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Abstract
The general position problem in graphs is to find the maximum number

of vertices that can be selected such that no three vertices lie on a common
shortest path. The mutual-visibility problem in graphs is to find the maxi-
mum number of vertices that can be selected such that every pair of vertices
in the collection has a shortest path between them with no vertex from the
collection as an internal vertex. In this paper, the general position problem
and the mutual-visibility problem is investigated in double graphs and in My-
cielskian graphs. Sharp general bounds are proved, in particular involving the
total mutual-visibility number and the outer mutual-visibility number of base
graphs. Several exact values are also determined, in particular the mutual-
visibility number of the double graphs and of the Mycielskian of cycles.
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1 Introduction
The graph general position problem reflects the Dudeney’s no-three-in-line prob-
lem [10] as well as the general position subset selection problem from discrete geom-
etry [11]. The problem was in a different context investigated on hypercubes [18],
while it was introduced in its generality as follows [22]. A set S of vertices in a graph
is a general position set if no three vertices from S lie on a common shortest path.
A largest general position set of a graph G is called a gp-set of G and its size is the
general position number gp(G) of G. The same concept was in use two years earlier
in [4] under the name geodetic irredundant sets, where it was defined in a different
way.

In discrete geometry, a shortest path between two points is unique while in graphs
there can be more than one shortest path between two vertices. This fact, as well as
the computational concept of visibility between robots bring the mutual-visibility
problem in graphs into picture. This problem was introduced by Di Stefano [9] as
follows. Given a set S of vertices in a graph G, two vertices u and v are mutually-
visible or, more precisely, S-visible, if there exists a shortest u, v-path in G which
contains no further vertices from S. The set S is a mutual-visibility set if its vertices
are pairwise mutually-visible. A largest mutual-visibility set is called a µ-set and its
size is called the mutual-visibility number µ(G) of G.

In [5], a variety of mutual-visibility sets was introduced, we will use the following
two variants. A set S is an outer mutual-visibility set in G if S is a mutual-visibility
set and every pair of vertices u ∈ S, v ∈ V (G)\S are also S-visible. A largest outer
mutual-visibility set is called a µo-set. The size of a largest outer mutual-visibility
set is called the outer mutual-visibility number of G, denoted as µo(G). The set
S is a total mutual-visibility set in G if every pair of vertices in G are S-visible.
A largest total mutual-visibility set is called a µt-set. The size of a largest total
mutual-visibility set is called the total mutual-visibility number of G, denoted as
µt(G).

The general position problem and the mutual-visibility problem are well studied
for different graph classes like diameter two graphs [1, 8], cographs [1, 9], Kneser
graphs [12], and line graphs of complete graphs [8, 12]. Both problems were also
investigated a lot on graph operations like the join of graphs [9, 12], corona prod-
ucts [6, 12, 17], Cartesian products [6, 15, 16, 28, 29], and strong products [7, 17].
In this paper we extend this line of research by investigating the problems on double
graphs and on Mycielskian graphs which are respectively defined as follows.

Let G be a graph. The double graph D(G) of G is constructed from the disjoint
union of G and an isomorphic copy G′ of G, where V (G′) = {u′ : u ∈ V (G)},
by joining u ∈ V (G) to all neighbors of u′ ∈ V (G′), and joining u′ ∈ V (G′) to all
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neighbors of u ∈ V (G). That is, V (D(G)) = V (G) ∪ V (G′) and for each pair u ∈
V (G) and u′ ∈ V (G′) we have ND(G)(u) = ND(G)(u

′), where NH(u) denotes the open
neighborhood of the vertex u in a graph H. The Mycielskian graph M(G) of G has
the vertex set V (M(G)) = V (G)∪V (G′)∪{v∗}, where V (G′) = {u′ : u ∈ V (G)} and
the edge set E(M(G)) = E(G)∪{uv′ : uv ∈ E(G)}∪{v′v∗ : v′ ∈ V (G′)}. These two
graph operators were respectively introduced in [23, 24]. The Mycielskian has been
studied in a couple of hundred papers and the trend is still continuing [2, 3, 13, 14].
The double graphs have also received quite some attention, cf. [19, 21].

The paper is organized as follows. In the next section additional definitions
required for this paper are listed, known results recalled, and some new observa-
tions stated. In Section 3 we prove that if G is not complete, then µ(D(G)) ≥
n(G) + µt(G). The bound is sharp as in particular follows from the proved formula
µ(D(Cn)) = n, n ≥ 7. On the other hand, we construct graphs G for which the
difference µ(D(G))− (n(G)− µt(G)) is arbitrary large. In Section 4 we prove that
gp(G) ≤ gp(D(G)) ≤ 2 gp(G) and that the bounds are sharp. In the subsequent
section we consider mutual-visibility in Mycielskian graph. In the main theorems
we prove that µ(M(Pn)) = n + ⌊n+1

4
⌋ for n ≥ 5, and that µ(M(Cn)) = n + ⌊n

4
⌋ for

n ≥ 8. We also give bounds for µ(M(G)), where diam(G) ≤ 3, in terms of µo(G)
and µ(G).

2 Preliminaries
If G is a connected graph, S ⊆ V (G), and P = {S1, . . . , St} a partition of S, then
P is distance-constant if for any i, j ∈ [t], i ̸= j, the distance dG(x, y), where x ∈ Si

and y ∈ Sj, is independent of the selection of x and y. This distance is then also
the distance dG(Si, Sj) between Si and Sj. A distance-constant partition P is in-
transitive if dG(Si, Sk) ̸= dG(Si, Sj) + dG(Sj, Sk) holds for i, j, k ∈ [p]. The following
characterization of general position sets will be used either implicitly or explicitly in
the rest of the paper. By G[S] we denote the subgraph of G induced by S ⊆ V (G).

Theorem 2.1. [1, Theorem 3.1] Let G be a connected graph. Then S ⊆ V (G) is a
general position set if and only if the components of G[S] are complete subgraphs,
the vertices of which form an in-transitive, distance-constant partition of S.

Let G be a graph. Vertices x and y of G are false twins if NG(x) = NG(y). (Note
that false twins are not adjacent.) Further, x and y are true twins if NG[x] = NG[y],
where NG[x] denotes the closed neighborhood of the vertex x in G. In [17], relations
between true twins, the general position number, and strong resolving graphs were
investigated. The following easy but useful general properties of twins hold.
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Lemma 2.2. Let G be a graph and u, v ∈ V (G).
(i) If u, v are false twins, and S is a general position (resp. mutual-visibility)

set of G such that S ∩ {u, v} = {u}, then (S \ {u}) ∪ {v} is also a general position
(resp. mutual-visibility) set of G.

(ii) If u, v are true twins, and S is a general position set of G such that u ∈ S,
then S ∪ {v} is also a general position set of G.

Proof. (i) Since dG(u, x) = dG(v, x) for each x ∈ V (G) \ {u, v}, Theorem 2.1 yields
that (S\{u})∪{v} is a general position set of G. Moreover, two vertices are S-visible
if and only they are (S\{u})∪{v}-visible, hence (S\{u})∪{v} is a mutual-visibility
set provided that S is a mutual-visibility set.

(ii) Using the fact that dG(u, x) = dG(v, x) for each x ∈ V (G) \ {u, v}, Theo-
rem 2.1 again can be used to deduce that S∪{v} is a general position set. Indeed, if
v ∈ S, there is nothing to prove. Let now v /∈ S and let Q be the complete subgraph
cotaining u from the partition of S corresponding to Theorem 2.1. Then Q∪ {v} is
also complete, therefore Theorem 2.1 implies that S ∪ {v} is a general position.

Note that Lemma 2.2(ii) does not hold if general position sets are replaced by
mutual-visibility sets. For example, consider the complete graph K4 minus an edge
with the vertex set {a, b, c, d}, where a and b are the non-adjacent pair. Then
S = {a, b, c} is a mutual-visibility set, c and d are true twins, but we cannot add d
to S without affecting the mutual-visibility.

3 Mutual-visibility in double graphs
In this section we consider mutual-visibility in double graphs. For this task recall
that if G is a graph, then V (D(G)) = V (G)∪V (G′) and that for each pair u ∈ V (G)
and u′ ∈ V (G′) we have ND(G)(u) = ND(G)(u

′).
If G is a graph, then, clearly, µ(G) = n(G) if and only if G is a complete graph,

the same conclusion holds for the total mutual-visibility [20]. (Here and later, n(G)
denotes the order of G.) For each vertex u ∈ V (D(G)), clearly, ND(G)[u] is a mutual-
visibility set of D(G). Thus µ(D(G)) ≥ 2∆(G) + 1. Hence for the double graphs of
graphs with a universal vertex, we have the following observation:

Observation 3.1. If G is a graph with n(G) ≥ 2 and with a universal vertex, then
µ(D(G)) = 2n(G)− 1.

Theorem 3.2. If G is not a complete graph, then µ(D(G)) ≥ n(G)+µt(G). More-
over, the bound is sharp.

4



Proof. Consider an arbitrary µt-set S of G. We claim that X = V (G′) ∪ S is a
mutual-visibility set of D(G). Since S is a total mutual-visibility set of G, for any
two vertices in G, there exists a shortest path whose internal vertices are in V (G)\S.
Hence any two vertices u, v ∈ V (G′) ∪ S, where v ̸= u′, there exists a shortest u, v-
path whose internal vertices are in V (G) \ S. Moreover, since NG[u] ⊆ S if and
only if G is complete, for each u ∈ S there exists a vertex v ∈ NG(u) such that
v ∈ V (G) \ S. Hence the path u − v − u′ demonstrates that u and u′ are also
X-visible whenever u, u′ ∈ X. Thus V (G′) ∪ S is indeed a mutual-visibility set of
D(G) which proves that µ(D(G)) ≥ n+ µt(G).

To demonstrate the sharpness, consider the path graph Pn, n ≥ 3, with the
vertices u1, . . . , un. Let S be an arbitrary mutual-visibility set of D(Pn). If we
would have indices i < j < k, such that {ui, u

′
i, uj, u

′
j, uk, u

′
k} ∈ S, then ui and

uk would not be S-visible. Therefore, for at most two indices i ∈ [n] we have
|S ∩ {ui, u

′
i}| = 2 which in turn implies that µ(D(Pn)) ≤ n + 2. Since µt(Pn) = 2,

the above proved bound yields µ(D(Pn)) ≥ n+ 2, hence the bound is sharp.

In the seminal paper on the mutual-visibility [9] it was proved that the mutual-
visibility problem is NP-complete, while in [5] the same conclusion was obtained
for each of the problems from the variety of mutual-visibility problems including
the total mutual-visibility problem. Theorem 3.2 could indicate that the mutual-
visibility problem is difficult also when restricted to double graphs.

The next result yields another family for which the bound of Theorem 4.2 is
sharp.

Theorem 3.3. If n ≥ 7, then µ(D(Cn)) = n.

Proof. Let V (D(Cn)) = V ∪ V ′, where V = V (Cn) and V ′ = {u′ : u ∈ V }. Let S
be a µ-set of D(Cn) such that it contains as many vertices of V ′ as possible. This
choice of S, together with Lemma 2.2(i), implies that if u ∈ V ∩ S, then u′ also
belongs to S.

If V ′ ⊆ S, then no vertex from V can be present in S, because if v ∈ S, then the
two neighbors of v′ in V ′ are not S-visible. Therefore, in this case |S| = n. By the
same argument we also get that if |S| > n, then |S ∩V | ≥ 2. We may hence assume
in the rest that not all vertices from V ′ are in S. We now distinguish two cases.

Assume first that S contains at least three vertices from V , say u, v, w ∈ V ∩ S.
Then, by the maximality assumption, u′, v′ and w′ are also in S. Now, if x′ belongs
to S, where x ̸= u, v, w, then at least one of the shortest paths in V ′ from x′ to u′, v′
or w′ must contain at least one vertex among u′, v′ and w′ as an internal vertex. We
may assume without loss of generality that a shortest x′, u′-path contains v′ as an
internal vertex. (It could be that also the other x′, u′-path in D(Cn)[V

′] is shortest.
Then it contains w as an internal vertex, and the argument is parallel.) Since v is
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also in S, the vertices x′ and u′ are not S-visible. Therefore, |S ∩ V ′| = 3 so that
|S| = 6, a contradiction with Theorem 3.2 which asserts that |S| ≥ n ≥ 7.

Assume second that S ∩ V = {u, v}. Using the maximality assumption again,
u′, v′ ∈ S. There is nothing to prove if |S ∩ V ′| ≤ n − 2, hence assume that
|S ∩ V ′| = n − 1. Let w′ ∈ V ′ be the vertex not in S. If w is not adjacent to both
u and v, then we may assume without loss of generality that the two neigbors of u′

are in S, but then they are not S-visible. Similarly, if w is in Cn adjacent to both
u and v, and z is the other neighbor of u, then z′ and v′ are not S-visible.

As none of the cases above is possible we can conclude that µ(D(Cn)) ≤ n and
so µ(D(Cn)) = n.

The proof of Theorem 3.3 asserts that for any n ≥ 4, we have µ(D(Cn)) ≤
max{6, ⌊n

2
⌋ + 4, n}. Hence µ(D(C4)) ≤ 6, µ(D(C5)) ≤ 6 and µ(D(C6)) ≤ 7.

Also, {v′1, v′2, v′3, v′4, v1, v2} is a mutual-visibility set of D(C4), {v′2, v′3, v′4, v′5, v2, v5}
is a mutual-visibility set of D(C5) and {v′2, v′3, v′4, v′5, v′6, v2, v6} is a mutual-visibility
set of D(C6). Therefore µ(D(C4)) = µ(D(C5)) = 6 and µ(D(C6)) = 7.

While the lower bound of Theorem 3.2 is sharp, it can, on the other hand, be
arbitrarily bad, that is, the difference µ(D(G))− (n(G) + µt(G)) can be arbitrarily
large. For example, consider the balloon graph Gk, k ≥ 2, constructed from the
disjoint union of k copies of C5 and a vertex which is adjacent to exactly one vertex
of each of the k copies of C5. Then we have:

Proposition 3.4. If k ≥ 2, then µ(D(Gk))− (n(Gk) + µt(Gk)) ≥ k − 1.

Proof. Clearly, n(Gk) = 5k+1. Using the characterization [27, Theorem 8] of graphs
G with µt(G) = 0 (or by verifying it directly), we can deduce that µt(Gk) = 0.
Further, we can use Fig. 1 to find out that µ(D(Gk)) ≥ 6k.

Hence we have

µ(D(Gk))− (n(Gk) + µt(Gk)) ≥ 6k − ((5k + 1) + 0) = k − 1 ,

and we are done.

4 General position in double graphs
In this section we consider the general position number of double graphs. We will
use the convention that if S ⊆ V (G) ⊂ V (D(G)), then S ′ = {u′ ∈ V (G′) : u ∈ S}.

We first state a simple but useful lemma which easily follows from the fact that
if u ∈ V (G) ⊂ V (D(G)) is not an isolated vertex, then dD(G)(u, u

′) = 2.
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Figure 1: A mutual-visibility set in the double graph of a balloon graph.

Lemma 4.1. Let G be a graph, uv ∈ E(G), and let S be a general position set of
D(G). If |S ∩ {u, v, u′, v′}| ≥ 2, then |S ∩ {u, v, u′, v′}| = 2.

Note that Lemma 4.1 in particular implies that if S is a general position set of
D(G) such that u, u′ ∈ S, then both u and u′ are non-adjacent to all other vertices
in S.

Theorem 4.2. If G is a graph, then gp(G) ≤ gp(D(G)) ≤ 2 gp(G) and the bounds
are sharp. Moreover, gp(D(G)) = 2 gp(G) if and only if the gp-sets of D(G) are of
the form X ∪X ′, where X is an independent gp-set of G.

Proof. If S is a gp-set of G, then S ⊂ V (D(G)) is a general position set of D(G).
Hence gp(G) ≤ gp(D(G)). Let now S be a gp-set of D(G). Since G and G′ are
isometric subgraphs of D(G), we infer that S ∩ V (G) is a general position set of G
and S ∩ V (G′) is a general position set of G′. Hence

gp(D(G)) = |S| = |S ∩ V (G)|+ |S ∩ V (G′)| ≤ gp(G) + gp(G′) = 2 gp(G) ,

establishing the upper bound.
To see that the lower bound is sharp, note that gp(D(Kn)) = n holds for all

n ≥ 2 by Lemma 4.1.
Assume now that gp(D(G)) = 2 gp(G) and consider an arbitrary gp-set S of

D(G). As we already observed, S∩V (G) is a general position set of G and S∩V (G′)
is a general position set of G′, therefore S ∩ V (G) is a gp-set of G and S ∩ V (G′)
a gp-set of G′. If (S ∩ V (G))′ ̸= S ∩ V (G′), then we may assume without loss of
generality that there exists a vertex u ∈ S such that u′ /∈ S. But then an application
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of Lemma 2.2 yields a general position set in G′ larger that gp(G′) = gp(G), a
contradiction. Hence S = (S ∩ V (G)) ∪ (S ∩ V (G))′. Moreover, by Lemma 4.1,
S ∩ V (G) must be an independent set and we are done.

There are many graphs admitting independent gp-sets which in turn explicitly
demonstrate that the upper bound of Theorem 3.2 is sharp. This is in particular the
case for paths Pn, n ≥ 3, and for cycles Cn, n ≥ 6. Hence by Theorem 4.2 we get
gp(D(Pn)) = 4, n ≥ 3, and gp(D(Cn)) = 6, n ≥ 6. More on independent general
position sets can be found in [25].

Another family of graphs for which the lower bound in Theorem 4.2 is sharp are
the edge deleted complete graphs K−

n , n ≥ 5, that is, K−
n is the graph obtained

from Kn by deleting one of its edges. Note first that since D(K−
n ) contain a clique

of order n − 1 we have gp(D(K−
n )) ≥ n − 1. Let u and v be the non-adjacent

pair of vertices in K−
n and let S be a general position set of D(K−

n ). If w,w′ ∈ S,
where w ̸= u, v, then S = {w,w′}. Assume hence that for each w ̸= u, v, the set
S contains at most one vertex among w and w′. If |S| ≥ n, then we must have
that |S ∩ {u, u′, v, v′}| ≥ 2. However, as soon as this is fulfilled we can infer that in
each possible case we have S ⊆ {u, v, u′, v′}. We conclude that gp(D(K−

n )) = n for
n ≥ 5.

5 Mutual-visibility in Mycielskian graphs
The general position number of Mycielskian graphs was investigated in [26], in this
section we complement this research by considering the mutual-visibility number
of Mycielskian graphs. We find the exact value of the mutual-visibility number of
Mycielskian graph of paths, cycles and graphs with universal vertices. Bounds of
mutual-visibility number of Mycielskian graph of graphs having diameter at most
three in terms of outer mutual-visibility and mutual-visibility of the graph are also
presented.

Theorem 5.1. If n ≥ 5, then µ(M(Pn)) = n+ ⌊n+1
4
⌋.

Proof. Let R = {v1, v3, v5, . . . , vk}, where k = n − 1, when n is even, and k = n,
when n is odd. Let R′ = {v′4l+2 : 0 ≤ l ≤ ⌊n−3

4
⌋}. If |R| is even, then the last

vertex in R′ is v′k−1. If |R| is odd, then the last vertex in R′ is v′k−3, in which case we
further add v′k−1 to R′. Then, it is straightforward to verify that S = R∪(V (P ′

n)\R′)
is a mutual-visibility set of M(Pn). Since |R| = ⌈n

2
⌉ and |R′| = ⌈1

2
⌈n
2
⌉⌉, we have

|S| = ⌈n
2
⌉+ n− ⌈1

2
⌈n
2
⌉⌉ = n+ ⌊n+1

4
⌋. Thus, µ(M(Pn)) ≥ n+ ⌊n+1

4
⌋.

In the rest of the proof we need to show that µ(M(Pn)) ≤ n + ⌊n+1
4
⌋. We first

show the conclusion holds if some µ-set of M(Pn) contains v∗. Let hence N ∪ N ′
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be a µ-set of M(Pn), where N ⊆ V (Pn), N ′ ⊆ V (P ′
n) ∪ {v∗}, and v∗ ∈ N ′. Since

v∗ is in the unique shortest path connecting u′ and v′, where dPn(u, v) ̸= 2, at most
two vertices from V (P ′

n) are in N ′. Also, since v∗ is in the unique shortest path
connecting u and v, where dPn(u, v) ≥ 5, at most four vertices from V (Pn) are in N .
Hence we have |N∪N ′| ≤ 7 which proves the assertion for n ≥ 7. For n = 5, 6, using
similar arguments we can prove that if v∗ ∈ N ′ then |N ∪N ′| ≤ 5 and |N ∪N ′| ≤ 6,
respectively.

In the following we may thus reduce our attention to µ-sets which do not contain
the vertex v∗.

Claim: There exists a µ-set S ∪ S ′ of M(Pn), where S ⊆ V (Pn), S ′ ⊆ V (P ′
n), such

that S is an independent set.
Let N ∪ N ′ be a µ-set of M(Pn), where N ⊆ V (Pn) and N ′ ⊆ V (P ′

n). If N is
independent, there is nothing to prove. Otherwise, proceed as follows to replace the
vertices in the µ-set so as to make a new mutual-visibility of the same cardinality and
which is independent restricted to Pn. The construction is distinguished according
to the following situations.

Assume first that three consecutive vertices of Pn lie in N . If vk−1, vk, vk+1 ∈ N ,
where 2 < k < n− 2, then none of the vertices vk−2, v′k−2, v′k−1, v′k, v′k+1, vk+2, v′k+2

lies in N ∪N ′, see Fig. 2(a). Then we infer that (N ∪N ′ ∪ {v′k}) \ {vk} is a mutual-
visibility set of M(Pn) and hence a µ-set of M(Pn). If v1, v2, v3 ∈ N , then none of v′1,
v′2, v′3, v4, v′4 lies in N∪N ′. In this case we see that (N∪N ′∪{v′1})\{v2} is a mutual-
visibility set of M(Pn). Similarly, if vn−2, vn−1, vn ∈ N , then (N ∪N ′∪{v′n})\{vn−1}
is a mutual-visibility set of M(Pn). We have this seen that N ∪N ′ can be modified
in such a way that no three consequent vertices from Pn are in N .

Assume next that vk−1, vk, vk+2 ∈ N , where 2 < k < n − 2. Then the vertices
vk−2, v′k−2, v′k, vk+1, v′k+1 do no belong to N ∪ N ′, cf. Fig. 2(b), where vk−2 and
vk+1 are not present by the above modification. Then (N ∪ N ′ ∪ {v′k}) \ {vk} is a
mutual-visibility set of M(Pn). If v1, v2, v4 ∈ N , then v′1, v

′
2, v3, v

′
3 /∈ N ∪ N ′. Then

(N∪N ′∪{v′1})\{v2} is a mutual-visibility set of M(Pn). Similarly, if vn−3, vn−1, vn ∈
N , then (N ∪N ′ ∪ {v′n}) \ {vn−1} is a mutual-visibility set of M(Pn). We can thus
further modify N ∪ N ′ in such a way that no three vertices from Pn of the form
vk−1, vk, vk+2 are in N .

In the third case assume that vk−2, vk−1, vk+2 ∈ N , where k ̸= 3, n − 2. Then
v′k−3, v

′
k /∈ N ∪ N ′. Moreover, we also infer that by the above modifications,

vk−3, vk, vk+1 /∈ N , see Fig. 2(c). Then (N ∪ N ′ ∪ {vk, v′k}) \ {vk−1, v
′
k+1, vk+3} is

a mutual-visibility set of M(Pn). (Note that only one among v′k+1 and vk+3 will be
present initially in N ∪N ′ which implies that the cardinality of the mutual-visibility
set remains the same.) If v1, v2, v5 ∈ N , then v′1, v

′
2, v3, v

′
3, v4 /∈ N ∪ N ′. Then

(N ∪N ′∪{v3, v′3})\{v4′ , v6} is a mutual-visibility set of M(Pn). (Note that only one
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Figure 2: Situations from the proof of Theorem 5.1. The black vertices denote the
vertices in the mutual-visibility set, the grey vertices are those whose status is not
known and the white vertices are those which cannot be present in the mutual-
visibility set.

among v′4 and v6 will be present initially in N ∪N ′.) Similarly, if vn−4, vn−1, vn ∈ N ,
then (N ∪N ′ ∪{vn−2, v

′
n−2}) \ {vn−1, v

′
n−3, vn−5} is a mutual-visibility set of M(Pn).

(Note that only one among v′n−3 and vn−5 will be present initially in N ∪N ′.)
In the last case to be considered assume that vk−2, vk−1, vk+l ∈ N for some l ≥ 3.

Then vk, v
′
k, vk+1, vk+2 /∈ N ∪N ′. In addition, vk−5, vk−4, vk−3, v

′
k−3 /∈ N ∪N ′, if those

vertices are present in the graph. Then (N ∪{vk}) \ {vk−1} is a mutual-visibility set
of M(Pn). Thus modify N ∪N ′ in such a way that no three vertices from Pn of this
form are in N .

If N has only two vertices and they are adjacent, then at least two vertices
from P ′

n are not in N ′, in which case, |N ∪ N ′| ≤ n. This is not possible since
µ(M(Pn)) ≥ n+ ⌊n+1

4
⌋ > n. This proves the claim.

We have thus proved that there exists a µ-set S∪S ′ of M(Pn), where S ⊆ V (Pn),
S ′ ⊆ V (P ′

n), such that S is an independent set. Now, if there are two vertices u
and v in S such that dG(u, v) ≥ 5, then each of u and v must have a neighbor
in V (P ′

n) which is not in S ′ in order that u are v are visible. Also, if there are
two vertices u and v′ in S such that dG(u, v) = 4, then u must have a neighbor
in V (P ′

n) which is not in S ′ in order that u are v′ are visible. Such a vertex from
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V (P ′
n) \ S ′ can be used or shared by at most two vertices from S. Hence, the

cardinality of S ∪ S ′ will be maximum when the vertices v1, v3, v5, . . . are included
into S and the vertices v′2, v

′
6, v

′
10, . . . from V (P ′

n) are excluded from S ′. Hence,
µ(M(Pn)) ≤ ⌈n

2
⌉+ n− ⌈1

2
⌈n
2
⌉⌉ = n+ ⌊n+1

4
⌋ and we are done.

Theorem 5.2. If n ≥ 8, then µ(M(Cn)) = n+ ⌊n
4
⌋.

Proof. Let R ⊆ V (Cn) be an independent set of maximum cardinality of Cn and
let R′ be a smallest set of vertices from V (C ′

n) which dominate all the vertices from
R. Then it is straightforward to verify that R ∪ (V (C ′

n) \ R′) is a mutual-visibility
set of M(Cn). Since |R| = ⌊n

2
⌋ and |R′| = ⌈1

2
⌊n
2
⌋⌉ we have |R ∪ (V (C ′

n) \ R′)| =
⌊n
2
⌋+ n− ⌈1

2
⌊n
2
⌋⌉ = n+ ⌊n

4
⌋ which in turn implies that µ(M(Cn)) ≥ n+ ⌊n

4
⌋.

To prove that µ(M(Cn)) ≤ n + ⌊n
4
⌋, we first show that the inequality holds

if some µ-set of M(Cn) contains v∗. So let N ∪ N ′ be a µ-set of M(Cn), where
N ⊆ V (Cn), N ′ ⊆ V (C ′

n) ∪ {v∗}, and v∗ ∈ N ′. Since v∗ ∈ N ′, at most two vertices
from V (C ′

n), say v′k and v′k+2, are in N ′. If n ∈ {8, 9}, it can easily be verified that
|N ∪N ′| ≤ 8. For n ≥ 10, at most five vertices from V (Cn) are in N , since no two
vertices u, v ∈ V (Cn) such that dCn(u, v) ≥ 5, are visible. So in any case the claimed
inequality holds. In the rest we may thus assume that the µ-sets of M(Cn) do not
contain v∗. We also assume that indices are computed modulo n.

Claim: There exists a µ-set S ∪ S ′ of M(Cn), where S ⊆ V (Cn) and S ′ ⊆ V (C ′
n),

such that if vk, vk+1 ∈ S, then vk−2, vk−1, vk+2, vk+3 /∈ S.
Let N ∪N ′ be a µ-set of M(Cn), where N ⊆ V (Cn) and N ′ ⊆ V (C ′

n). Then we
are going to modify N ∪N ′ such that the modified µ-set of M(Cn) will satisfy the
condition of the claim. To this end, we distinguish a few cases.

Assume first that vk−1, vk, vk+1 ∈ N . In this case, vk−2, v′k−2, v′k−1, v′k, v′k+1,
vk+2, and v′k+2 do not lie in N ∪ N ′, just as shown in Fig. 2(a). Now we consider
the set (N ∪N ′ ∪ {v′k}) \ {vk} and show that it is a mutual-visibility set of M(Cn).
If vk+l ∈ N , for l = 3 or for any l ≥ 5, then since vk and vk+l are visible, we get v′k
and vk+l are visible. Similarly, if vk−l ∈ N , for l = 3 or for any l ≥ 5, we get that
v′k and vk−l are visible. Now, if n ≥ 10, then v′k and vk+4 are visible since vk−1 and
vk+4 are visible. Similarly, v′k and vk−4 are visible because vk−1 and vk−4 are visible.
It can be verified directly that for n = 8, the above possibility along with vk−4 ∈ N
or vk+4 ∈ N implies |N ∪N ′| ≤ 7, which is a contradiction. Similarly, for n = 9, the
above possibility along with vk−4 ∈ N or vk+4 ∈ N implies |N ∪N ′| ≤ 10, which is
a contradiction.

Assume second that vk−3, vk−1, vk, vk+2 ∈ N . In this case, vk−2, v′k−2, v′k−1, v′k,
vk+1, and v′k+1 do not belong to N ∪N ′, see Fig. 3(a). We now consider (N ∪N ′ ∪
{v′k}) \ {vk} and assert that it is a mutual-visibility set of M(Cn). The vertices v′k
and vk+2 are visible since vk+1 /∈ N . If vk+l ∈ N , for l = 3 or for any l ≥ 5 then, since
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Figure 3: Situations from the proof of Theorem 5.2. The black vertices again denote
the vertices in the mutual-visibility set, the grey vertices are those whose status is
not known and the white vertices are those which cannot be present in the mutual-
visibility set.

vk and vk+l are visible, we get that v′k and vk+l are visible. Similarly, if vk−l ∈ N ,
for l = 3 or for any l ≥ 5, we get that v′k and vk−l are visible. If vk−4 ∈ N , then
either v′k−5 or v′k−3 not in N ′. Hence, v′k and vk−4 are visible. If n ≥ 10, then v′k and
vk+4 are visible since vk−1 and vk+4 are visible. It can be directly verified that for
n = 9, the above possibility along with vk+4 ∈ N implies |N ∪N ′| ≤ 10.

Assume next that vk−4, vk−1, vk, vk+2 ∈ N . In this case, vk−3, vk−2, v′k−2, v′k, vk+1,
v′k+1 do not lie in N ∪N ′, cf. Fig. 3(b)). We now consider two subcases.

In the first subcase assume that v′k−3 /∈ N ′ or v′k−5 /∈ N ′. Then we assert that
(N ∪N ′ ∪ {v′k}) \ {vk} is a mutual-visibility set of M(Cn). The vertices v′k and vk+2

are visible since vk+1 /∈ N . If vk+l ∈ N , for l = 3 or for any l ≥ 5, then, since
vk and vk+l are visible, we get v′k and vk+l are visible. Similarly, if vk−l ∈ N , for
l = 3 or for any l ≥ 5, we get v′k and vk−l are visible. Also, v′k and vk−4 are visible
since v′k−3 /∈ N ′ or v′k−5 /∈ N ′. Now, for n ≥ 10, the vertices v′k and vk+4 are visible
since vk−1 and vk+4 are visible. It can be easily verified that for n = 9, the above
possibility along with vk+4 ∈ N implies |N ∪N ′| ≤ 10

In the second subcase assume that v′k−5, v
′
k−3 ∈ N ′. Then v′k−1 /∈ N ′, since vk and

vk−4 are visible. We now asserts that (N ∪N ′∪{v′k−1})\{vk−1} is a mutual-visibility
set of M(Cn). If vk+l ∈ N , for l = 2 or for any l ≥ 4, then, since vk−1 and vk+l are
visible, we get that v′k−1 and vk+l are visible. Similarly, if vk−l ∈ N , for l = 4 or
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for any l ≥ 6, we find that v′k−1 and vk−l are visible. Also, v′k and vk+3 are visible
since v′k+2 /∈ N ′ or v′k+4 /∈ N ′. Similarly, v′k and vk−5 are visible since v′k−4 /∈ N ′ or
v′k−6 /∈ N ′. The claim is proved.

We have thus proved that there exists a µ-set S∪S ′ of M(Cn), where S ⊆ V (Cn)
and S ′ ⊆ V (C ′

n), such that if vk, vk+1 ∈ S, then vk−2, vk−1, vk+2, vk+3 /∈ S. We are
now going to show that for this set we have |S ∪ S ′| ≤ ⌊n

2
⌋ + n − ⌈1

2
⌊n
2
⌋⌉. If

vk, vk+1 ∈ S, then vk−2, vk−1, vk+2, vk+3 do not belong to S. Also, v′k−1, v
′
k+2 /∈ S ′.

Now, if S ′ = V (C ′
n), then S = ∅, for n ≥ 8. If S ′ = V (C ′

n) \ {v′2}, then S = {v1, v3}.
If S ′ = V (C ′

n)\{v′2, v′6}, then S = {v1, v3, v5, v7}. This process can be continued until
the ⌈1

2
⌈n
2
⌉⌉ vertices v′2, v

′
6, v

′
10, . . . are excluded from V (C ′

n) so that the ⌊n
2
⌋ vertices

v1, v3, v5, . . . can be included into S. Hence µ(M(Cn)) ≤ ⌊n
2
⌋+n−⌈1

2
⌊n
2
⌋⌉ = n+⌊n

4
⌋

and we are done.

Proposition 5.3. If G is a graph with n(G) ≥ 2 and with a universal vertex, then
µ(M(G)) = 2n(G)− 1.

Proof. Let v be a universal vertex of G. Then it is straightforward to verify that
(V (G)\{v})∪V (G′) is a mutual-visibility set of M(G) which implies that µ(M(G)) ≥
2n(G)− 1.

Let S be an arbitrary mutual-visibility set of M(G). If V (G) ⊆ S, then S ∩
V (G′) = ∅, hence in this case |S| ≤ n(G) + 1 ≤ 2n(G) − 1. The same conclusion
holds when S∩V (G) = ∅. Assume in the rest that 1 ≤ |S∩V (G)| ≤ n(G)−1. Then
if v∗ /∈ S, we immediately get |S| ≤ 2n(G) − 1 and if v∗ ∈ S, then |S ∩ V (G′)| ≤
n(G)−1, and we obtain the same conclusion. In any case µ(M(G)) ≥ 2n(G)−1.

Theorem 5.4. If G is not a complete graph and diam(G) ≤ 3, then

n(G) + µo(G) ≤ µ(M(G)) ≤ n+ µ(G) + 1 .

Moreover, if µ(M(G)) = n(G) + µ(G) + 1, then every µ-set of M(G) contains v∗.

Proof. Let M be a µo-set of G. Then, having in mind that diam(G) ≤ 3, it is
straightforward to verify that M ∪ V (G′) is a mutual-visibility set of M(G) and
therefore µ(M(G)) ≥ n+ µo(G).

Let S be a µ-set of M(G). Assume first that S ∩ V (G) is a mutual-visibility set
of G. Then |S ∩ V (G)| ≤ µ(G) and hence, |S| ≤ n + µ(G) + 1. Assume second
that S ∩V (G) is not a mutual-visibility set of G. Then there exists u, v ∈ S ∩V (G)
such that u and v are not mutually visible in G but are mutually visible in M(G).
Denoting by IG[u, v] the set of all vertices that lie on shortest u, v-paths in G, we
then have x ∈ IG[u, v] such that x ∈ S but x′ /∈ S. If (S \ {x}) ∩ V (G) is a mutual-
visibility set of G then |S ∩ V (G)| ≤ µ(G) + 1. Hence, |S| ≤ n + µ(G) + 1. If
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(S \ {x}) ∩ V (G) is not a mutual-visibility set of G then proceed as above, that is,
at each step we detect a vertex y′ ∈ V (G′) \ S corresponding to a vertex y ∈ S.
Therefore, µ(M(G)) ≤ n+ µ(G) + 1.

Assume now that µ(M(G)) = n+µ(G)+1 and suppose by way of contradiction
that S be a µ-set of M(G) such that v∗ /∈ S. Then |S ∩ V (G)| = µ(G) + k, for
some k ≥ 1. It follows that |S ∩ V (G′)| = n(G)− k + 1. Using a parallel argument
as above, we are now going to show that |S ∩ V (G′)| ≤ n(G) − k, which becomes
a contradiction. Since |S ∩ V (G)| is not a mutual-visibility set of G, there exists
u, v ∈ S ∩ V (G) such that u and v are not mutually visible in G but are mutually
visible in M(G). Then there exists x ∈ IG[u, v] such that x ∈ S but x′ /∈ S. If k ̸= 1
then (S ∩ V (G)) \ {x} is still not a mutual-visibility set of G and hence the above
process can be repeated. Thus there exists distinct vertices x′

1, . . . , x
′
k that are not

in S ∩ V (G′) and hence |S ∩ V (G′)| ≤ n(G)− k.

We now give some examples how Theorem 5.4 can be applied. First, from the
theorem we read that µ(M(P4)) ∈ {6, 7} and that, moreover, if µ(M(P4)) = 7, then
everyµ-set of M(P4) contains v∗. But if a mutual-visibility set S of M(P4) contains
contains v∗, then we infer that |S| ≤ 5. We can conclude that µ(M(P4)) = 6.

Let r1 ≥ r2 ≥ 3 and set n = r1+r2. Using Theorem 5.4 we get that µ(M(Kr1,r2)) ∈
{2n − 2, 2n − 1} and that if µ(M(Kr1,r2)) = 2n − 1, then every µ-set of M(Kr1,r2)
contains v∗. Let S be an arbitrary mutual-visibility set of M(Kr1,r2) with v∗ ∈ S,
and let uv ∈ E(Kr1,r2). Then at most one among u′ and v′ can be in S, hence
|S| ≤ n+ r1 − 1. We conclude that µ(M(Kr1,r2)) = 2n− 2.

In Theorem 5.2 we have determined µ(M(Cn)) for n ≥ 8. We now do the same
for shorter cycles. By Theorem 5.4, µ(M(Cn)) ≥ n + 2, for 4 ≤ n ≤ 7. We claim
that here equality always holds. Let S be a µ-set of M(Cn). If v∗ ∈ S then at most
two vertices from V (C ′

n), say v′k and v′k+2, are in S. If v′k, v′k+2 ∈ S then at least one
vertex, say vk+1, is not in S. Thus in this case, |S| ≤ n + 2. Now, suppose v∗ /∈ S.
Then as in the proof of Theorem 5.2, there exists a µ-set S of M(Cn) such that if
vk, vk+1 ∈ S, then vk−2, vk−1, vk+2, vk+3 /∈ S. If V (C ′

n) ̸⊆ S, then |S| ≤ n+ ⌊n
4
⌋ = n.

If V (C ′
n) ⊆ S, then S ∩ V (Cn) is an outer mutual-visibility set of Cn and hence

|S| ≤ n+ 2. Therefore, µ(M(Cn)) = n+ 2, for 4 ≤ n ≤ 7.
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