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Abstract

Let X be a vertex subset of a graph G. Then u,v € V(G) are X-positionable if
V(P)N X C {u,v} holds for any shortest u,v-path P. If each two vertices from X
are X-positionable, then X is a general position set. The general position number
of G is the cardinality of a largest general position set of G and has been already
well investigated. In this paper a variety of general position problems is introduced
based on which natural pairs of vertices are required to be X-positionable. This
yields the total (resp. dual, outer) general position number. It is proved that the
total general position sets coincide with sets of simplicial vertices, and that the outer
general position sets coincide with sets of mutually maximally distant vertices. It
is shown that a general position set is a dual general position set if and only if its
complement is convex. Several sufficient conditions are presented that guarantee that
a given graph has no dual general position set. The total general position number,
the outer general position number, and the dual general position number of arbitrary
Cartesian products are determined.
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1 Introduction

General position sets were introduced to graph theory independently in [2,[I7], but in the
special case of hypercubes, these sets had been studied previously in [14]. Finding a largest
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general position set in a graph G is an NP-hard problem [17]. In [I], a characterization of
general position sets in graphs was proved and the general position number for the comple-
ment of bipartite graphs, the complement of trees, and the complement of hypercubes was
determined. Afterwards, general position sets received a wide attention, see 681111318
for a selection of recent developments.

Mutual-visibility sets are closely related to general position sets and were recently
introduced by Di Stefano [5]. While investigating mutual-visibility sets in strong products,
there was a natural need to introduce total mutual-visibility sets [4]. This has led to the
variety of mutual-visibility sets which was formalized in [3]. Motivated by the variety
of mutual-visibility sets, the main purpose of this paper is to introduce and study the
corresponding variety of general position sets. It consists of general position sets, total
general position sets, outer general position sets, and dual general position sets.

The rest of the paper is organized as follows. In the rest of the introduction we give
definitions needed. In the next section we introduce the variety of the general position sets
and characterize total general position sets and outer general position sets. In Section
we focus on dual general position sets. We first observe that a general position set is
a dual general position set if and only if its complement is convex. Then we consider
graphs with small dual general position numbers. In particular, several sufficient conditions
are presented that guarantee that a given graph has no dual general position set at all.
In Section @] we determine the total general position number, the outer general position
number, and the dual general position number of arbitrary Cartesian products.

For a natural number n we set [n] = {1,...,n}. All graphs G = (V(G), E(G)) in the
paper are connected unless otherwise stated. The order of G is the value of |[V(G)|. The
open neighborhood of a vertex u of G is denoted by Ng(u). The degree of a vertex u of G
is degg(u) = [Ng(u)|. If X C V(G), then G[X] denotes the subgraph of G induced by X.
Moreover, G — X is the subgraph of G obtained from G by deleting all vertices from X. If
G is not a tree, then its girth g(G) is the length of a shortest cycle of G. A vertex of G is
simplicial if its neighbourhood induces a complete subgraph. The set of simplicial vertices
of G will be denoted by S(G) and the cardinality of S(G) by s(G). The clique number of
G is denoted by w(G).

The distance dg(u,v) between vertices u and v of G is the usual shortest-path distance.
The diameter diam(G) of G is the maximum distance between pairs of vertices of G. A
subgraph G’ of a graph G is isometric, if for every two vertices x and y of G’ we have
de(z,y) = dg(z,y). A subgraph G’ of a graph G is convez, if for every two vertices of
G’, every shortest path in G between them lies completely in G’. By abuse of language we
also say that a set of vertices is convex if it induces a convex subgraph.

The Cartesian product GO H of graphs G and H has the vertex set V(GO H) =
V(G) x V(H), and vertices (g, h) and (¢, h') are adjacent if either g¢’ € E(G) and h = I/,
org =g and hh/ € E(H). The direct product G x H has the same vertex set as G J H, while
vertices (g, h) and (¢’,h') are adjacent if g¢’ € E(G) and hh' € E(H). The strong product
G X H also has the same vertex set as GO H, while E(GK H) = E(GOH)UE(G x H).
The join G ® H is the graph obtained from the disjoint union of G and H by adding all



possible edges between vertices from G and vertices from H.

2 The variety

In this section we first introduce the announced variety of general position sets. After that
we characterize total general position sets and outer general position sets.

Let G = (V(G), E(GQ)) be a graph and X C V(G). Vertices u,v € V(G) are X-
positionable if for any shortest u,v-path P we have V(P) N X C {u,v}. Note that each
pair of adjacent vertices is X-positionable. Set X = V(G) \ X. Then we say that X is

e a general position set, if every u,v € X are X-positionable;
e a total general position set, if every u,v € V(G) are X-positionable;

e an outer general position set, if every u,v € X are X-positionable, and every u € X,
v € X are X-positionable; and

e a dual general position set, if every u,v € X are X-positionable, and every u,v € X
are X-positionable.

The cardinality of a largest general position set, a largest total general position set, a largest
outer general position set, and a largest dual general position set will be respectively
denoted by gp(G), gpi(G), gp.(G), and gpy(G). Also, these graph invariants will be
respectively called the general position number, the total general position number, the outer
general position number, and the dual general position number of G. Moreover, for any
invariant 7(G) from the above ones, by a 7-set we mean any set of vertices of cardinality
7(G). In addition, for any two invariants 71(G) and 72(G), by a (71, 72)-graph we mean
any graph G with 7 (G) = (G).
If G is a graph, then by definition,

gp(G) > gp,(G) > gpy(G) and (1)
gp(G) > gpa(G) = gpy(G) . (2)

If G is a block graph, then gp(G) = s(G), see [17, Theorem 3.6]. Moreover, we can
check directly that the set of simplicial vertices of G is also a total general position set.
Hence block graphs are (gp, gp;)-graphs. Having (1) and (2) in mind we thus get that if
G is a block graph, then

gp(G) = gp,(G) = gpqa(G) = gp((G) = 5(G).
In particular, if n > 2, then 7(P,) = 2 for each 7 € {gp, gp,, gPq4, &P} Moreover,
e cach pair of distinct vertices of P, forms a gp-set of P,,

e {1,n} is the only gp,-set of P,



e {1,2}, {1,n}, and {n — 1,n} are the only gpy-sets of P,,
e {1,n} is the only gp.-set of P,.

Contrary to block graphs, by considering Cartesian products of two complete graphs
we will see that all these four parameters can be pairwise arbitrary different.
We now characterize total general position sets as follows.

Theorem 2.1 Let G be a graph and X C V(G). Then X is a total general position set of
G if and only if X C S(G). Moreover, gp,(G) = s(G).

Proof. Assume first that X is a total general position set of G and consider an arbitrary
vertex x from X. Suppose that x ¢ S(G). Then x has two adjacent vertices y and z
such that dg(y,z) = 2, which means that there exists a shortest y, z-path containing x.
Hence the vertices y and z are not X-positionable, a contradiction. As a consequence, we
conclude that x must belong to S(G) and then X C S(G).

To prove the converse, assume that X C S(G). Consider any two vertices v and v from
V(G) and let P, be a shortest u,v-path of G. If u is adjacent to v, then V(P,,) = {u,v}
and hence u and v are X-positionable. Assume next that dg(u,v) > 2. Let P,, be the path
u = x1,%2,...,Tr =v. Then k > 3. Suppose that x; € X, where 2 < ¢ < k—1. Since z; is
a simplicial vertex of G, x;—1 must be adjacent to ;41 and hence x1, ..., 2;—1,%i11,..., Tk
is a u, v-path shorter than P,,. Since this is not possible, V(P,,) N X C {u,v}, and thus
u and v are X-positionable. Hence X is a total general position set of G, and then we can
conclude that gp(G) = s(G). O

Corollary 2.2 If G is a graph, then gp,(G) = 0 if and only G has no simplicial vertices.

We continue with a characterization of outer general position sets. For this sake,
the following concepts are crucial. A vertex u of a graph G is maximally distant from
v € V(G) if for every w € Ng(u) it holds dg(v,w) < dg(u,v). If also v is maximally
distant from u, then w and v are said to be mutually mazximally distant. The strong
resolving graph Gsg of G has V(Gsr) = V(G) and two vertices being adjacent in Ggg if
they are mutually maximally distant in G. This notion was introduced in [19] as a tool
to study the strong metric dimension. The paper [16] gives a survey on strong resolving
graphs with an emphasize on the realization problem (which graphs have a given graph as
their strong resolving graph) and the characterization problem (characterize graphs that
are strong resolving graphs of some graphs). From our perspective, in [9] it was proved
that gp(G) > w(Gsgr) holds for any connected graph G.

Now we can characterize outer general position sets as follows.

Theorem 2.3 Let G be a connected graph and X C V(G), |X| > 2. Then X is an outer
general position set of G if and only if each pair of vertices from X is mutually mazimally
distant. Moreover,

gpo(G) = w(Gsr) -



Proof. Let X C V(G) be a set with | X| > 2.

Assume first that X is an outer general position set of G and let z,y € X. If z and
y are not mutually maximally distant, there exists (at least) one neighbor of x or y, say
w € Ng(x), such that dg(w,y) = dg(x,y) + 1. Hence there exists a shortest w,y-path
which contains . Then no matter whether w € X or w ¢ X, this contradicts the fact that
{z,y} C X is an outer general position set.

Conversely, assume that any two vertices from X are mutually maximally distant.
Consider any two vertices v and v. If u,v € X, the internal vertices of all shortest wu,v-
paths are not from S as u and v are mutually maximally distant. Hence v and v are
X-positionable. Assume next that, without loss of generality, u € X and v € V(G) \ X.
If there exists a vertex w € X \ {u} lying on a shortest wu,v-path, then v and w are not
mutually maximally distant. Hence u,v are X-positionable.

The formula gp,(G) = w(Gsr) now follows by the above characterization of outer
general position sets and by the definition of the strong resolving graph. O

Corollary 2.4 If G is a connected graph of order at least 2, then gp,(G) > 2.

Proof. Let u and v be vertices of G such that dg(u,v) = diam(G). Then u and v are
mutually maximally distant, hence gp,(G) > 2 by Theorem 23] 0

As already mentioned, it was proved in [9] that gp(G) > w(Gsr) holds for any connected
graph G. Hence by Theorem 2.3 we have

gp(G) > w(Gsr) = 8p,(G) -

Thus, knowing that gp(G) = w(Gsr) holds for some graph G, we also know gp,(G). For
instance, [9, Proposition 4.5] asserts that if r; > ¢; > 1 and ry > t9 > 1, then

gp(KT’hfq X KT27t2) =Tir2 = w((Krl,tl X KTQ,tQ)SR) )

which in turn implies that
gpo(Krl,tl X KT’27t2) =Trire.

3 Dual general position sets

From Theorem 211t follows that if X is a total general position set of G, then each subset
of X is also a total general position set of G. Similarly, by Theorem [2.3] this hereditary
property also holds for outer general position sets. In addition, this property is also known
to hold for general position sets. A bit surprisingly, if X is a dual general position set of G
and Y C X, then Y need not be a dual general position set of G. To see this, consider two
adjacent vertices of Cs which form a dual general position set, however, one vertex of Cs
does not form such a set. So each of the properties of being in general position, being in



total general position, and being in outer general position is hereditary, but the property
of being in dual general position property is not.

The above consideration indicates that the dual general position is intrinsically different
from the other three invariants. In this section we have a closer look to it. We first
characterize which general position sets are dual general position sets. Then we respectively
consider graphs G with gpy(G) = 0, gpq(G) = 1, and gpy(G) > 2.

Let X be a dual general position set in a graph G. Then, clearly, X is a general position
set. Hence to find a largest dual general position set in G if suffices to check all general
position sets in G and check if they are also dual. For this task, the following result is
useful.

Theorem 3.1 Let X be a general position set of a graph G. Then X is a dual general
position set if and only if G — X is conver.

Proof. Assume that X is a dual general position set. Let z,y € V(G) \ X and let P
be a shortest x,y-path. Since X is a dual general position set, the vertices = and y are
X-positionable which in turn implies that V(P)N X = (). It follows that G — X is convex.

Conversely, assume that X is a general position set and G — X is convex. If x,y € X,
then z and y are X-positionable since X is a general position set. Consider next z,y €
V(G)\ X. Since G — X is convex, each shortest x, y-path lies in G — X hence no such path
contains vertices from X. We can conclude that X is a dual general position set. O

For the later use we state explicitly the following consequence of Theorem B.11
Corollary 3.2 If G is a graph and X C S(G), then X is a dual general position set.

Proof. Since X C S(G) we see that X is a general position set and also that G — X is
convex. Hence the assertion follows by Theorem [3.11 O

3.1 Graphs G with gp,(G) =0

In this subsection we focus on graphs G with gpq(G) = 0. It follows from Theorem B.1]
that gpq(G) = 0 if and only if for every general position set X the subgraph G — X is not
convex in G. Since dual general position sets are not hereditary (recall the example of Cj),
we must consider all general position sets, not only singletons.

We say that an edge e of a graph G is Py-inner isometric, if e is the middle edge of
some isometric Py.

Proposition 3.3 Let G be a connected graph. If each edge of G is Py-inner isometric,
then gpy(G) = 0.



Proof. Assume that G is a graph in which each edge is Py-inner isometric. Then clearly
d(G) > 2. Suppose on the contrary that gpq(G) > 1 and let x be a vertex of G from some
dual general position set X. Let y be a neighbor of . From our assumption, the edge zy
is Py-inner isometric and let 2/, z, 9,7’ be the vertices of an isometric Py, denote it by Q,
where 2’z € E(G) and yy' € E(G). Then at least one of the vertices 2’ and y belongs to
X, for otherwise x’ and y are not X-positionable.

Suppose first that y € X. It implies that ¢/ € X for otherwise x and 3y’ are not X-
positionable. Analogously, 2’ ¢ X also holds. But then the vertices 2’ and 3’ are not
X-positionable.

Suppose second that 2’ € X. Then y ¢ X, for otherwise y and 2z’ are not X-
positionable. Consider now an isometric Py, say R, such that the edge 'z is the middle
edge of R. Let R be the path on the vertices 2/, 2/, x, z, where 2’2’ € E(G) and 2z € E(G).
Since z, 2" € X we see that 2/ ¢ X and 2z ¢ X. Since @ is isometric, we have 2’ # y and
2/ # 1y If 2=y, then 2’ and 2z = y are not X-positionable. Similarly, if z # y, then again
2" and z are not X-positionable. This final contradiction implies that gpy(G) = 0. O

Corollary 3.4 Let G be a connected graph with g(G) > 6. Then gpy(G) = 0 if and only
if 6(G) > 2.

Proof. If 6(G) = 1 and u is a pendant vertex of G, then {u} is a dual general position set,
hence gpy(G) > 1.

To prove the other direction, assume that §(G) > 2. Since g(G) > 6 we see that each
edge of G is Py-inner isometric. Proposition B.3] yields the conclusion. O

Next, we give an infinite family of graphs whose dual general position number is zero,
yet none of their edges is Py-inner isometric. Let m > 5 and consider the join graph
G = Py, @ 2K7, see Fig. [1

Figure 1: The graph G,,.

It is readily verified that no edge of Gy, is Ps-inner isometric. On the other hand, the
following holds.



Proposition 3.5 If m > 5, then gpq(Gp,) = 0.

Proof. Set G,, = P,, ® 2Ky, let V(P,,) = {p1,---,pm} with natural adjacencies, and let
V(2K,) = {z,2'}, see Fig. [I again.

Let X be an arbitrary dual general position set of G,,. If z,2’ ¢ X, then X = () for
otherwise x and 2’ are not X-positionable. In the rest we may hence assume without loss
of generality that x € X, for otherwise we are done.

We first claim that 2’ ¢ X. Indeed, otherwise no vertex p;, @ € [m], lies in X, but then
no two vertices p; and pj, |i — j| > 2, are not X-positionable. Further and similarly, we
have {p1,...,pm} N X # (. Hence there exists ¢ € [m] such that p; € X. Select and fix i
to be the smallest such index. Then by the symmetry we may assume that 1 <i < [m/2].
We now distinguish two cases.

Suppose first that ¢ = 1. Then it follows that p; ¢ X for 3 < j < m. Since m > 5, the
vertex x lies in the middle of a shortest ps, p,,-path, hence the vertices ps and p,, are not
X-positionable.

Suppose second that 2 < i < [m/2]. By the way i is selected and by the symmetry we
have p; ¢ X and p,,, ¢ X. But then p; and p,, are not X-positionable. O

For the cycles Cy and Cj, it is observed that gpy(Cy) = gpy(Cs) = 2. These graphs can
be considered as special cases of generalized theta graphs which are defined as follows. For
positive integers 1 < ¢ < --- < {, and ¢y > 2, the generalized theta graph ©({1,. .., )
is obtained by joining two vertices a and b with k internally disjoint paths of lengths
by b,

Proposition 3.6 Let1 < /¢y <--- < /{y, wherek > 2,0y > 2. Thengpy(©(¢1,...,4)) =0
if and only if one of the following cases holds:

(i) k=2, 1+l > 6;

(i) k>3, 6 =1, by > 5;

(iii) k>3, (1 =2, and {; # 3 for 2 <i < k;
(iv) k>3, ;> 3.

Proof. Set © = ©({4,...,¢) for the rest of the proof and let @1, ..., Qx be the internally
disjoint paths of lengths #1, ..., ¢, of © connecting a and b.

(1) If k=2 and ¢; + ¢ < 5, then © € {C3,C4,C5}, hence gpy(©) > 2. On the other
hand, if £; + £ > 6, then © is a cycle of order at least 6 and thus each edge of © is Ps-inner
isometric. Hence gpy(©) = 0 by Proposition B.3l

(73) Let k > 3 and ¢; = 1. Assume first that ¢35 < 4. If {5 = 2, then the middle vertex of
Q2 is simplicial and by Corollary B2 {z} is a dual general position set and so gpy(©) > 1.
If /5 = 3, then O[Q1 U Q3] = Cy4. Let u and v be the internal vertices of Q2. Then we infer
that © — {u,v} is convex and using Theorem [B.I] we get gpy(©) > 2. Similarly, we get



that gpg(©) > 2 if fo = 4. Assume finally that ¢ > 5. Then each edge of © is Ps-inner
isometric. By Proposition 3.3 we thus have gp4(©) = 0.

(791) Let k > 3 and ¢; = 2. Assume first that there exists an index i such that ¢; = 3
and let 7 be the smallest such index. Note that ¢ > 2. If z; and x; are the two internal
vertices of Q;, then © — {x;,x}} is convex, hence Theorem Bl implies that gpy(©) > 2.

Assume second that ¢; # 3 for each 2 < ¢ < k. If {1 = --- = {;, = 2, then © = Ky .
A possible dual general position set wound need to contain two adjacent vertices of each
4-cycle, but this is not possible. So gpgq(Kax) = 0 for k > 3. Let next j be the smallest
index such that ¢; > 4, so that ¢; = --- = {;_1 = 2. (It is possible that j = 2.) Then
the subgraph of © induced by @ U---UQ,_1 is isomorphic to K3 j_1 and we readily see
that no vertex from it can lie in a dual general position set. In addition, the vertices from
Q1 U Qjr, where j' > j, induce an isometric cycle of © of order at least 6, from which we
conclude that none of the vertices from the cycle can lie in a dual general position set. We
conclude that gp4(©) = 0.

(tv) In this case we have g(©) > 6, hence the assertion follows by Corollary B4l O

3.2 Graphs G with gp,(G) =1
We next consider graphs G with gpy(G) = 1.

Proposition 3.7 If G is a connected graph with gpq(G) = 1, then s(G) = 1.

Proof. Let G be a connected graph with gpy(G) = 1 and let {z} be a gpg-set of G.
Suppose first that s(G) = 0. Then it follows that the order of G at least 4 as each of
the smaller graphs contains at least one simplicial vertex. In particular, since x is not
simplicial, it has two neighbors, say 2’ and z”, such that dg(2/,2”) = 2. But then 2’ and
a2’ are not {x}-positionable. This contradiction implies that s(G) > 1. On the other hand,
Corollary B2 yields that s(G) <1 and we are done. O

The converse of Proposition [3.7]is not true. For a sporadic example consider the graph
G obtained from Cy by attaching a pendant vertex to one of the vertices of Cy. Then
gpq(G) = 2 # 1 but s(G) = 1. An infinite family of such examples is the following. For
integers k > 1 and ¢ > 4, let G}, o be the graph consisting of a chain of k cycles Cy which
share vertices such that for an intermediate Cp its vertices of degree 3 are its diametral
vertices. Finally attach a pendant vertex to a degree 2 vertex of the last cycle. In Fig.
the graphs Gg 4 and Gg 5 are shown.

Proposition 3.8 If k> 1 and £ > 4, then

1, £>6,
gpa(Grye) = ¢ 25 =4,
3; £=5.



Figure 2: Graphs Gg 4 and G5 and their largest dual general position sets.

Proof. Let e = uv be the pendent edge of G ¢, where u is the pendant vertex. Since u is
a simplicial vertex of Gy, 4, Corollary implies gpq(Ge) > 1.

Assume first £ > 6. Since g(G¢) > 6 and each edge of Gy — u is Py-inner isometric,
no vertex of Gy ¢ — u lies in a dual general position set of Gy, ¢, cf. Corollary B4l Hence we
have gpy(Gr ) < 1 and thus gpq(Gge) = 1.

Assume second £ = 4. Let 4,4’, j,j' be the vertices of the first Cy as indicated in Fig. 2
Since {i,1'} is a general position set of G}, ¢ and Gy, ¢ —{3,'} is convex, Theorem B.Ilimplies
that gpq(Gr ) > 2. Suppose on the contrary that gpy(Gg ) > 3 and let X be an arbitrary
gpg-set of G .

Assume that X contains a vertex z with degg, , (x) = 4. Then at least three neighbors
of z lie in X for, otherwise two neighbors of x are not X-positionable. But then again two
neighbors of x are not X-positionable. By a parallel argument we also see that X does not
contain the vertex of degree 3. It follows that each vertex of X is of degree at most 2.

We claim that u ¢ X. Since |X| > 3, there exist y,y" € X such that degg, ,(y) =
degGM(y’) = 2. (It is possible y,y" € {i,i',j}.) If y and 3 are adjacent, then we may
without loss of generality assume that y = ¢ and ¢y = ¢. But then ¢ and u are not X-
positionable, so this cannot happen. Assume next that y and 3’ are not adjacent. Let z
and 2’ be the two neighbors of y. It is clear that z and 2’ are not X-positionable if y and
y' lie on the same cycle Cy. And if y and 3 are not on the same 4-cycle, then either y
lies on a shortest u,y’-path or 3’ lies on the shortest u,y-path. We conclude that indeed
ué¢X.

We have thus proved that degg, , (x) = 2 for each z € X. Let z and 2’ be two arbitrary
vertices from X. By the same argument as used in the previous paragraph we get that
zz' € E(Ggy). As there are only two such edges possible, that is, ¢’ and ¢'j, and as
{i,7,7} is not a dual general position set, we can conclude that {i,7'} is a largest dual
general position set and so gpy(Ge) = 2.

The argument for the case £ = 5 is similar and left to the reader. O
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3.3 Graphs G with gp,(G) > 2

We next consider when a set of cardinality two forms a dual general position set. In the
next result we deduce a characterization (additional to the one of Theorem B.]) for two
adjacent vertices.

Theorem 3.9 If x and y are two adjacent vertices of a graph G, then the following state-
ments are equivalent.

(1) {z,y} is a dual general position set of G;
(i) G —{z,y} is conve;

(111) For each u,v € Ng(x)U Ng(y) we have dg(u,v) < 2, and the graphs G[Ng(z) —{y}]
and G[Ng(y) — {z}] are complete.

Proof. Let X = Ng(z) — {y} and Y = Ng(y) — {z}.

(1) = (d#i): If {z,y} is a dual general position set of G, it follows from Theorem [B]
that G — {z, y} is convex.

(14) = (4i1): Assume that G — {x,y} is convex. Then G[X] is complete. Indeed, for
otherwise two nonadjacent vertices 2’ and z” from X are not {x,y}-positionable. Anal-
ogously, G[Y] is complete. Furthermore, if v € X and v € Y, then dg(u,v) < 3. But if
da(u,v) = 3, then G — {z,y} is not convex, hence we conclude that dg(u,v) < 2 for any
u,v € Ng(x) U Ng(y).

(#91) = (i): Let 1 < dg(u,v) < 2 for any two vertices u,v € Ng(z) U Ng(y), and let
G[X] and G[Y] be complete. Set G’ = G — {x,y}. Consider two arbitrary distinct vertices
p and ¢ from G’. We claim that no shortest p, g-path passes = or y. Let @ be an arbitrary
shortest p, g-path. Suppose first that V(Q)N{z,y} = {x}. Then @ contains two neighbors
of x but since G[X] is complete, this is a contradiction. The case when V(Q)N{x,y} = {y}
is ruled out analogously. In the remaining case suppose that V(Q)N{z,y} = {z,y}. Then
QQ contains a subpath z/,z,v,9’, where 2’ € X and 3y € Y. But by our assumption
da(2',y") < 2, a contradiction with the assumption that @ is a shortest path. We conclude
that u and v are {z, y}-positionable and consequently {z,y} is a dual general position set.
O

A result parallel to Theorem [B.9] for two nonadjacent vertices is simpler and reads as
follows.

Proposition 3.10 Let x and y be two non-adjacent vertices of a graph G. Then the set
{z,y} is a dual general position set if and only if x and y are simplicial vertices.

Proof. Assume first that {z,y} is a dual general position set. Then x is simplicial for
otherwise there exist two neighbors u and v of x such that dg(u,v) = 2. By our assumption,
u # y and v # y, but then w and v are not {z, y}-positionable. Analogously vy is simplicial.
The reverse implication follows by Corollary |
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4 The variety in Cartesian products

To determine the general position number of Cartesian product graphs is a difficult prob-
lem and has been already widely investigated. It took several intermediately steps before
the general position number of integer lattices (alias Cartesian products of a finite number
of paths) has been determined [I2]. Bounds on the general position number of Cartesian
products of arbitrary graphs were independently proved in [6,21]. Special Cartesian prod-
ucts were studied in [22] (products of two trees), in [I0] (products of paths and cycles),
and in [10,15] (products of two cycles).

In this section we determine the total general position number, the outer general posi-
tion number, and the dual general position number of arbitrary Cartesian products. For
this purpose, we need some additional notation and terminology on Cartesian products.
Let G and H be graphs and consider GO H. Given a vertex h € V(H), the subgraph of
GO H induced by the set of vertices {(g,h) : g € V(G)}, is a G-layer and is denoted by
G". H-layers 9H are defined analogously. Each G-layer and each H-layer is isomorphic
to G and H, respectively. If X C V(GO H), the projection pg(X) of X to G is the set
{g€V(GQ): (g9,h) € X for some h € V(H)}. The projection pr(X) of X to H is defined
analogously.

For total general position sets, Corollary implies:

Corollary 4.1 If G and H are connected graphs of order at least 2, then gp, (GO H) = 0.
Proof. It is straightforward to see that G H contains no simplicial vertices. O
For outer general position sets, the following result is useful.

Theorem 4.2 |20, Theorem 3| If G and H are connected graphs, each of order at least
2, then (GO H)sr = Gsr X Hgg.

Theorem 4.3 If G and H are two connected graphs, each of order at least 2, then

gD, (GO H) = min{gp,(G), gp,(H)}.

Proof. By Theorem 2.3 we have gp, (GO H) = w((GO H)sr). Theorem implies that
w((GOH)sr) = w(Gsr x Hgr). Since w(G x H) = min{w(G),w(H)}, see |7, Exercise
16.1], we have gp, (GO H) = min{w(Gsr),w(Hgsr)}. Using Theorem 2.3again we conclude
that gp, (G0 H) = min{gp,(G), gpo(H)}- D

Corollary 4.4 If m,n > 3, then gp,(K,, O K,) = min{m,n}.

For dual general position sets, the following result that characterizes convex subgraphs
of Cartesian product graphs will be applied.
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Lemma 4.5 [7, Lemma 6.5] A subgraph W of G = G100 --- OGy, is convex if and only
of W =U,0 --- OUy, where each U; is convezr in G;.

Theorem 4.6 Let G and H be two graphs, each of order at least 2. Then gpy(GO H) > 0
if and only if one factor is complete and the other factor has a simplicial vertex. Moreover,

(i) gpq(K, OK,,) = max{n,m}, and
(i) if H is not complete and contains a simplicial vertez, then gpy(K, JH) = n.

Proof. Set V(G) = [n] and V(H) = [m]. So we have V(GO H) = [n] x [m].

Assume first that gpg(GO H) > 0 and let X be a dual general position set of GO H.
Then X is clearly a general position set of GO H and hence by Theorem BIl K =
(GOH) — X is a convex subgraph of GO H. Consequently, by Lemma we infer that
K = G'OH’, where G’ is convex in G and H’ is convex in H. Suppose that G’ and H' are
proper subgraphs of G and H, respectively. Then there exist vertices g € V(G)\V(G’) and
h € V(H)\V(H'), such that g has a neighbor ¢’ € V(G) and h has a neighbor ' € V(H).
Then (¢',h), (g,h),(g,h") is an induced path of GO H, where all its vertices are from X,
a contradiction.

By the above contradiction, pe(X) = V(G) or pu(X) = V(H). We may without loss
of generality assume that pg(X) = V(G). Since layers in Cartesian products are convex,
this implies that V(G) is a general position set in G which in turn implies that G is a
complete graph. Moreover, since X is a general position set we also see that |pgy(X)| =1
and let h be the unique vertex of H to which X projects. Now, if A is not a simplicial
vertex of H, then there exist vertices ', h” € Ny (h) such that h’'h” ¢ E(H). But then K
is clearly not convex, hence h must be a simplicial vertex of H.

To complete the argument we observe that if G is complete and h € V(H) is a simplicial
vertex, then by Theorem [B1] the set V(G) x {h} is a dual general position set.

The two formulas in the cases when gpy(GOH) > 0 follow directly from the above
discussion. g

In |21, Theorem 3.8| it is proved that gp(K,,0K,) = m + n — 2. Combining this
result with Corollary 4] and Theorem we see that the four general position invariants
considered can vary arbitrary. For instance, for any n > 3 we have:

gp(Kn O Koy) = 3n — 2,

gpd(Kn U K2n) =2n,
gpo(Kn U Kap) =1
gpt(Kn O K2n) =0.

5 Concluding remarks

In this paper we have introduced the variety of general position sets. We have completely
described the total general position sets and the outer general position sets. On the other
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hand, we have observed that the dual general position sets are not hereditary. This fact
makes the investigation of dual general position sets quite tricky. For instance, we have
given a sufficient condition for a graph G to satisfy gpy(G) = 0, yet we were not been able
to characterize graphs G with this property. The same problems remains open for the case
gpa(G) = 1.

We have seem that if G is a block graph, then gp(G) = gp,(G) = gpq(G) = gp(G). It
would be an interesting project to characterize the graphs for which this holds. Moreover,
the same question can be posed for each subsets of the involved invariants, for instance, to
characterize the graphs G for which gp(G) = gpy(G) holds.
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