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Abstract

Metric dimension is a valuable parameter that helps address problems re-
lated to network design, localization, and information retrieval by identifying
the minimum number of landmarks required to uniquely determine distances
between vertices in a graph. Generalized Sierpiński graphs represent a cap-
tivating class of fractal-inspired networks that have gained prominence in
various scientific disciplines and practical applications. Their fractal nature
has also found relevance in antenna design, image compression, and the study
of porous materials. The hypercube is a prevalent interconnection network
architecture known for its symmetry, vertex transitivity, regularity, recursive
structure, high connectedness, and simple routing. Various variations of hy-
percubes have emerged in literature to meet the demands of practical applica-
tions. Sometimes, they are the spanning subgraphs of it. This study examines
the generalized Sierpiński graphs over C4, which are spanning subgraphs of
hypercubes and determines the metric dimension and their variants. This is
in contrast to hypercubes, where these properties are inherently complicated.
Along the way, the role of twin vertices in the theory of metric dimensions is
further elaborated.
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1 Introduction

Parallel computing is a type of computation in which many calculations or processes
are carried out simultaneously. This is in contrast to serial computing, where cal-
culations are performed sequentially, one after the other. Parallel computing offers
several advantages, including improved performance, scalability, and the ability to
tackle larger and more complex problems [11]. However, designing and implement-
ing parallel algorithms can be challenging due to issues such as synchronization, load
balancing, and communication overhead [14]. Graph theory can have a significant
impact on parallel computing, particularly in the context of algorithm design and
optimization [9]. Graph theory provides a powerful framework for modeling and
analyzing the structure and relationships of data, which is essential in many par-
allel computing applications. Many parallel computing applications involve graph
algorithms, which operate on graphs to solve various problems such as shortest path
finding, clustering, graph traversal, and network flow optimization [10]. Parallelizing
these algorithms efficiently requires an understanding of both the graph structure
and the characteristics of parallel computation.

A parallel computing network can indeed be viewed and represented as a graph
structure. This representation can provide insights into the topology of the net-
work, the communication patterns between computing nodes, and the distribution
of computational tasks [39]. Each computing unit in the parallel computing net-
work, whether it’s a processor core, a compute node, or a server, can be represented
as a node in the graph. These nodes represent the individual processing elements
that perform computations. The communication links between computing nodes
are represented as edges in the graph. These edges depict the connectivity between
nodes and can represent various types of communication channels, such as direct
interconnects, network links, or shared memory connections. The arrangement of
nodes and edges in the graph represents the network’s topology. This includes char-
acteristics such as whether the network is a clustered architecture, a mesh, a torus,
a hypercube, or another topology [13]. The choice of topology can impact fac-
tors like communication latency, bandwidth [42], and fault tolerance. Graph-based
representations can also be used for performance analysis and optimization of par-
allel computing networks. Techniques such as graph partitioning, load balancing,
and routing algorithms [6] can be applied to improve the efficiency and scalability
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of parallel computations. By representing a parallel computing network as a graph
structure, we can gain insights into its characteristics, connectivity, and performance,
which can aid in the design, analysis, and optimization of parallel algorithms and
systems.

Graphic structures with self-similarity and recurrence are called fractals. Net-
works with fractal nature seems to be beneficial in the study of larger networks
found in artificial and natural systems, such as neuroscience [17], music [38], so-
cial networking sites, and computers, allowing the subject of network science to
progress. Images of complicated structures, such as neuronal dendrites or bacte-
rial growth patterns [44] in culture, can be captured and analysed with the help of
such networks. Sierpiński networks are one of that class and can be used in parallel
computing systems, particularly in the design of parallel supercomputers and high-
performance computing (HPC) clusters. The Sierpiński network is characterized by
its recursive and self-similar structure. It consists of interconnected nodes arranged
in a hierarchical manner, with each level of the hierarchy representing a smaller ver-
sion of the overall network. The Sierpiński network is inherently scalable, allowing
it to accommodate a large number of nodes or processors. The self-similar struc-
ture of the Sierpiński network enables efficient routing and communication patterns.
Due to these characteristics, the Sierpiński network can be explored as a potential
topology for parallel computing systems, particularly in research contexts where in-
novative network designs are investigated to improve scalability, performance, and
fault tolerance in parallel computing environments. In a particular case when the
base graph is K3, the Sierpiński networks are the Tower of Hanoi graphs with 3
pegs. Adding an open link to the extreme vertices of Sierpiński graphs results in
WK-recursive networks. As abstract graphs, these networks were introduced in 1988
as message passing architectures and are employed in VLSI implementation [55]. A
decade later, WK-recursive networks were equipped with the Sierpiński labelings
and named Sierpiński graphs [31]. From then on the notion of Sierpiński graphs co-
incides with these graphs equipped with the Sierpiński labeling. The latter has also
made it possible to explore Sierpiński graphs in more depth. Let us list some of the
related results. This family of networks is proved to be Hamiltonian and the length
of geodesic between their vertices are given in [31]. Some metric properties including
the average eccentricity [24], connectivity [34] and median [3] are discussed. Some
topological descriptors of Siepiński graphs are availabe in [25]. All shortest paths in
Sierpiński graphs are discussed in [22]. The review paper [23] from 2017 summarizes
the results on Sierpiński graphs and related classes of graphs and also proposes a
classification of Sierpiński-like graphs.

The classical Sierpiński graphs as introduced in [31] use complete graphs are their
basic stones. Replacing complete graphs by arbitrary graphs, generalized Sierpiński
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graphs were introduced in [18]. The key idea is again to create a recursive process
that generates a fractal-like pattern within the graph. Generalized Sierpiński graphs
are thus a broader class of fractal graphs that extend the concept of Sierpiński graphs
to various shapes and structures beyond just complete graphs.

Let G be a graph and r ≥ 1 a positive integer. Then the generalized Sierpiński
graph Sr

G
is formally defined as follows. Set V (G) = [n] = {1, . . . , n}. Then V (Sr

G
) =

[n]k, that is, vertices of Sr

G
are vectors of length r, each coordinate being a vertex

of G. Two vertices x = xr . . . x1 and y = yr . . . y1 of Sr

G
are by definition adjacent if

the following conditions hold for some index t ∈ [r]:

(i) xi = yi for i > t,

(ii) xt 6= yt and xtyt ∈ E(G),

(iii) xi = yt, yi = xt for i < t.

In Fig. 1, a graph G with V (G) = [5] and S2
G
are illustrated.
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Figure 1: (a) S1
G
∼= G; (b) S2

G

Generalized Sierpiński graphs are used to model polymer networks [16]. Chro-
matic, vertex cover, clique and domination numbers [52], roman domination [50],
strong metric dimension [15] related results have been discussed for generalized
Sierpiński graphs. In this article, we focus on the family Sr

C4
and determine their

metric dimension, edge metric dimension, fault-tolerant metric dimension and fault-
tolerant edge metric dimension. The determination of these formulae is made pos-
sible by first examining in more detail the role of twin vertices in these dimensions.

4



2 The Problem and its Relevance

Sensors can be used to detect faults or anomalies in the nodes or communication
links of a parallel computing network. By continuously monitoring system param-
eters, sensors can help identify hardware failures, software errors, or performance
bottlenecks, enabling proactive maintenance and troubleshooting. They can be de-
ployed to detect unauthorized access, malicious activities, or security breaches in a
parallel computing network. By monitoring network traffic, system logs, and en-
vironmental conditions, sensors can help identify and mitigate security threats in
real-time. By collecting and analyzing sensor data, administrators and operators can
make informed decisions to optimize system operation and ensure the efficient and
reliable execution of parallel computing workloads. While sensor deployment can
offer significant benefits in terms of system performance, reliability, and efficiency,
it’s essential to consider the associated costs, complexities, and trade-offs involved.
Knowledge about metric dimension helps in optimizing sensor deployment.

2.1 Basis and Fault-tolerant Basis

Graph theory considers networks as topological graphs with interesting characteris-
tics. Metric dimension is a measure of how efficiently one can locate and distinguish
between the vertices (nodes) of a graph using a minimal set of landmarks or reference
points [19, 53]. Metric dimension has applications in various fields, including net-
work design [5], robotics [29], and location-based services. It helps in understanding
how to place sensors or landmarks in a network to ensure efficient location determi-
nation [7,8,26,37,43]. Calculating the exact metric dimension of a graph is often a
computationally challenging problem. For certain classes of graphs, such as trees,
there are efficient algorithms to find the metric dimension. However, for general
graphs [29], bipartite graphs [41] and directed graphs [49] determining the metric
dimension is NP-hard. Despite the computational difficulty, the precise value of
metric dimension is evaluated for many graph structures including honeycomb [40],
butterfly [41], Beneš [41], Sierpiński [33], and irregular triangular networks [47]. The
works related to metric dimension have been surveyed recently in [54].

The distance dG(u, v) between two vertices in a connected graph G, with vertex
set V (G) and edge set E(G), is equal to the number of edges in a geodesic (shortest
path) connecting them. For a vertex u and an edge e = vw the distance between
them is given by, dG(u, e) = min{dG(u, v), dG(u, w)}. For an ordered subset X =
{u1, u2, . . . , ul} of vertices, every vertex x of G can be represented by a vector of
distances

r(x|X) = (dG(x, u1), dG(x, u2), . . . , dG(x, ul)) .
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The subset X is a metric generator (MG) if r(x|X) 6= r(y|X), ∀x, y ∈ V (G). In
other words, X is a MG if every pair x, y ∈ V (G) has at least one vertex u ∈ X
such that d(u, x) 6= d(u, y), see Fig. 2.

V

X

u

x

y

Figure 2: Metric generator (MG)

A MG with minimum vertices is a (metric) basis; its cardinality is indicated
by dim(G), which is the metric dimension. This concept is well-established in the
literature, and has given rise to many different variations [1,12,27,30]. One of these
novel and highly motiated variations is known as fault-tolerant metric dimension. In
this variation, the crucial aspect is that the selected set of vertices must still resolve
the graph even when any one vertex from that set has become faulty or useless.
That is, a set of vertices F is termed as a fault-tolerant metric generator (FTMG)
if, for every vertex u within F , the set obtained by removing u from F remains a
MG for the graph. In other words, even in the absence of any single vertex in the
set F , the remaining vertices should still have the ability to resolve the graph. The

V

F

u

x

y
v

Figure 3: Fault-tolerant metric generator (FTMG)

term fault-tolerant metric dimension is denoted as dim′(G), and it represents the
minimum number of vertices required to form a FTMG for the graph G. The set
of vertices that achieves this minimum and serves as a FTMG is referred to as a
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fault-tolerant metric basis. FTMG can also be described as a set of vertices F , with
the property that for every pair of vertices x and y in the graph G, there exist at
least two vertices u and v in set F , where u and v are at different distances from
both x and y, see Fig. 3. A FTMG ensures that even if one vertex from the set
F is missing, there will still be another vertex in F that can resolve x and y in the
graph. This idea was first presented in [21] and was further discussed in [2,4,48,51].

2.2 Edge Basis and Fault-tolerant Edge Basis

In a parallel computing system, data is transmitted between processors through an
interconnection network, which is a complex arrangement of processors and com-
munication links. Identifying and addressing the links (connections) within this
network is crucial for quickly pinpointing any faulty connections. This task can be
performed optimally by utilizing the smallest possible set of vertices that uniquely
label every edge in the network. In this context, a set of vertices S within a graph
G is referred to as an edge metric generator (EMG) if it satisfies the condition that
for any two edges e and f in the graph G, there exists a vertex w in set S such that
dG(w, e) and dG(w, f) are distinct, see Fig. 4.

w

e

f

E

V � E

S

Figure 4: Edge metric generator (EMG)

An EMG ensures that each edge in the network is uniquely identifiable based
on its distance to the vertices in set S. The number of vertices in the smallest pos-
sible EMG is referred to as the edge metric dimension and is connoted as dimE(G).
This variation was initially studied by Kelenc et al. [27], and they established its
NP-completeness. Following the inception of this concept, numerous articles have
emerged in this research field. To list a few, we have the characterization of graphs
with maximum dimension [59,61], the dimension of web graph, prism related graph,
convex polytope graph [58], generalized Petersen graph [56], some classes of planar
graph [57], Erdős-Renyi random graph [60], graph operations such as join, lexico-
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graphic, corona [45], and hierarchical products [32] for some graph classes. Identi-
fying graphs with dimE < dim has gained more interest [35, 36].

In order for an edge metric generator, denoted as F , to be considered fault-
tolerant, it must possess an additional property, which is that the set obtained by
removing any vertex v from F must still be capable of resolving the edges in the
graph G. The minimum number of vertices required to form a fault-tolerant edge
metric generator (FTEMG) is known as the fault-tolerant edge metric dimension,
denoted as dim′

E
(G). As depicted in Fig. 5, in a FTEMG set F , for any pair of

edges e and f in the graph G, there are at least two vertices v and w within the set
F that are at different distances from both e and f .

w

e

f
v

E

V � E

F

Figure 5: Fault-tolerant edge metric generator (FTEMG)

3 Effect of Twin Vertices on Metric Dimensions

In this section, we will clarify how twins vertices affect all the variations of the
metric dimension we are interested in. Some of the results on this are known from
before, but others are being added newly.

Let G be a graph and u ∈ V (G). Then NG(u) = {v : uv ∈ E(G)} is the open
neighbourhood of u and NG[u] = N(u) ∪ {u} is the closed neighbourhood of u. A
vertex u is a twin vertex if there exists a vertex v such that NG(u) = NG(v) or
NG[u] = NG[v]. In the first case we say that u and v are non-adjacent twins (also
known as false twins), in the second case they are adjacent twins (also known as
true twins). A maximal set of vertices T in which every two vertices are twins, is
called a twin set. These concepts are illustrated in Fig. 6.

In [20, Corollary 2.4] it was observed that if S is a resolving set of a connected
graph G and u and v are twins, then S ∩ {u, v} 6= ∅, cf. [46,48]. From this fact, the
following conclusions can be easily drawn.
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u v

(a)

u v

(b)

T1

T2

(c)

Figure 6: (a) Non-adjacent twin; (b) Adjacent twin; (c) Twin sets

Proposition 3.1. Let T be the set of all twins of a connected graph G, and let T
be the partition of T into k twin sets. Then the following properties hold.

(i) [46] dim(G) ≥ |T | − k.

(ii) [48] dim′(G) ≥ |T |.

(iii) [2] If all twin sets are of cardinality 2 and dim(G) = k, then dim′(G) = 2k.

In the case of bipartite graphs, (fault-tolerant) metric generators and (fault-
tolerant) edge metric generators are closely related as follows, where the first prop-
erty was proved in [28].

Proposition 3.2. If G is a connected bipartite graph, then the following properties
hold.

(i) A metric generator of G is an edge metric generator of G.

(ii) A fault-tolerant metric generator of G is a fault-tolerant edge metric generator
of G.

Proof. As said, (i) is due to [28]. To prove (ii), consider any fault-tolerant metric
generator F . Since F \ {u} is a metric generator, it follows from (i) that F \ {u} is
an edge metric generator. As this holds for every u ∈ F , the set F happens to be a
fault-tolerant edge metric generator.
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Lemma 3.3. If S ⊂ V (G) is an edge metric basis of a connected graph G, and u
and v are twins, then |S∩{u, v}| ≥ 1. Also, if u ∈ S and v /∈ S, then (S \{u})∪{v}
is another edge metric basis for G.

Proof. The lemma follows from the fact that if x is a common neighbor of u and v,
then dG(ux, w) = dG(vx, w) holds for all w ∈ V (G) \ {u, v}.

We next state a result for the (fault-tolerant) edge metric dimension parallel to
Proposition 3.1(i) and (ii).

Proposition 3.4. If G is a connected graph, T is the set of all twins in G, and G
has k twin classes, then the following properties hold.

(i) dimE(G) ≥ |T | − k.

(ii) dim′

E
(G) ≥ |T |.

Proof. (i) Let S ⊆ V (G) be an edge metric basis of G and let Ti, i ∈ [k], be the
twin classes of G. Applying Lemma 3.3 to each pair of vertices from Ti we infer that

|S ∩ Ti| ≥ |Ti| − 1. It follows that dimE(G) ≥
∑

k

i=1
(|Ti| − 1) =

(

∑

k

i=1
|Ti|

)

− k =

|T | − k.
(ii) Let S be a fault-tolerant edge metric generator of G. We claim that T ⊆ S.

Suppose on the contrary that there exists a twin vertex u such that u /∈ S. Let v be
a twin of u and let x be a common neighbor of u and v. If v /∈ S, then the distance
between the edges ux and vx is the same to each vertex of S, which is clearly not
possible. And if v ∈ S, then S \ {v} is an edge metric generator, but then we get
the same contradiction. This proves the claim and hence the assertion.

4 Dimensions of Sr
C4

In this section we apply the result from the previous section to determine the four
dimensions studied here of the generalized Sierpiński graphs Sr

C4
, see Fig. 7 for S1

C4
,

S2
C4
, and S3

C4
.

Let V (C4) = {0, 1, 2, 3} and let r ≥ 1 be a fixed integer. Then, by the definition
of the generalized Sierpiński graphs Sr

C4
, the vertex set V (Sr

C4
) partitions into subsets

Vi(S
r

C4
), i ∈ {0, 1, 2, 3}, where the vertices of Vi(S

r

C4
) start with i. That is, Vi(S

r

C4
) =

iV (Sr−1

C4
), where we use the convention that if X is a set of strings, then iX is the

set of strings derived by prefixing i in each string from X . Moreover, for r ≥ 2, the
induced subgraphs Sr

C4
[Vi(S

r

C4
)] are isometric subgraphs of Sr

C4
and are isomorphic

to Sr−1

C4
.
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0 1

3 2

(a)

00 01 10 11

03 02 13 12

30 31 20 21

33 32 23 22

(b)

000 001 010 011 100 101 110 111

003 002 013 012 103 102 113 112

030 031 020 021 130 131 120 121

033 032 023 022 133 132 123 122

300 301 310 311 200 201 210 211

303 302 313 312 203 202 213 212

330 331 320 321 230 231 220 221

333 332 323 322 233 232 223 222

(c)

Figure 7: (a) S1
C4
; (b) S2

C4
; (c) S3

C4

Theorem 4.1. If r ≥ 2, then the following hold.

(i) dim(Sr

C4
) = dimE(S

r

C4
) = 4

3
(2 + 4r−2).

(ii) dim′(Sr

C4
) = dim′

E
(Sr

C4
) = 8

3
(2 + 4r−2).

Proof. Let R1 = {0, 1} and for k ≥ 2 set

Rk = 0Rk−1 \ {01
k−21, 03k−21} ∪

1Rk−1 \ {10
k−20, 12k−20} ∪

2Rk−1 \ {21
k−21, 23k−21} ∪

3Rk−1 \ {30
k−20, 32k−20} .

The first three of these sets are thus

R1 ={0, 1},

R2 ={00, 11, 20, 31},

R3 ={000, 020, 111, 131, 200, 220, 311, 331},

while the vertices from the set R4 are marked in Fig. 8.
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0000 0001 0010 0011 0100 0101 0110 0111

0003 0002 0013 0012 0103 0102 0113 0112

0030 0031 0020 0021 0130 0131 0120 0121

0033 0032 0023 0022 0133 0132 0123 0122

0300 0301 0310 0311 0200 0201 0210 0211

0303 0302 0313 0312 0203 0202 0213 0212

0330 0331 0320 0321 0230 0231 0220 0221

0333 0332 0323 0322 0233 0232 0223 0222

1000 1001 1010 1011 1100 1101 1110 1111

1003 1002 1013 1012 1103 1102 1113 1112

1030 1031 1020 1021 1130 1131 1120 1121

1033 1032 1023 1022 1133 1132 1123 1122

1300 1301 1310 1311 1200 1201 1210 1211

1303 1302 1313 1312 1203 1202 1213 1212

1330 1331 1320 1321 1230 1231 1220 1221

1333 1332 1323 1322 1233 1232 1223 1222

3000 3001 3010 3011 3100 3101 3110 3111

3003 3002 3013 3012 3103 3102 3113 3112

3030 3031 3020 3021 3130 3131 3120 3121

3033 3032 3023 3022 3133 3132 3123 3122

3300 3301 3310 3311 3200 3201 3210 3211

3303 3302 3313 3312 3203 3202 3213 3212

3330 3320 3321 3230 3231 3220 3221

3333 3332 3323 3322 3233 3232 3223 3222

2000 2001 2010 2011 2100 2101 2110 2111

2003 2002 2013 2012 2103 2102 2113 2112

2030 2031 2020 2021 2130 2131 2120 2121

2033 2032 2023 2022 2133 2132 2123 2122

2300 2301 2310 2311 2200 2201 2210 2211

2303 2302 2313 2312 2203 2202 2213 2212

2330 2331 2320 2321 2230 2231 2220 2221

2333 2332 2323 2322 2233 2232 2223 2222

3331

Figure 8: Twins in S4
C4

and the set R4

We claim that Rk is a resolving set of Sk

C4
and proceed by induction on k. Since

S1
C4

∼= C4 and R1 = {0, 1}, the claim holds true for k = 1. We can also easily verify
directly that the claim is true for k ∈ {2, 3}. So it remains to verify that Rk+1,
k ≥ 3, is a resolving set of Sk+1

C4
. Consider arbitrary vertices u = uk+1 . . . u1 and

v = vk+1 . . . v1 of Sk+1

C4
.

Assume first that uk+1 6= vk+1. When uk+1 = 0 and vk+1 ∈ {1, 2, 3}, then
d(u, x) > d(v, x) for x ∈ {2k0, 2k2}. Similarly, when uk+1 = 1 and vk+1 ∈ {0, 2, 3},
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then d(u, x) > d(v, x) for x ∈ {3k1, 3k3}. Also, if uk+1 = 2, then x ∈ {0k0, 0k2} and
if uk+1 = 3, then x ∈ {1k1, 1k3} satisfies the inequality d(u, x) > d(v, x). We can
conclude that if uk+1 6= vk+1, then the vertices u and v are resolved by Rk+1.

Assume second that uk+1 = vk+1. We may without loss of generality assume that
uk+1 = vk+1 = 0. By the induction assumption and the structure of Sk+1

C4
, the set 0Rk

resolves V0(S
k+1

C4
). By the construction, 01k−11, 03k−11 ∈ 0Rk and 01k−11, 03k−11 /∈

Rk+1. Thus r(01
k−11|Rk+1∩V0(S

k+1

C4
)) = r(01k−13|Rk+1∩V0(S

k+1

C4
)) 6= r(03k−11|Rk+1∩

V0(S
k+1

C4
)) = r(03k−13|Rk+1 ∩ V0(S

k+1

C4
)). However, d(01k−11, x) + 2 = d(01k−13, x)

and d(03k−11, x) = d(03k−13, x) + 2 for every x ∈ V2(S
k+1

C4
). We can thus conclude

that Rk+1 is a resolving set of Sk+1

C4
.

If r ≥ 2, then clearly |Rr| = 4(|Rr−1| − 2). Resolving this recurrence relation
we get |Rr| =

4

3
(2 + 4r−2) for r ≥ 2. Thus, dim(Sr

C4
) ≤ 4

3
(2 + 4r−2). On the other

hand, using induction we infer that a vertex u of Sr

C4
, where r ≥ 2, is a twin vertex

if and only if its degree is 2 and lies in a 4-cycle containing another vertex of degree
2 (which is the twin of u). Moreover, each twin set is of cardinality 2 and contains
exactly one vertex of Rr; see Fig. 8 again. Hence by Proposition 3.1(i) we have
dim(Sr

C4
) ≥ 4

3
(2+4r−2), hence we may conclude that dim(Sr

C4
) = 4

3
(2+4r−2). From

here, and recalling the fact that each twin set is of cardinality 2, Proposition 3.1(iii)
yields dim′(Sr

C4
) = 8

3
(2 + 4r−2).

As Sr

C4
is bipartite, the already established fact that dim(Sr

C4
) = 4

3
(2 + 4r−2)

together with Proposition 3.2(i) yields dimE(S
r

C4
) ≤ 4

3
(2 + 4r−2). But then, anal-

ogously as in the above paragraph we get by Proposition 3.4(i) that dimE(S
r

C4
) =

4

3
(2+4r−2) and then by Proposition 3.4(ii) and Proposition 3.2(ii) that dim′

E(S
r

C4
) =

8

3
(2 + 4r−2).

5 Comparison and Future Direction

Assignment of tasks to efficient labour gives rise to yet another problem of job
allocation. When a person is not able to perform the task assigned to him, it is
very difficult to identify an efficient and equivalent skilful person to complete the
task. This is sometimes easy if all of them are equally trained. Let us consider
the situation of basis in a complete graph. If an element of the basis of a complete
graph becomes faulty, then the node outside the basis can perform the task of the
faulty one. This happens due to the availability of the node outside the basis. But,
in general, we cannot expect this to happen on any basis of an arbitrary graph.
On the other side of the problem, if one node of the basis is faulty, then precisely
one node that is the best replacement for that node exists. If this happens for
every member of the basis, then the fault-tolerant basis is twice that of the basis.
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Figure 9: (a) Metric basis with two elements; (b) Fault-tolerant metric basis with
five elements

This may motivate us to conclude dim′(G) ≤ 2 dim(G). But in reality, this is not
true. Fig. 9 shows a graph G with dim′(G) > 2 dim(G). It is clear from the figure
that the node u2 and node u3 best replace each other whereas for the node u1 we
require u4 and u5 as the replacement nodes. Characterization of graphs which admits
dim′(G) = 2 dim(G) were reported in [2] and the authors proved that this holds for
a certain fractal cubic network. This paper investigates yet another graph class for
which dim′(G) = 2 dim(G). The graphical comparison on dim, and dim′ over the
node set cardinality is depicted in Fig. 10(a). Similarly for dimE and dim′

E over the
edge set cardinality is depicted in Fig. 10(b).

6 Conclusion

The metric dimension of a graph is a measure of how many vertices (or nodes)
are needed to uniquely identify all other vertices in the graph based on distance
information. By identifying a small set of nodes that can uniquely identify all other
nodes in the network, routing algorithms can be optimized to minimize message
overhead and latency. By studying the metric dimension, researchers can analyze
the network’s resilience to node or link failures and develop strategies for fault
recovery and rerouting in parallel computing systems. Insights gained from studying
the metric dimension of a network can provide valuable insights into the network’s
characteristics and behavior, which can be leveraged to optimize routing algorithms,
and enhance overall performance in parallel computing systems. In some cases,
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sensors may be placed in the nodes of a parallel computing network for various
purposes, depending on the specific requirements of the application and the goals of
the system. In this paper, the metric dimension, edge metric dimension and their
fault-tolerant versions are investigated for the generalized Sierpiński graphs derived

15



from C4. This family of graphs have an intresting relation with the widely known
interconnection network, hypercube. The r-dimensional generalized Sierpiński graph
Sr

C4
is a spanning subgraph of the 2r dimensional hypercube.

Acknowledgements
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alized Sierpiński graphs with pendant vertices, Ars Mathematica Contemporanea
12 (2017) 127–134.
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