) of cardinality 16. However, Proposition 3.5 only yields µt(L(K10)) ≥ 13.

The total mutual visibility of L(Kn) has an interesting relation with the extension of
the Turán problem to forbidden generic graphs.

Definition 3.6 [36, Page 479] The Turán number of a graph H, written ex(n;H), is the
maximum number of edges in an n-vertex graph not containing H.

Theorem 3.7 For any integer n ≥ 3, µt(L(Kn)) = ex(n;C4).

Proof. By Lemma 3.4 (i), given a set F ⊆ E(G), the set SF is a total mutual-visibility
set of L(Kn) if and only if for any two not incident edges uv, u′v′ ∈ E(Kn), the subgraph
induced by u, v, u′, v′ has at least one edge not in F different from uv and u′v′. Consider
any four vertices u, v, u′, v′ of Kn. They induce a graph G′ = K4 with three pairs of not
incident edges. Since for each pair at least one edge (not belonging to the pair) is not in
F , it holds that at least two incident edges of G′ are not in F . Equivalently, this happens
if and only if the edges of F in G′ does not form a cycle C4. Hence, in order to find a
µt-set in L(Kn) we need to find a largest set of edges of Kn that does not induce any C4.
By definition, its size is ex(n;C4). □

Corollary 3.8 For any large enough integer n, 1
2(n

3/2 − n4/3) ≤ µt(L(Kn)) ≤ 1
4n(1 +√

4n− 3).

Proof. Given Theorem 3.7 on the equivalence of µt(L(Kn)) and ex(n;C4), the upper
bound was first proved by Reiman in [32]. The lower bound (and a rediscovery of the
upper bound) can be found in [3] and [17]. □

We next proceed with finding similar results as the above ones for the other two re-
maining mutual-visibility parameters (outer and dual).

Theorems 3.2 and 3.7 provide us with a way to calculate the values of µ(L(Kn)) and
µt(L(Kn)). They are based on the analysis of forbidden subgraphs for (Kn)F where SF

11



Mutual-visibility

Outer mutual-visibility

Dual mutual-visibility

Total mutual-visibility

Figure 2: Forbidden induced subgraphs for (Kn)F , where F is such that SF is a (outer,
dual, total) mutual visibility set of L(Kn))

is a mutual-visibility or a total mutual-visibility sets of L(Kn)), respectively. By using
Lemma 3.4, an analysis of the induced forbidden subgraphs of (Kn)F for the (dual, outer,
total) mutual-visibility sets SF of L(Kn) shows that only three forbidden graphs are in-
volved: K4, K−

4 , and C4 (see Figure 2). As proved in Theorem 3.2, K4 is the only forbidden
subgraph of (Kn)F for any mutual-visibility sets SF of L(Kn)). As for the total mutual-
visibility, all the three induced graphs are forbidden, but, since C4 is a subgraph of both
K4 and K−

4 , it is sufficient to forbid only this graph, and then µt(L(Kn)) = ex(n,C4), as
stated by Theorem 3.7.

Similarly, for the outer mutual-visibility, the induced forbidden subgraphs are K4 and
K−

4 , and since K−
4 is a subgraph of K4, we have the following result.

Theorem 3.9 For any integer n ≥ 3, µo(L(Kn)) = ex(n;K−
4 ).

Based on this relationship above, and using the next known result, we are able to give
the exact value of µo(L(Kn)).

Theorem 3.10 [33] If F has chromatic number k and a critical edge, and n is large
enough, then ex(n, F ) = |E(T (n, k − 1))|. Moreover, T (n, k − 1) is the unique extremal
graph.

Since the graph K−
4 has chromatic number 3 and a critical edge, we deduce that the

edges of Kn that form an outer mutual-visibility set of the largest cardinality in L(Kn),
together with the vertices in such edges, form a graph isomorphic to the Turán graph
T (n, 2). Recall that T (n, 2) is the bipartite graph of order n with partite sets of cardinality
⌈n/2⌉ or ⌊n/2⌋. Thus, the following result holds.
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Corollary 3.11 For any large enough integer n, µo(L(Kn)) = ⌈n2 ⌉ · ⌊
n
2 ⌋.

Now, for the dual mutual-visibility, the two induced forbidden subgraphs are K4 and
C4. Then the following result holds.

Theorem 3.12 Let F ⊆ E(Kn). Then SF ⊆ V (L(Kn)) is a dual mutual-visibility set of
L(Kn) if and only if (Kn)F is a (K4, C4)-free graph.

In contrast with the cases which appear along with standard, total and outer mutual-
visibility sets, there is a lack (to the best of our knowledge) of results concerning the largest
number of edges in a (K4, C4)-free graph of order n. This made that the result above for
the dual mutual-visibility sets does not lead to a bound or formulae for the dual mutual-
visibility number of L(Kn). By computer checking, we only know that for n ∈ [10] the
largest graphs have 0, 1, 3, 5, 7, 10, 12, 15, 18, 21 edges, respectively. On the positive side,
this means that it is worthy of considering studying this problem independently.

We next continue with the line graphs of a complete bipartite graph Km,n, m,n ≥ 2.
Then we recall that Palmer [29] proved that the line graph of a connected graph G is a
nontrivial Cartesian product if and only if G = Kn,m, n,m ≥ 2, see [20, Proposition 1.2].
So, L(Km,n) ∼= Km□Kn. It is already known from [12] that µ(Km□Kn) = z(m,n; 2, 2),
where z(m,n; 2, 2) is the Zarankiewicz number, that can also be seen as the maximum
number of edges in a complete bipartite graph Km,n that has no 4-cycle. We now state
that the same conclusion can be also obtained by using Lemma 3.1. The proof of it runs
along the lines of the proof of Theorem 3.2, and thus it is left to the reader.

Theorem 3.13 Let n,m ≥ 2 and F ⊆ E(Km,n). Then SF ⊆ V (L(Km,n)) is a µ-set of
L(Km,n) if and only if SF is a largest set of vertices of L(Km,n) such that (Km,n)F contains
no 4-cycle.

The following consequence of Theorem 3.13 then follows from the above-mentioned
observations from [12].

Corollary 3.14 For any two integers n,m ≥ 2, µ(L(Km,n)) = z(m,n; 2, 2).

We close this section by again using the fact that the line graph of a complete bipartite
graph Kn,m is isomorphic to Kn□Km. Hence, a result from [34], and Theorem 2.1 lead
to the following consequence.

Corollary 3.15 For any two integers n,m ≥ 2, µt(L(Km,n)) = max{n,m}, µd(L(Km,n)) =
n+m− 1, and µo(L(Km,n)) = n+m− 2.
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4 Visibility in cographs

In this section, we consider the mutual-visibility in cographs. In the main result we prove
that if G is a cograph, then either µ(G) = µt(G) (= µo(G) = µd(G)), or µ(G) = µd(G) =
n(G)− 1 and µt(G) = µo(G) = n(G)− 2.

A cograph is a graph all of whose connected induced subgraphs have diameter at most
2. Moreover, each cograph can also be built up from a single vertex by adding a sequence
of twins. Two vertices u and v of G are twins if NG(u) = NG(v); in particular, they are
false twins if they are twins and uv /∈ E(G), and they are true twins if they are twins and
uv ∈ E(G). We use some additional notation here. Given a graph G and v ∈ V (G), G− v
denotes the subgraph of G induced by V (G) \ {v}. A graph G such that µ(G) = µt(G) is
called a (µ, µt)-graph.

We start by recalling the following characterizations from [16] and [13].

Lemma 4.1 [16, Lemma 4.8] Given a graph G, then µ(G) ≥ n(G)−1 if and only if there
exists a vertex v in G adjacent to each vertex u in G− v such that degG−v(u) < n(G)− 2.

In [13], any vertex v of G fulfilling the condition in the above lemma was called enabling.

Proposition 4.2 [13, Proposition 3.5] A cograph G is a (µ, µt)-graph if and only if it
has a universal vertex or no enabling vertices.

The following definition aims to reformulate the previous characterizations in terms of
graph structure.

Definition 4.3 A big-µ graph is any graph G defined as G = (K1 ∪Kt) +H, where K1,
Kt, and H are three distinct graphs such that t ≥ 0 (i.e., Kt can be an empty graph).

From this definition, it follows that each non-trivial clique is a big-µ graph (it is suffi-
cient to take Kt empty and H as a clique). Consequently, observe that if G is a big-µ graph,
then µ(G) = n(G) when Kt is empty and H isomorphic to a clique, and µ(G) = n(G)− 1
otherwise. This observation explains the term big-µ.

The two characterizations recalled above will be reformulated by using the following
lemma.

Lemma 4.4 Let G be an arbitrary graph. Then G is a big-µ graph if and only if there
exists a vertex v in G adjacent to each vertex u in G− v such that degG−v(u) < n(G)− 2.

Proof. (⇒) Assume that G is a big-µ graph, that is there exists three distinct graphs
K1, Kt, and H such that G = (K1 ∪Kt) +H. Let v be the vertex forming the graph K1.
Since the vertices u of H are the only vertices such that degG−v(u) < n(G)− 2, and since
v is adjacent to all of them, the thesis follows.

(⇐) Assume now there exists a vertex v of G being adjacent to each vertex u in G− v
such that degG−v(u) < n(G)− 2. To show that G is a big-µ graph, take K1 formed by v,
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G′ as the graph induced by N(v), and G′′ as the graph induced by V (G) \N [v]. Let u′′ be
a vertex of G′′. Since u′′ is not adjacent to v in G, it holds that degG−v(u

′′) ≥ n(G) − 1.
This implies that G′′ is a clique, and there exists an edge in G between each pair of vertices
u′ ∈ V (G′) and u′′ ∈ V (G′′). Hence G = (K1 ∪G′) +G′′, where G′ is an arbitrary graph
and G′′ is a clique. □

Corollary 4.5 Let G be an arbitrary graph. Then µ(G) ≥ n(G)− 1 if and only if G is a
big-µ graph.

Proof. This is an immediate consequence of Lemma 4.1 and Lemma 4.4. □

Corollary 4.6 Let G be a cograph. Then µ(G) > µt(G) if and only if G is a big-µ graph
G = (K1 ∪Kt) +H with no universal vertices.

Proof. (⇒) From Proposition 4.2 we have µ(G) > µt(G) if and only if G has an enabling
vertex v and G has no universal vertices. By Lemma 4.4, we have that G = (K1∪Kt)+H
is a big-µ graph.

(⇐) As G = (K1 ∪ Kt) + H has no universal vertices, G is not a clique and then
µ(G) < n(G). Hence, by Corollary 4.5, µ(G) = n(G)−1. We claim that µt(G) < n(G)−1.
Assume, on the contrary, that µt(G) = n(G)− 1. Let S be a µt-set of G and let u be the
only vertex of V (G) not in S and let v be the only vertex in K1. Since G has no universal
vertices we deduce, (1) Kt is not empty and (2) H has at least two not adjacent vertices x
and y. Then, by (1), u cannot be v, otherwise u is not in mutual visibility with any vertex
in Kt. Moreover, u cannot be a vertex of Kt, otherwise u is not in mutual visibility with v.
By (2), u cannot be a vertex of H, otherwise x and y are not in mutual visibility. Hence
µt(G) < n(G)− 1. □

This corollary implies that the smallest cograph G which is not a (µ, µt)-graph corre-
sponds to the cycle C4 = (K1 ∪Kt) +H, with t = 1 and H = K1 ∪K1. If v is the vertex
forming K1, h1, h2 are the vertices forming H, and k is the unique vertex of Kt, it can be
observed that each cograph which is not a (µ, µt)-graph can be obtained from this initial
cycle by applying no split operations to v, any possible split operation to h1 and h2 and
only true-twin operations to k.

In [16] it is shown that µ(G) ≥ n(G)−2 for each cograph G, and that the exact value of
µ(G) can be computed in polynomial time. The following statement extends the analysis
to the other visibility parameters.

Theorem 4.7 If G is a cograph, then either µ(G) = µt(G), or µ(G) = µd(G) = n(G)− 1
and µt(G) = µo(G) = n(G)− 2.
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Proof. If µ(G) ̸= µt(G) then, by Corollary 4.6, G is a big-µ cograph G = (K1 ∪Kt) +H
without universal vertices. By the proof of the same corollary, we have µ(G) = n(G)− 1.
Concerning µd(G) = n(G) − 1, it easily follows by observing that V (G) \ {u}, where u is
the unique vertex of K1, is a dual mutual-visibility set of G.

By using again the proof of Corollary 4.6, we have µt(G) < n(G) − 1. Notice that
the same arguments can be used to show that µo(G) < n(G) − 1 also holds. Hence, to
conclude the proof, it is sufficient to show there exists a total mutual-visibility set of G
with n(G) − 2 elements. To this end, let S = V (G) \ {u, v} where u is the unique vertex
of K1 and v is a vertex in H. Let us show that S is a total mutual-visibility set of G.
The vertices in S are in mutual visibility, since any two of them are adjacent or they are
adjacent vertices of u. The vertices u and v are adjacent. Vertex u is in mutual visibility
with all the vertices in S, as u is adjacent to them or in mutual visibility through vertex
v. Analogously, vertex v is in mutual visibility with all the vertices in S as v is adjacent
to them or in mutual visibility through vertex u. Then, S is a total mutual-visibility set
of G with n(G)− 2 vertices. □

A well-known superclass of cographs is that formed by distance-hereditary graphs. In
fact, these graphs can be generated by using true twins, false twins, and pendant vertices.
Concerning the problem of characterizing all the distance-hereditary graphs graphs G in
which µ(G) > µt(G), we conjecture that the following holds:

Conjecture 4.8 If G is a distance-hereditary graph but not a big-µ cograph without uni-
versal vertices, then µ(G) = µt(G).

We must remark that this conjecture is also supported by numerous computer-assisted
simulations.

5 Non-trivial diameter-two graphs of minimum size

Let G be a diameter-two graph with no universal vertex. Then Erdős and Rényi proved
that m(G) ≥ 2n(G)−5. More than two decades later, Henning and Southey characterized
the graphs which achieve the bound. In this section we determine µ, µo, µd, and µt for
these extremal diameter-two graphs.

Let us restate the mentioned classical result of Erdős and Rényi on the minimum size
of a diameter-two graph with no universal vertex.

Theorem 5.1 [18] If G is a diameter-two graph with no universal vertex, then m(G) ≥
2n(G)− 5.

Let P be the Petersen graph and note that P attaines the bound of Theorem 5.1. It is
already known that µ(P ) = 6, see [12], and that µt(P ) = 0, see [34]. By a case analysis, we
also get that µd(P ) = 0. On the other hand, Lemma 1.1 implies that µo(P ) ≤ 4, and it can
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be easily checked that an independent set of P of cardinality 4 is an outer mutual-visibility
set. In summary,

µt(P ) = µd(P ) = 0, µo(P ) = 4, µ(P ) = 6 .

Let G7 (cf. Fig. 3) be the graph obtained from the cycle C3 by adding a pendant
edge to each vertex of the cycle and then adding a new vertex and joining it to the three
degree-one vertices. In [19], the following family G of graphs has been defined:

(i) G contains C5, G7, and the Petersen graph; and

(ii) G is closed under degree-2 vertex duplication (cf. Fig. 3).

C5 = C
(0,0)
5 C

(2,0)
5 C

(2,3)
5

G7 = G
(0,0,0)
7 G

(1,1,2)
7

Figure 3: Some examples of graphs from the family G.

The graphs that achieve equality in the bound of Theorem 5.1 are characterized as
follows.

Theorem 5.2 [19] If G is a diameter-two graph of order n and size m with no universal
vertex, then m = 2n− 5 if and only if G ∈ G.

In what follows, we compute τ(G) for each G ∈ G and for each τ ∈ {µ, µo, µd, µt}. To
this aim, denote by C

(i,j)
5 the graph obtained from the cycle C5 with one vertex duplicated

i ≥ 0 times, and another vertex duplicated j ≥ 0 times. For instance, in Fig. 3 the graphs
C5 = C

(0,0)
5 , C(2,0)

5 , and C
(2,3)
5 are shown.

Lemma 5.3 If X is a mutual-visibility (resp. outer, dual, or total mutual visibility) set
of a graph G and x ∈ X, then X \ {x} is a mutual-visibility (resp. outer, dual, or total
mutual visibility) set of G− x.
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µ-set

µt-set µo-set µd-set

µd-setµo-setµt-set

µ-set

Figure 4: Variations of mutual-visibility sets in some graphs of the family G.

Proof. Let X be a mutual-visibility set. For any two vertices u, v in X \ {x}, there is
at least one u, v-shortest path P not passing through x. Then the removal of x from G
does not destroy P in G−x. Hence, for the generality of u, v, the set X \ {x} is a mutual-
visibility set of G. Similar arguments work for the outer, dual or total mutual-visibility
cases. □

Proposition 5.4 If i, j ≥ 0, then

• µt(C
(i,j)
5 ) = i+ j,

• µo(C
(i,j)
5 ) = µd(C

(i,j)
5 ) = i+ j + 2,

• µ(C
(i,j)
5 ) = i+ j + 3.

Proof. In [11] it is shown that the four formulae are correct when i = j = 0. (Notice,
however, that although it is µo(C

(0,0
5 ) = µd(C

(0,0)
5 ) = 2, two vertices in a dual mutual-

visibility are adjacent, whereas two vertices in an outer mutual-visibility are not.) Fig. 4
shows a visibility set for each of the four variants. In each case, it is clear that each time
a degree-2 vertex duplication is made, the new vertex can be included in the visibility-set
and hence the corresponding parameter is increased by one.

Concerning the optimality, consider now all the four cases of mutual-visibility sets for
G = C

(i,j)
5 . We prove by induction that µt(G) = i+ j, µo(G) = i+ j+2, µt(G) = i+ j+2,

µt(G) = i + j + 3. As already observed, the statement holds for the initial case in which
i = j = 0. Assume it holds for k = i+j > 0 and consider the case G = C

(i,j)
5 obtained with

k + 1 degree-2 vertex duplications. Assume, by contradiction, that there exists a µt-set
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(µo-set, µd-set, µ-set) X of G with |X| > n(G) − 5 (|X| > n(G) − 3, |X| > n(G) − 3,
|X| > n(G) − 2). Then we can consider any vertex v ∈ X and set X ′ = X \ {v} and
G′ = G − v. By Lemma 5.3, X ′ is a total mutual-visibility (outer mutual-visibility, dual
mutual-visibility, mutual-visibility) set of G′, with a size larger than that assumed by
induction. □

It is worth to remark that the case concerning µ(G) in Proposition 5.4 can be also
proved by simply observing that the mutual-visibility set of G, shown in Fig. 4, contains
i+ j+3 = n(G)−2 elements, and that Corollary 4.5 implies that this set is indeed a µ-set,
since G is not a big-µ graph.

Similarly as above, denote by G
(i,j,k)
7 the graph obtained from G7 when the three

degree-2 vertices have been respectively duplicated i, j, and k times. For instance, Fig. 3
shows the graphs G7 = G

(0,0,0)
7 and G

(1,1,2)
7 .

Proposition 5.5 For the graph G
(i,j,k)
7 we have the following formulae:

• µt(G
(i,j,k)
7 ) = i+ j + k,

• µo(G
(i,j,k)
7 ) = i+ j + k + 3,

• µd(G
(i,j,k)
7 ) =

{
3; i+ j + k = 0,

i+ j + k + 2; i+ j + k ≥ 1.

• µ(G
(i,j,k)
7 ) = i+ j + k + 4.

Proof. The statement can be proved by using the same inductive approach used in the
proof of Proposition 5.4. The correctness of the base cases can be easily verified thanks
to the limited size of the graph. We just remark that for the dual mutual-visibility case,
when i = j = k = 0, the µd-set is composed of the three vertices of the C3 cycle; when
the first degree-2 vertex duplication is made (i.e., i = 1 and j = k = 0), a µd-set can be
identified by selecting the two “twin” degree-2 vertices along with their adjacent vertex in
the C3 cycle. Extending this graph further leads to identifying the µd-set as represented
in Fig. 4. □

6 Concluding remarks

In this paper we considered graphs of diameter two and their values for the (classic, to-
tal, dual and outer) mutual-visibility parameters. We next comment some possible open
questions that might be of interest to continue exploring.
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• The class of graphs of diameter two is very wide. We have studied here a few of
them, but some other non-trivial classes might be of interest as well. Among them,
we remark the Kneser graph K(n, 2), which is indeed the complement of L(Kn), and
the line graphs of complete multipartite graphs (with at least three partite sets).
For this latter ones, since we do not have an exact solution for µ(L(Km,n)) (and
it seems to be beyond the reach of existing methods), we cannot, of course, expect
an exact result for the mutual-visibility number of general complete multipartite
graphs. Suppose F ⊆ E(Kn1,...,nk

), k ≥ 3, n1, . . . , nk ≥ 2, is a µ-set of L(Kn1,...,nk
).

As diam(L(Kn1,...,nk
)) = 2, we can again apply Lemma 3.1 to see that if uv, u′v′ ∈ F

are independent edges, then there is an edge xy incident with both uv and u′v′ such
that xy /∈ F . If the edges uv and u′v′ are only between two of the multipartite
sets, then in (Kn1,...,nk

)F we have C4 as a forbidden subgraph. If the edges uv and
u′v′ lie in three multipartite sets, then in (Kn1,...,nk

)F we have K−
4 as a forbidden

subgraph, while if the end vertices of uv and u′v′ lie in four multipartite sets, then
in (Kn1,...,nk

)F we have K4 as a forbidden subgraph. However, all these facts are
not exactly related to each other, since the situations are somehow not comparable.
Consequently, it would be interest to continue the study of the (dual, outer, total)
mutual-visibility number of these line graphs.

• Theorem 2.1 completes the studies on the mutual-visibility variants of 2-dimensional
Hamming graphs (those of diameter two). For higher dimensions, the total version
was studied in [5], and the problem seems to be very challenging due to its connection
with some Turán type problems in hypergraphs. This makes natural to consider the
remaining variants (dual and outer) for Hamming graphs of higher dimension.

• Based on the fact that finding the value of any of the studied mutual-visibility pa-
rameters of graphs of diameter two seems to be a hard task, we consider the following
question of interest. Which is the computational complexity of computing the (outer,
dual, total and classical) mutual visibility number of graphs of diameter two?

• In connection with Theorem 3.12, as we already mentioned, it seems there is a lack
of results concerning the largest number of edges in a (K4, C4)-free graph of order
n. Based on this fact, it might be of interest to separately study this problem from
a combinatorial point of view. A consequence of such study will clearly give some
knowledge on the dual mutual-visibility number of L(Kn).
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