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Abstract

In the Maker-Breaker domination game, Dominator and Staller play on
a graph G by taking turns in which each player selects a not yet played
vertex of G. Dominator’s goal is to select all the vertices in a dominating set,
while Staller aims to prevent this from happening. In this paper, the game
is investigated on corona products of graphs. Its outcome is determined as
a function of the outcome of the game on the second factor. Staller-Maker-
Breaker domination numbers are determined for arbitrary corona products,
while Maker-Breaker domination numbers of corona products are bounded
from both sides. All the bounds presented are demonstrated to be sharp.
Corona products as well as general graphs with small (Staller-)Maker-Breaker
domination numbers are described.
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1 Introduction

The Maker-Breaker game was introduced by Erdős and Selfridge in [11]. The game
is played on an arbitrary hypergraph by two players named Maker and Breaker.
The players alternately select an unplayed vertex during the game. Maker’s aim is
to occupy all the vertices of some hyperedge, the goal of Breaker is to prevent him
from doing it. The game has been extensively researched, both in general and in
specific cases, cf. the book [16], the recent paper [20], and references therein.

In this paper we are interested in the domination version of the Maker-Breaker
game which was introduced in 2020 by Duchêne, Gledel, Parreau, and Renault [9].
The Maker-Breaker domination game (MBD game for short) is a game played on a
graphG = (V (G), E(G)) by two players named Dominator and Staller. These names
were chosen so that the players are named in line with the previously intensively
researched domination game [2, 3]. Just as in the general case, the two players
alternately select unplayed vertices of G. The aim of Dominator is to select all the
vertices of some dominating set of G, while Staller aims to select at least one vertex
from every dominating set of G. There are two variants of this game depending on
which player has the first move. A D-game is the MBD game in which Dominator
has the first move and an S-game is the MBD game in which Staller has the first
move.

The following graph invariants are naturally associated to the MBD game [4,
15]. The Maker-Breaker domination number, γMB(G), is the minimum number of
moves of Dominator to win the D-game on G when both players play optimally.
That is, γMB(G) is the minimum number of moves of Dominator such that he wins
in this number of moves no matter how Staler is playing. If Dominator has no
winning strategy in the D-game, then set γMB(G) = ∞. The Staller-Maker-Breaker
domination number, γSMB(G), is the minimum number of moves of Staller to win the
D-game onG when both players play optimally, where γSMB(G) = ∞ if Staller has no
winning strategy. In a similar manner, γ′

MB(G) and γ′

SMB(G) are the two parameters
associated with the S-game. Briefly, we will call γMB(G), γ′

MB(G), γSMB(G), and
γ′

SMB(G) the MBD numbers of G.
In the seminal paper [9] it was proved, among other things, that deciding the

winner of the MBD game can be solved efficiently on trees, but it is PSPACE-
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complete in general. These results have been very recently strengthened in [10]
by proving that the game is PSPACE-complete on split and bipartite graphs and
by developing a linear time algorithm to solve this game in forests. The paper [4]
focuses on γSMB(G) and γ′

SMB(G) and among other results establishes appealing
exact formulas for γ′

SMB(G) where G is a path. In [5], for every positive integer
k, trees T with γSMB(T ) = k are characterized and exact formulas for γSMB(G)
and γ′

SMB(G) derived for caterpillars. In the main result of [13], γMB and γ′

MB are
determined for Cartesian products of K2 by a path. In [7], the MBD game is further
studied on Cartesian products of paths, stars, and complete bipartite graphs. The
total version of the MBD game was introduced in [14] and further investigated
in [12].

The corona product of graphs is a graph operation that has already been studied
from many perspectives, [1, 8, 17, 18, 19, 21] is a selection of recent relevant con-
tributions. In this paper, we investigate the MBD game played on these products
and proceed as follows. In the rest of the introduction definitions and known results
needed are stated. In the next section we determine the outcome of the MBD game
on an arbitrary corona product of graphs. In Section 3 we determine γSMB and γ′

SMB,
and bound γMB and γ′

MB of arbitrary corona products. We demonstrate that all the
bounds are sharp. In particular, γMB and γ′

MB are determined for corona products
of arbitrary graphs by trees with perfect matchings. In Section 4 we describe corona
products with small MBD numbers and along the way describe general graphs with
small MBD numbers.

Let G = (V (G), E(G)) be a graph. The order of G will be denoted by n(G).
For a vertex v ∈ V (G), its open neighbourhood is denoted by N(v) and its closed
neighbourhood by N [v]. The degree of v is deg(v) = |N(v)|. The minimum and the
maximum degree of G are denoted by δ(G) and ∆(G). An isolated vertex is a vertex
of degree 0, a leaf is a vertex of degree 1. A support vertex is a vertex adjacent to
a leaf, a strong support vertex is a vertex that is adjacent to at least two leaves. A
dominating set of G is a set D ⊆ V (G) such that each vertex from V (G) \D has a
neighbour in D. The domination number γ(G) of G is the minimum cardinality of
a dominating set of G. A vertex of degree n(G)− 1 is a dominating vertex.

The corona G⊙H of graphs G and H is obtained by taking one copy of G and
n(G) copies of H by joining the ith vertex of G to each vertex in the ith copy of
H . Clearly, n(G ⊙ H) = n(G)(n(H) + 1) and δ(G ⊙ H) = δ(H) + 1. It is also
straightforward to see that γ(G⊙H) = n(G).

We next collect known results about the MBD game to be used later on.

Lemma 1.1 (No-Skip Lemma for Dominator [15]) In an optimal strategy of
Dominator to achieve γMB(G) or γ′

MB(G) it is never an advantage for him to skip a
move. Moreover, if Staller skips a move it can never disadvantage Dominator.
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Lemma 1.2 (No-Skip Lemma for Staller [4]) In an optimal strategy of Staller
to achieve γSMB(G) or γ′

SMB(G) it is never an advantage for her to skip a move.
Moreover, if Dominator skips a move it can never disadvantage Staller.

Theorem 1.3 (Continuation Principle [15]) Let G be a graph with A,B ⊆ V (G).
If B ⊆ A then γMB(G|A) ≤ γMB(G|B) and γ′

MB(G|A) ≤ γ′

MB(G|B).

Theorem 1.4 [4] Let G be a graph.

1. If γ′

SMB(G) < ∞, then γ′

SMB(G) ≤
⌈

n(G)
2

⌉

.

2. If γSMB(G) < ∞, then γSMB(G) ≤
⌊

n(G)
2

⌋

.

Moreover, both bounds are sharp.

2 Outcome of the game on corona products

In this section we determine the winner of the MBD game played on corona products.
Before that we argue in the rest we can restrict our attention to corona products in
which the first factor is of order at least two.

Let H be an arbitrary graph. Then it is straightforward to verify that

γMB(K1 ⊙H) = 1 ,

γ′

MB(K1 ⊙H) = γMB(H) ,

γSMB(K1 ⊙H) = ∞ ,

γ′

SMB(K1 ⊙H) = γSMB(H) .

Therefore, we may indeed restrict in the rest of the paper to corona products G⊙H ,
where G is a connected graph with n(G) ≥ 2. In what follows, we will also always
assume that V (G) = {v1, . . . , vn(G)} ⊆ V (G⊙H), and denote by Hi the copy of H
in G⊙H assigned to vi, i ∈ [n(G)].

It was proved in [9] that for the outcome o(G) of the MBD game played on G

we have o(G) ∈ {D,S,N}, with the following meaning:

• o(G) = D: Dominator has a winning strategy no matter who starts the game;

• o(G) = S: Staller has a winning strategy no matter who starts the game;

• o(G) = N : the first player has a winning strategy.
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We now prove that the winner in the MBD game played on a corona product
depends only on the winner of game played on the second factor.

Theorem 2.1 If G is a connected graph with n(G) ≥ 2 and H is a graph, then

o(G⊙H) =

{

D; o(H) ∈ {D,N},

S; o(H) = S.

Proof. Suppose first that o(H) ∈ {D,N}. Then in both cases we have γMB(H) <
∞. We describe a strategy for Dominator by which he can win the MBD game
played on G⊙H , no matter who is the first player. First, if Staller selects a vertex
vi as her first move, then Dominator replies by a vertex in Hi which is his optimal
first move when the game is played on H . During later stages of the game, if Staller
at some point selects another vertex of Hi, Dominator replies by an optimal move
(w.r.t. the game played in H) in Hi. Playing like that, at the end of the game
Dominator will dominate the vertices of Hi. Second, if Staller first selects some
vertex of Hi, then Dominator replies by playing vi and then clearly at the end of
the game he will dominate the vertices of Hi. Following the described strategy of
Dominator we conclude that o(G⊙H) = D when o(H) ∈ {D,N}.

Suppose second that o(H) = S. As n(G) ≥ 2, Staller can select some vertex
vi as her first move, no matter who starts the game, such that no vertex of Hi has
yet been played. In the continuation of the game, Staller can isolate a vertex in Hi

because o(H) = S, that is, she follows her optimal strategy on Hi. We conclude
that o(H) = S. �

3 MBD numbers of corona products

In this section we consider the MBD numbers of corona products G⊙H . In view of
Theorem 2.1 we consider three cases depending on o(H). We start with the simplest
case o(H) = S which enables an exact solution as follows.

Theorem 3.1 If o(H) = S and G is a connected graph with n(G) ≥ 2, then

γSMB(G⊙H) = γ′

SMB(G⊙H) = 1 + γSMB(H).

Proof. Using Theorem 1.3, a vertex vi of G is an optimal first move for Dominator.
Then all the vertices in its closed neighbourhood in G ⊙H are dominated. Staller
responds by selecting a vertex vj, where j 6= i. Staller’s plan afterwards is to play
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only on Hj . If Dominator plays his second move on Hj, then Staller can finish the
game by selecting γSMB(H) vertices of Hj and if Staller is able to play first in Hj ,
this can be done in γ′

SMB(H) moves by Staller. As γSMB(H) ≥ γ′

SMB(H), see [4,
Proposition 2.7], Staller thus has a strategy to end the game in at most 1+γSMB(H)
moves. On the other hand, Dominator can force this number of moves by playing
(optimally in the S-game on H) his second move in Hj, hence γSMB(G ⊙ H) ≤
1 + γSMB(H).

The above argument is actually independent of who moves first since n(G) ≥ 2
and Staller can select a vertex of G as her first move. Therefore we also have
γ′

SMB(G⊙H) = 1 + γSMB(H). �

The next case we consider is o(H) = D, for which the following holds.

Theorem 3.2 If H ∈ D and G is a connected graph with n(G) ≥ 2, then
⌈

n(G)

2

⌉

+

⌊

n(G)

2

⌋

γMB(H) ≤ γMB(G⊙H) ≤

⌈

n(G)

2

⌉

+

⌊

n(G)

2

⌋

γ′

MB(H)

and
⌊

n(G)

2

⌋

+

⌈

n(G)

2

⌉

γMB(H) ≤ γ′

MB(G⊙H) ≤

⌊

n(G)

2

⌋

+

⌈

n(G)

2

⌉

γ′

MB(H) .

Proof. Consider the following strategy of Dominator in the D-game played onG⊙H .
His basic idea is to select as many vertices of G as possible. In particular, if at some
point of the game Staller plays a vertex of Hi and the vertex vi has not yet been
played, then Dominator selects vi as his next move. On the other hand, if at some
point of the game Staller plays a vertex w of Hi and the vertex vi has been already
selected by Staller, then Dominator replies by a vertex in Hi which is an optimal
reply for him in the game played on H ∼= Hi after the first move w of Staller. In
the continuation of the game, whenever Staller plays in some Hi, Dominator replies
optimally there. It is also possible that Dominator is the first to play in some Hi in
which no vertex has yet been played (but vi was played by Staller), in which case
Dominator selects a vertex which is optimal in the D-game played on H .

Following the above strategy, Dominator will select at least
⌈

n(G)
2

⌉

vertices of

G. If Staller was the first to select a vertex in Hi, then Dominator will select at
most at most γ′

MB(H) vertices of Hi. Similarly, If Dominator was the first to select
a vertex in Hi, then he will select at most at most γMB(H) vertices of Hi. Since
γMB(H) ≤ γ′

MB(H) (see [15, Theorem 3.1]), Dominator will play at most γ′

MB(H)

vertices of each Hi, where vi was selected by Staller. As there are at most
⌊

n(G)
2

⌋

such vertices, the upper bound for γMB(G⊙H) follows.
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To prove the lower bound for γMB(G ⊙ H), consider the following strategy of
Staller. During the first phase of the game, Staller selects as many vertices of G as

possible, that is,
⌊

n(G)
2

⌋

vertices. After that, whenever Dominator plays a vertex

of Hi, Staller replies there by her optimal strategy in the game played on H . In
this way Staller forces to select at least γMB(H) vertices in Hi if Dominator was the
first to play in Hi and at least γ′

MB(H) vertices if Staller was the first to play in Hi.

Since γ′

MB(H) ≥ γMB(H), in each of the
⌊

n(G)
2

⌋

graphs Hi for which vi was played

by Staller, at least γMB(H) vertices will be played by Dominator. This proves the
lower bound.

The arguments for the bounds for γ′

MB(G ⊙H) are parallel and hence omitted.
�

The bounds of Theorem 3.2 are sharp as can be demonstrated by the following
two consequences of the theorem, where the first one directly follows from it.

Corollary 3.3 If H ∈ D with γMB(H) = γ′

MB(H), and G is a connected graph with
n(G) ≥ 2, then

γMB(G⊙H) =

⌈

n(G)

2

⌉

+

⌊

n(G)

2

⌋

γMB(H)

and

γ′

MB(G⊙H) =

⌊

n(G)

2

⌋

+

⌈

n(G)

2

⌉

γMB(H).

Theorem 3.4 Let G be a graph with n(G) ≥ 2 and let T be a tree with a perfect
matching. Then

γMB(G⊙ T ) =

⌈

n(G)

2

⌉

+

⌊

n(G)

2

⌋

n(T )

2

and

γ′

MB(G⊙ T ) =

⌊

n(G)

2

⌋

+

⌈

n(G)

2

⌉

n(T )

2
.

Proof. Since T is a tree with a perfect matching, we know from [14] that o(T ) = D as

well as that γMB(T ) = γ′

MB(T ) =
n(T )
2

. The conclusion then follows by Corollary 3.3.
�

The last case to consider is o(H) = N , for which the following holds.

Theorem 3.5 If o(H) = N and G is a graph with n(G) ≥ 2, then

1 +

⌊

n(G)− 1

2

⌋

γ(H) +

⌊

n(G)

2

⌋

γMB(H) ≤ γMB(G⊙H) ≤ 1 + (n(G)− 1)γMB(H)
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and
⌊

n(G)

2

⌋

γ(H) +

⌈

n(G)

2

⌉

γMB(H) ≤ γ′

MB(G⊙H) ≤ n(G)γMB(H) .

Proof. Consider the D-game on G⊙H .
To prove the lower bound, consider the following strategy of Staller. After Dom-

inator selects some vertex of G, say vi, as his optimal first move in view of The-
orem 1.3, Staller selects as her first move another vertex of G, say vj . Because
O(H) = N , Dominator must reply by playing (an optimal move with respect to the
game played on H) in Hj. After that Staller continues by selecting the vertices of
G until all are vertices of G but vi are played by Staller. For each such vertex vk
Dominator was forced to select a vertex from Hk. Hence until this point of the game
Dominator played n(G) vertices, the vertex vi and one vertex in each Hj, j 6= i. In

the rest of the game, Staller will be able to play the second move in at least
⌊

n(G)
2

⌋

copies Hj of H . Consequently, she will be able to force at least γMB(H) moves of

Dominator in each of these copies. As in the remaining
⌊

n(G)−1
2

⌋

copies of H at least

γ(H) moves must be done Dominator, the bound follows.
For the upper bound, we argue as follows. After Dominator selects a vertex

vi as his first move, Staller responds to this move by playing a vertex vj , j 6= i.
Otherwise, if Staller selects a vertex in Hj then Dominator can dominate all the
vertices of Hj by selecting the vertex vj in a single move. Since γMB(H) < ∞,
Dominator has an optimal strategy in the D-game on H to finish it in at most
γMB(H) moves. Dominator must play a vertex of Hj as his response after the
Staller’s move on vj because γ′

MB(H) = ∞. Now Dominator’s strategy is as follows.
If Staller plays on Hj then Dominator uses his optimal strategy on Hj for the
remaining moves in Hj. Otherwise, if Staller selects a vertex of G, say vk, then
Dominator uses his optimal strategy in Hk for the remaining moves in Hk. In this
strategy, Dominator can finish the game on G⊙H in 1+ (n(G)− 1)γMB(H) moves.
Here, Dominator may not play optimally but Staller plays optimally in G ⊙ H .
Therefore γMB(G⊙H) ≤ 1 + (n(G)− 1)γMB(H).

Similar arguments also hold for the S-game on G⊙H . The only difference is that
Staller starts the game and hence she can select all the vertices of G in G⊙H . After
that Dominator can ensure that he will play at most γMB(H) vertices in each Hi by
replying to each move of Staller in some Hj by an optimal move in the same Hj .
As for the lower bound, Staller can now force Dominator to play at least γMB(H)

moves in
⌈

n(G)
2

⌉

copies Hj of H . �

All the bounds of Theorem 3.5 are sharp as follows from the next consequence
of Theorem 3.5.
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Corollary 3.6 If H is a graph with o(H) = N and γMB(H) = γ(H), and G is a
graph with n(G) ≥ 2, then

γMB(G⊙H) = 1 + (n(G)− 1)γMB(H)

and
γ′

MB(G⊙H) = n(G)γMB(H) .

In particular, if γMB(H) = 2, then γMB(G ⊙ H) = 2n(G) − 1 and γ′

MB(G ⊙ H) =
2n(G).

Proof. Since γMB(H) = γ(H) and
⌊

n(G)−1
2

⌋

+
⌊

n(G)
2

⌋

= n − 1, the bounds for

γMB(G ⊙ H) in Theorem 3.5 coincide, and since
⌊

n(G)
2

⌋

+
⌈

n(G)
2

⌉

= n the same

conclusion holds for the bounds for γ′

MB(G⊙H).
If γMB(H) = 2, then G clearly does not contain a dominating vertex, hence

γ(H) ≥ 2 and therefore γ(H) = 2. The last assertion of the corollary now follows
from the first one. �

Let Hm, m ≥ 3, be the graph obtained from m disjoint copies of C4 by selecting
a vertex in each of the copies and identifying these vertices. (The identified vertex
is of degree 2m in Hm.) Then it is not hard to check that o(Hm) = N and that
γMB(Hm) = γ(Hm) = m + 1. Hence the graphs Hm fulfill the assumptions of
Corollary 3.6.

On the other hand, the bounds of Theorem 3.5 are not sharp in general. To see
this, consider the example from Fig. 1 in which G = P3 and H is clear from the
figure. To make the figure clearer, the edges between the vertices of G and H are
only indicated.

Note first that O(H) = N . in particular, the support vertex of H is the optimal
first move of Staller in the S-game. Moreover, the same vertex is the optimal first
move of Dominator in the D-game and we have γMB(H) = 3. Consider now the D-
game played on P3⊙H , see Fig. 1 again. In view of Theorem 1.3, Dominator begins
the game by selecting d1 = g2. After Staller replies by s1 = g1, Dominator is forced
to play d2 in H1, and after the move s2 = g3 Dominator must play in H3. Assume
without loss of generality that afterwards Staller plays a vertex of H1. Now it is
useful for Dominator not to follow Staller in H1 but instead playing the vertex d4 of
H3 as shown in the figure. In this way, Dominator will finish the game in six moves,
which is also optimal for him, that is, γMB(P3 ⊙ H) = 6 which coincides with the
lower bound of the theorem. On the other hand, the upper bound of Theorem 3.5
yields γMB(P3 ⊙H) ≤ 7.

We conclude with another consequence of Theorem 3.5 which demonstrates the
sharpness of bounds.
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g1 = s1

d2 s3

H1

g2 = d1

H2

g3 = s2

d3 d4 !

H3

Figure 1: An example in which it is useful for Dominator to skip a move in some
copy of H

Corollary 3.7 If H ∈ D, then γMB(K2 ⊙H) = 1 + γMB(H).

Proof. In this case the bounds of Theorem 3.5 coincide. �

4 Corona products with small MBD numbers

In this section we characterize corona products whose MBD numbers are equal to 2
or 3. For this purpose we describe along the way graphs whose MBD numbers are
equal to 2. This fills a gap in the literature. In fact, graphs G with γMB(G) = 2 were
already described as follows. For this sake note that if γ(G) = 1, then γMB(G) = 1,
and if γ(G) ≥ 3, then γMB(G) ≥ 3.

Proposition 4.1 [14, Proposition 3.2] Let G be a graph with γ(G) = 2. Then
γMB(G) = γ(G) = 2 if and only if G has a vertex that lies in at least two γ-sets of
G.

We next complement Proposition 4.1 with the following result.

Proposition 4.2 Let G be a graph with γ(G) ≤ 2. Then γ′

MB(G) = 2 if and only
if G has at most one dominating vertex and at least two vertices that lie in two
different dominating sets of G of cardinality 2.

10



Proof. Assume first that γ′

MB(G) = 2. Then G has at most one dominating vertex
for otherwise Dominator can finish the game in his first move. Suppose that G

contains at most one vertex that lies in two different dominating sets of G. If x is a
such a vertex, Staller can select x as her first move. Then, no matter how Dominator
plays, he needs at least three moves to finish the game.

Conversely, assume that G has at most one dominating vertex and at least two
vertices that lie in two different dominating sets of G of cardinality 2. Then Staller
can prevent Dominator from winning in one move by selecting first a possible dom-
inating vertex. However, no matter how Staller starts, after her move there exists
a not yet played vertex which lies in two dominating sets of G of cardinality 2. By
selecting such a vertex, Dominator will win the game in his second move. �

It is straightforward to check that in the case of corona products G⊙H , each of
Propositions 4.1 and 4.2 yields the same condition on H , that is, we have:

Corollary 4.3 If G is a graph with n(G) ≥ 2, then γMB(G⊙H) = γ′

MB(G⊙H) = 2
if and only if n(G) = 2 and H has a dominating vertex.

Graphs G with γSMB(G) = 2 and with γ′

SMB(G) = 2 can be respectively described
as follows.

Proposition 4.4 Let G be a graph with δ(G) ≥ 1. Then the following hold.

(i) γSMB(G) = 2 if and only if G has at least two strong support vertices.

(ii) γ′

SMB(G) = 2 if and only if G has a strong support vertex.

Proof. (i) Let G be a graph with δ(G) ≥ 1 and assume that γSMB(G) = 2. Suppose
that G has at most one strong support vertex. Dominator first selects this strong
support vertex. Now, Staller replies to this move with a vertex v. If at most one
leaf is adjacent to v, then Dominator selects this leaf as his next turn and Staller
cannot finish the game in her next move. Clearly, Staller can finish the game in her
next move only when either G has isolated vertices or at least two leaves adjacent
to v. Since δ(G) ≥ 1, G has no isolated vertices. Thus G has at least two strong
support vertices.

Conversely, assume that G has at least two strong support vertices. In the first
move Staller can select a strong support vertex such that none of its leaves has been
played by Dominator in his first move. Then Staller can isolate one leaf in her second
move, hence γSMB(G) ≤ 2. Since δ(G) ≥ 1, we also have γSMB(G) ≥ 2. Therefore
γSMB(G) = 2.

11



(ii) Assume that u us a strong support vertex of G. Since δ(G) ≥ 1, we have
γ′

SMB(G) ≥ 1 + δ(G) ≥ 2. If Staller first selects u in the S-game, then she can win
the game in her second move, hence we also have γ′

SMB(G) ≤ 2.
Conversely, assume that γ′

SMB(G) = 2. Since 1 + δ(G) ≤ γ′

SMB(G) = 2, we see
that G has a leaf. Staller first selects a vertex u which is adjacent to a leaf for
otherwise γ′

SMB(G) ≥ 3. If there is only one leaf adjacent to u, then Dominator
selects that leaf as his next move. Since γ′

SMB(G) = 2, Staller can finish the game
in her next move. This is possible only when G has an isolated vertex or u has an
unplayed leaf. Since δ(G) ≥ 1, G has no isolated vertices. Therefore u is a strong
support vertex. �

Proposition 4.4 has been independently established by Bujtás and Dokyeesun
and is contained in [6].

It is again straightforward to check that in the case of corona products G ⊙
H , each of the conditions (i) and (ii) of Propositions 4.4 and 4.2 yields the same
condition on H as follows.

Corollary 4.5 If G is a graph with n(G) ≥ 2, then γSMB(G⊙H) = γ′

SMB(G⊙H) = 2
if and only if H has at least two isolated vertices.

To describe graphs with SMB numbers equal to three is more tricky. Nevertheless
we can do it for γ′

SMB as follows.

Proposition 4.6 Let G be a graph with δ(G) ≥ 1. Then γ′

SMB(G) = 3 if and only
if G satisfies the following conditions.

(i) G has no strong support vertices.

(ii) There exists a vertex u ∈ V (G) such that either G− u has at least two strong
support vertices or G− u has exactly one isolated vertex and a strong support
vertex.

Proof. Assume first that γ′

SMB(G) = 3. Then G has no isolated vertices and no
strong support vertices. Let u be an optimal first move of Staller in the S-game.
After this move, the remaining game is a D-game onG−u and we have γSMB(G−u) =
2. In view of Proposition 4.4 this is possible only when either G − u has at least
two strong support vertices or G − u has exactly one isolated vertex and a strong
support vertex.

Conversely, assume that G is a graph which satisfies (i) and (ii). Let u be a
vertex that satisfies (ii) and let u be the first move of Staller in the S-game. If
G−u has an isolated vertex then Dominator selects this vertex for otherwise Staller
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could claim it in the next move to win the game. After that, Staller selects a strong
support vertex and wins the game in her third move. Similarly, if G − u has no
isolated vertex, then G − u has two strong support vertices and again Staller can
win in her third move. We conclude that γ′

SMB(G) = 3. �

For corona products Proposition 4.6 yields:

Corollary 4.7 Let G be a graph with n(G) ≥ 2. Then γSMB(G ⊙H) = γ′

SMB(G⊙
H) = 3 if and only if either H has at least two strong support vertices, or H has an
isolated vertex and at least one strong support vertex.

An alternative way to derive Corollary 4.7 is to use Theorem 3.1, that is,
γSMB(G ⊙ H) = γ′

SMB(G ⊙ H) = 3 if and only if γSMB(H) = 2. If δ(H) ≥ 1,
then Proposition 4.4(i) implies that this is if and only if H has at least two strong
support vertices. On the other hand, if H has an isolated vertex, we infer that it
must at least one strong support vertex.

We conclude the section by a description of corona products with γMB equal to
three.

Proposition 4.8 Let G be a graph with n(G) ≥ 2 and let H be graphs. Then
γMB(G⊙H) = 3 if and only if either n(G) = 2 and γMB(H) = 2, or n(G) = 3 and
H has a dominating vertex.

Proof. If γMB(G⊙H) = 3, then clearly n(G) ≤ 3. Assume first n(G) = 2. In their
first two moves, Dominator and Staller will respectively select the two vertices of G,
no matter whether the D-game or the S-game is played. After that, γMB(G⊙H) = 3
holds if and only if γMB(H) = 2. Similarly, if n(G) = 3, then Dominator can win if
and only if H has a dominating vertex. �

5 Concluding remarks

In this paper, we explore the Maker-Breaker domination game on corona products
of graphs. We have identified some general features, but several directions remain
open for further exploration. Let us point to some of them. In Theorem 3.4 we
have determined γMB(G ⊙ T ) and γ′

MB(G⊙ T ) for an arbitrary graph G with with
n(G) ≥ 2 and an arbitrary tree T with a perfect matching. It would be interesting
to derive such a result also for arbitrary trees, that is, also for trees which do not
contain perfect matchings. With respect to small MBD numbers it in particular
remains to consider arbitrary graphs G with γSMB(G) = 3, or with γMB(G) = 3, or
with γ′

MB(G) = 3, as well as corona products G⊙H with γ′

MB(G⊙H) = 3.
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[9] E. Duchêne, V. Gledel, A. Parreau, G. Renault, Maker-Breaker domination
game, Discrete Math. 343 (2020) 111955.
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