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Abstract

Let G ⊗f H denote the Sierpiński product of G and H with respect to
the function f . The Sierpiński general position number gpS(G,H) is intro-
duced as the cardinality of a largest general position set in G ⊗f H over all
possible functions f . Similarly, the lower Sierpiński general position num-
ber gpS(G,H) is the corresponding smallest cardinality. The concept of
vertex-colinear sets is introduced. Bounds for the general position num-
ber in terms of extremal vertex-colinear sets, and bounds for the (lower)
Sierpiński general position number are proved. The extremal graphs are in-
vestigated. Formulas for the (lower) Sierpiński general position number of the
Sierpiński products with K2 as the first factor are deduced. It is proved that
if m,n ≥ 2, then gpS(Km,Kn) = m(n − 1) and that if n ≥ 2m − 2, then
gpS(Km,Kn) = m(n−m+ 1).

Keywords: general position set; colinear set; Sierpiński product of graphs; Sierpiński
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1 Introduction

General position sets were introduced to graph theory in [16], but Chandran S.V.
and Parthasarathy in [3] earlier studied the concept of geodetic irredundant sets
which turned out to be an equivalent concept to general position sets. Moreover,
yet much earlier Körner [14] studied the general position sets of hypercubes (in a
completely different context thought).

The problem of finding a largest general position set in a graph, that is, the
general position number of the graph, is NP-hard [16]. In [1], general position sets
of a graph were characterized. Afterwards, the problem of determining the general
position number of (classes of) graphs received a wide attention, see [7, 19, 24, 26].
General position sets were generalized to d-position sets [10] and to Steiner general
position sets [8]. The edge version of general position sets were investigated in [12,
17, 22], while for the monophonic version see [21].

A lot of attention has been gives to the general position sets in Cartesian prod-
uct graphs, see [11, 13, 23]. In this paper we are interested in general position sets
in the recently introduced, attractive graph operation called the Sierpiński prod-
uct. The operation was introduced by Kovič, Pisanski, Zemljič, and Žitnik in [15]
with the idea to generalize the Sierpiński graphs [9]. The investigation of the latter
graphs up to 2017 is summarized in the survey [6], some of the recent research of
Sierpiński graphs can be found, for instance, in [18, 20, 25], see also the references
therein. The Sierpiński product was further investigated in [4, 5], where the (upper)
Sierpiński domination number and the (upper) Sierpiński metric dimension were re-
spectively introduced. Following this line of investigation, in this paper we introduce
the Sierpiński general position number gpS(G,H), and the lower Sierpiński general
position number gpS(G,H), of graphs G and H .

In the rest of the paper we proceed as follows. In the next section we give
definitions and recall known results needed. In Section 3 we introduce a new concept
into the theory of graph general position sets, the vertex-colinear sets. This concept
is useful while studying the general position sets in Sierpiński product graphs, but
we believe to be also of independent interest. In particular, we prove bounds for
the general position number of a graph in terms of extremal vertex-colinear sets and
show their usefulness for graphs with bridges. In Section 4, we present bounds for
the (lower) Sierpiński general position number for general graphs and give formulas
for these numbers for the Sierpiński product graphs with K2 as the first factor. In
Section 5, we consider the Sierpiński product of complete graphs Km ⊗f Kn. We
determine their Sierpiński general position number, more precisely, if m,n ≥ 2,
then gpS(Km, Kn) = m(n − 1). For the lower Sierpiński general position number
we prove that gpS(Km, Kn) = m(n − m + 1) provided that n ≥ 2m − 2. The
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assumption n ≥ 2m− 2 is required as demonstrated by our last result which asserts
that gpS(K6, K9) = 25.

2 Preliminaries

In this section we define concepts, notation, and results needed, and introduce the
(lower) Sierpiński general position number. We begin by basic definitions, and follow
by introducing the general position sets and the Sierpiński product graphs.

For a positive integer k we set [k] = {1, . . . , k}. Unless stated otherwise, all
graphs G = (V (G), E(G)) in the paper are connected. The order n(G) of G is equal
|V (G)|. The degree of a vertex u, degG(u), is the number of adjacent vertices of u
in G. Vertices of degree one are called leaves. The number of leaves of G will be
denoted by ℓ(G). For a graph G, let vk(G) denote the number of vertices of G of
degree k, cf. [2]. An edge e of G is a bridge if G− e is disconnected. A vertex of G
is simplicial if its neighbourhood induces a complete subgraph. If S ⊆ V (G), then
the subgraph of G induced by S is denoted by G[S]. The distance dG(u, v) between
vertices u and v of G is the number of edges on a shortest u, v-path. The interval
between vertices u and v is

IG[u, v] = {w : dG(u, v) = dG(u, w) + dG(w, v)} .

A subgraph H of G is isometric if for each pair of vertices u, v ∈ V (H) we have
dH(u, v) = dG(u, v) and is convex if whenever u, v ∈ V (H) and P is a shortest
u, v-path in G, then P lies completely in H .

Let X ⊆ V (G). Then X is a general position set of G if as soon as P is a
shortest u, v-path, we have V (P )∩X = {u, v}. The cardinality of a largest general
position set of G is the general position number, gp(G), of G. A general position set
X of cardinality gp(G) is refereed to as a gp-set of G. Clearly, if G has at least two
vertices, then gp(G) ≥ 2.

Let G and H be graphs and let f : V (G) → V (H) be a function. The Sierpiński
product of G and H (with respect to f) is the graph G⊗f H with vertices

• V (G⊗f H) = V (G)× V (H),

and with edges

• (g, h)(g, h′), where g ∈ V (G) and hh′ ∈ E(H), and

• (g, f(g′))(g′, f(g)), where gg′ ∈ E(G).
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The second type of the just defined edges will be called the connecting edges of
G ⊗f H . Note that for each vertex g ∈ V (G), the subgraph of G⊗f H induced by
the set of vertices {(g, h) : h ∈ V (H)}, is isomorphic to H ; it will be denoted by
gH .

Let G and H be connected graphs and denote by HG the set of functions from
V (G) to V (H). We introduce the Sierpiński general position number, gpS(G,H),
as the cardinality of a largest general position set in G⊗f H over all possible func-
tions f ∈ HG and the lower Sierpiński general position number, gpS(G,H), as the
corresponding smallest cardinality. That is,

gpS(G,H) = max
f∈HG

{gp(G⊗f H)} and gpS(G,H) = min
f∈HG

{gp(G⊗f H)} .

At the end of the section, we will call up several known results needed later on.
For the first one, known as Isometric Cover Lemma, we need the following definition.
A set of subgraphs {H1, . . . , Hk} is an isometric cover of G if each Hi, i ∈ [k], is
isometric in G and

⋃k

i=1
V (Hi) = V (G).

Theorem 2.1 [16, Theorem 3.1] If {H1, . . . , Hk} is an isometric cover of G, then

gp(G) ≤
k

∑

i=1

gp(Hi) .

Theorem 2.2 [16, Theorem 3.6] If S is the set of simplicial vertices of a block graph
G, then gp(G) = |S|.

If G is a connected graph, S ⊆ V (G), and P = {S1, . . . , St} a partition of S, then
P is distance-constant if for any i, j ∈ [t], i 6= j, the distance dG(x, y), where x ∈ Si

and y ∈ Sj, is independent of the selection of x and y. A distance-constant partition
P is in-transitive if dG(Si, Sk) 6= dG(Si, Sj) + dG(Sj, Sk) holds for i, j, k ∈ [p]. The
following characterization of general position sets will be used either implicitly or
explicitly in the rest of the paper.

Theorem 2.3 [1, Theorem 3.1] Let G be a connected graph. Then S ⊆ V (G) is a
general position set if and only if the components of G[S] are complete subgraphs,
the vertices of which form an in-transitive, distance-constant partition of S.

The last retrieved result is about the metric structure of Sierpiński product
graphs.

Theorem 2.4 [5, Theorem 4.1] If G and H are connected graphs, f ∈ HG, and
g ∈ V (G), then gH is a convex subgraph of G⊗f H.
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3 Colinear sets

In this section we introduce a new concept into the theory of graph general position
sets, the vertex-colinear sets. We believe that the concept is interesting in its own
right. Moreover, from our aspect it turns out to be extremely useful for studying
the general position sets in Sierpiński product graphs.

Let G be a connected graph and u ∈ V (G). A set S ⊆ V (G) is a u-colinear set
if S is a general position set such that u /∈ S and y /∈ IG[x, u] for any x, y ∈ S. We
are interested in u-colinear sets of largest cardinality and hence set

ξG(u) = max{|S| : S is a u-colinear set} .

Further, let

ξm(G) = min{ξG(u) : u ∈ V (G)} ,

ξM(G) = max{ξG(u) : u ∈ V (G)} .

To illustrate these concepts, we state the following easy result.

Proposition 3.1 If T is a tree with n(T ) ≥ 3 and u ∈ V (T ), then ξT (u) = ℓ(T )−1
if u is a leaf, and ξT (u) = ℓ(T ), otherwise. In particular, ξm(T ) = ℓ(T ) − 1 and
ξM(T ) = ℓ(T ).

Proof. Assume first that u is a leaf and let S be a u-colinear set. Let u′ be the
support vertex adjacent to u. In the following arguments we use the the consequence
of Theorem 2.2 asserting that the general position number of a tree is the number of
its leaves. If degT (u

′) > 2, then gp(T − u) = ℓ(T )− 1, and then the leaves of T − u
form a largest u-colinear set. Assume next that degT (u

′) = 2. Then T − u contains
ℓ(T ) leaves (one of them being u′). However, if u′ lies in a u-colinear set, then no
other vertex lies in such a set. Hence we can again conclude that ξT (u) = ℓ(T )− 1.
Since n(T ) ≥ 3, there exists a vertex u which is not a leaf. Then the leaves of T
form a u-colinear set and hence ξT (u) = ℓ(T ) and so also ξM(T ) = ℓ(T ). �

The above invariants fulfil the following chain of inequalities involving the general
position number. This in part demonstrate that our definitions are meaningful,
further reasons for their introduction will be given later on.

Theorem 3.2 If G is a connected graph of order at least 2 and u ∈ V (G), then

ξm(G) ≤ ξG(u) ≤ ξM(G) ≤ gp(G) ≤ 2ξm(G) .
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Proof. The left three inequalities follow directly from definitions. To prove the last
inequality, let u be a vertex of G such that ξG(u) = ξm(G) and let X be an arbitrary
gp-set of G. We distinguish two cases.

Assume first that u ∈ X . Since X is a general position set of G, we infer
that X \ {u} is a u-colinear set. Then it follows that ξG(u) ≥ |X| − 1, hence
|X| ≤ ξm(G) + 1. Since the order of G is at least two, ξm(G) ≥ 1 and thus we have
|X| ≤ ξm(G) + ξm(G) ≤ 2ξm(G).

Assume second that u /∈ X . In this case we partition X into two sets X1 and
X2 as follows. For every x ∈ X , we put each vertex from (IG[x, u] \ {x}) ∩ X
into X2. This defines X2, and then X1 = X \ X2. We claim that each of X1

and X2 is a u-colinear set. By the definition, this clearly holds for X1. Consider
now two vertices x, x′ ∈ X2 and suppose by way of contradiction that there exists
a shortest x, u-path Px,u that contains x′. Then dG(x, u) = dG(x, x

′) + dG(x
′, u).

Since x ∈ X2, there exists a vertex x′′ ∈ X and a shortest x′′, u-path Px′′,u. We
are going to show that x′′, x, and x′ lie on a common shortest path. If not, then
dG(x

′′, x′) < dG(x
′′, x) + dG(x, x

′), but then

dG(x
′′, u) = dG(x

′′, x) + dG(x, u)

= dG(x
′′, x) + dG(x, x

′) + dG(x
′, u)

> dG(x
′′, x′) + dG(x

′, u)

= dG(x
′′, u) ,

which is not possible. We have thus seen that also X2 is a u-colinear set. Therefore,

ξG(u) ≥ max{|X1|, |X2|} ≥
1

2
|X| =

1

2
gp(G) ,

hence gp(G) ≤ 2ξG(u) = 2ξm(G). �

We now give some examples which demonstrate that in the inequality chain
of Theorem 3.2 the inequalities can be sharp or not. If n ≥ 2, then ξm(Kn,n) =
ξM(Kn,n) = gp(Kn,n), hence for these graphs the left three equalities hold. On
the other hand, ξM(G) can be smaller than gp(G). For instance, ξM(Kn) = n− 1 =
gp(Kn)−1 for n ≥ 2. In addition, if P is the Petersen graph, then ξm(P ) = ξM(P ) =
5 while gp(P ) = 6.

Consider next the cycle chain graphs Cℓ
2k, k, ℓ ≥ 2, where Cℓ

2k consists of ℓ cycles
C2k sharing a vertex, such that a middle cycle shares its diametral vertices with its
two neighboring cycles. See Fig. 1 where C5

6
is shown. Consider the vertex u of

Cℓ
2k as shown in Fig. 1. Then ξCℓ

2k
(u) = 2 and hence ξm(C

ℓ
2k) = 2. On the other

hand, for the vertex v we have ξCℓ
2k
(v) = 4 which in turn implies that ξM(C

ℓ
2k) = 4.
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u
v

Figure 1: The graph C5

6
.

Thus ξm(G) can be strictly smaller than ξM(G). Moreover, the vertex v of Cℓ
2k also

demonstrates that in Theorem 3.2, ξG(u) can be equal to 2ξm(G).
We conclude this section by demonstrating how colinear sets can be used while

determining the general position number of graphs containing bridges.

Proposition 3.3 Let e = u1u2 be a bridge of a connected graph G, and G1, G2 the
two components of G−e, where ui ∈ V (Gi), i ∈ [2]. Then gp(G) ≥ ξG1

(u1)+ξG2
(u2).

Moreover, the equality holds in block graphs containing at least one bridge.

Proof. Let X1 be a u1-colinear set of G1 with cardinality ξG1
(u1), and let X2 be an

analogous u2-colinear set of G2 with cardinality ξG2
(u2). Then it is straightforward

to check that X1∪X2 is a general position set of G, hence gp(G) ≥ ξG1
(u1)+ξG2

(u2).
Consider the block graph G with bridges, and let e = u1u2 be an arbitrary

bridge of G. Let G1 and G2 be the two components of G− e, where u1 ∈ V (G1) and
u2 ∈ V (G2). From the above, we have gp(G) ≥ ξG1

(u1) + ξG2
(u2). Let S be the set

of simplicial vertices of G and set S1 = S ∩ V (G1) and S2 = S ∩ V (G2). Since the
vertices from Si, i ∈ [2], are simplicial vertices in Gi, we infer that Si is a ui-colinear
set of Gi. Clearly, |S1|+ |S2| = |S| and by Theorem 2.2 we know that gp(G) = |S|.
Putting all these fact together we have

gp(G) ≥ ξG1
(u1) + ξG2

(u2) ≥ |S1|+ |S2| = |S| = gp(G) ,

which proves that gp(G) = ξG1
(u1) + ξG2

(u2). �

Next, we give two examples of non-block graphs showing that the inequality of
Proposition 3.3 can be sharp or not. Consider the graph H as shown in Fig. 2. It
is straightforward to see that gp(H) = 6 and ξH1

(u1) + ξH2
(u2) = 3 + 2 = 5, hence

gp(G) can be larger than ξG1
(u1) + ξG2

(u2). On the other hand, to see that gp(G)
can be equal to ξG1

(u1) + ξG2
(u2) on non-block graphs with bridges, consider the

graph H ′ as shown in Fig. 2. We have gp(H ′) = 6 and ξH′

1
(u1)+ξH′

2
(u2) = 3+3 = 6.
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u1 u2

H

u1 u2

H ′

Figure 2: The graphs H and H ′.

4 Sierpiński products of arbitrary graphs

In this section we bound the (lower) Sierpiński general position number for general
graphs. Then we give formulas for the (lower) Sierpiński general position number
for the Sierpiński product of graphs with K2 as the first factor. We begin with the
following simple, but useful lemma.

Lemma 4.1 Let X be a general position set of K2 ⊗f H, where V (K2) = [2] and
f(2) = u ∈ V (H). If |X ∩ V (1H)| ≥ 2 and (1, u) ∈ X, then X ∩ 2H = ∅.

Proof. Let (1, v) be a vertex of X different from (1, u). Then every vertex from
2H , say (2, x), is an endvertex of a shortest (1, v), (2, x)-path passing through (1, u),
hence (2, x) /∈ X . �

Theorem 4.2 If G and H are two connected graphs of order at least 2, then

gp(H) ≤ gpS(G,H) ≤ gpS(G,H) ≤ n(G)gp(H).

Moreover, gpS(G,H) = n(G)gp(H) if and only if gp(H) = ξM(H).

Proof. Let G ⊗f H be an arbitrary Sierpiński product of graphs G and H . By
Theorem 2.4, the product G⊗f H contains n(G) convex subgraphs gH , g ∈ V (G).
Since a convex subgraph is an isometric subgraph, these subgraphs form an isometric
cover. Therefore, by Theorem 2.1, we have gpS(G,H) ≤ n(G)gp(H), hence the
right most inequality holds. The convexity of the subgraphs gH also implies the left
inequality, while the middle inequality is obvious.

Assume now that gpS(G,H) = n(G)gp(H). Consider an arbitrary function f ∈
HG. Using once more the convexity of the subgraphs gH , there exists a gp-set X
of G ⊗f H , such that |V (gH) ∩ X| = gp(H) for each g ∈ V (G). Consider a fixed
subgraph gH and let gg′ ∈ E(G). Since |V (gH) ∩ X| = gp(H) and gpS(G,H) =
n(G)gp(H), Lemma 4.1 implies that (g, f(g′)) /∈ X . Setting u = (g, f(g′)) we obtain,
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having in mind Lemma 4.1 again, that ξgH(u) = gp(H) which in turn implies that
ξM(H) = gp(H).

Assume next that ξM(H) = gp(H). Let u be a vertex of H such that ξH(u) =
ξM(H) and let f ∈ HG be the identity function f(g) = u for any g ∈ V (G).
Each gH has at least ξM(H) vertices from some gp-set of the graph G⊗f H , hence
gp(G ⊗f H) ≥ n(G)ξM(H) = n(G)gp(H). Thus we have gpS(G,H) ≥ n(G)gp(H).
Since gH is convex in G ⊗f H , Theorem 2.1 gives gp(G ⊗f H) ≤ n(G)gp(H) and
then gpS(G,H) ≤ n(G)gp(H). From the above, we conclude that gpS(G,H) =
n(G)gp(H). �

Corollary 4.3 If G is a connected graph with n(G) ≥ 2 and T is a tree with n(T ) ≥
3, then gpS(G, T ) = n(G)ℓ(T ).

Proof. Since n(T ) ≥ 3, Proposition 3.1 gives gp(T ) = ℓ(T ) = ξM(T ). Hence
Theorem 4.2 yields the conclusion. �

Theorem 4.4 If H is a connected graph with n(H) ≥ 2, then the following asser-
tions hold.

(i) gpS(K2, H) = 2ξm(H).
(ii) gpS(K2, H) = 2ξM(H).

Proof. Set V (K2) = [2] for the rest of the proof.
(i) Let f ∈ HK2 be an arbitrary function, say f(1) = u and f(2) = v. By

Proposition 3.3 we have gp(K2⊗f H) ≥ ξH(v)+ ξH(u) ≥ ξm(H)+ ξm(H). It follows
that gpS(K2, H) ≥ 2ξm(H).

To prove the reverse inequality, let u be a vertex of H such that ξH(u) = ξm(H).
Define f ∈ HK2 by f(1) = f(2) = u and letX be a gp-set ofK2⊗fH . If V (1H)∩X =
∅ or V (2H)∩X = ∅, then gp(K2 ⊗f H) ≤ gp(H) holds and then Theorem 3.2 gives
gp(K2 ⊗f H) ≤ 2ξm(H). Assume second that V (1H) ∩X 6= ∅ and V (2H)∩X 6= ∅.
Then we claim that |V (1H)∩X| ≤ ξH(u) and |V (2H)∩X| ≤ ξH(u). By establishing
this claim, the gp(K2⊗f H) ≤ 2ξm(H) follows. Suppose on the contrary that this is
not the case and assume without loss of generality that |V (1H) ∩X| ≥ ξH(u) + 1.
Then there exist two vertices (1, h), (1, h′) ∈ V (1H) ∩ X , where h 6= h′, such that
the vertices (1, h), (1, h′), and (2, u) lie on a common shortest path. If (2, h′′) is
an arbitrary vertex from V (2H) ∩ X , then the vertices (1, h), (1, h′), and (2, h′′)
lie on a common shortest path. It is impossible because we have assumed that
V (2H) ∩X 6= ∅. This contradiction proves the claim.

(ii) Let f ∈ HK2 be an arbitrary function, say f(1) = u and f(2) = v and let X
be an arbitrary gp-set of K2⊗f H . We claim that gp(K2⊗f H) ≤ 2ξM(H). Suppose
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on the contrary that gp(K2 ⊗f H) ≥ 2ξM(H) + 1. Since the order of H at least 2,
Theorem 3.2 implies that 2ξM(H) ≥ gp(H) ≥ 2. Then gp(K2⊗fH) ≥ gp(H)+1 ≥ 3
and thus |X ∩ V (1H)| ≥ 2 or |X ∩ V (2H)| ≥ 2.

Assume, without loss of generality, that |X ∩ V (1H)| ≥ 2. If (1, v) ∈ X , then
Lemma 4.1 implies that X ∩ V (2H) = ∅ and then, using Theorem 3.2 once more,
gp(K2 ⊗f H) ≤ gp(H) ≤ 2ξm(H) ≤ 2ξM(H), a contradiction. Hence assume in the
rest that (1, v) /∈ X . Since gp(K2⊗f H) ≥ gp(H)+1, we get |X ∩V (2H)| ≥ 1. But
as argued in (i), this is not possible. This contradiction implies that |X ∩V (2H)| ≤
ξH(u) ≤ ξM(H). By symmetry we also have that if |X ∩ V (2H)| ≥ 2, then |X ∩
V (1H)| ≤ ξH(v) ≤ ξM(H) holds. We can thus conclude that gpS(K2, H) ≤ 2ξM(H).

To complete the argument we need to demonstrate that gpS(K2, H) ≥ 2ξM(H).
Let x be a vertex of H such that ξH(x) = ξM(H) and let the function f ∈ HK2 be
defined by f(1) = f(2) = x. By Proposition 3.3, it follows that gp(K2 ⊗f H) ≥
2ξH(x) = 2ξM(H). Then we have gpS(K2, H) ≥ 2ξM(H), and we are done. �

5 Sierpiński products of complete graphs

In this section we consider the Sierpiński product of complete graphs Km⊗f Kn. In
the first main result we determine their Sierpiński general position number. For the
lower Sierpiński general position number we prove that gpS(Km, Kn) = m(n−m+1)
provided that n ≥ 2m − 2. The latter assumption is required as demonstrated by
our last result which asserts that gpS(K6, K9) = 25.

Throughout this section we will assume that V (Km) = [m] and V (Kn) = {xi :
i ∈ [n]}.

Theorem 5.1 If m,n ≥ 2, then

gpS(Km, Kn) = m(n− 1) .

Proof. Let f ∈ KKm
n be defined by f(i) = x1 for i ∈ [m]. Let X = {(i, xj) : i ∈

[m], 2 ≤ j ≤ n}. Since f is an identify function, for any two vertices (i, xj), (i
′, x′

j) ∈
X , where i 6= i′, we have dKm⊗fKn

((i, xj), (i
′, x′

j)) = 3. By Theorem 2.3, X is a
general position set, hence gp(Km⊗fKn) ≥ m(n−1). It follows that gpS(Km, Kn) ≥
gp(Km ⊗f Kn) ≥ m(n− 1).

To prove equality, suppose on the contrary that gpS(Km, Kn) ≥ m(n− 1)+1. It
means that there exists a function f ′ ∈ KKm

n and an index i ∈ [m], such that V (iKn)
completely lies in some general position set S of Km ⊗f ′ Kn. Since m,n ≥ 3, there
exists a vertex (i′, xj) ∈ S, where i 6= i′. Assume that f ′(i′) = xp and let q ∈ [n] be
such that q 6= p. Then the vertices (i, xq) ∈ S, (i, xp) ∈ S, and (i′, xj) ∈ S lie on a
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common shortest path (of length 2) ofKm⊗f ′Kn, a contradiction. This contradiction
implies that gp(Km ⊗f ′ Kn) ≤ m(n − 1), hence we have gpS(Km, Kn) = m(n − 1).
�

In the rest we focus on the lower Sierpiński general position number.

Lemma 5.2 Let m,n ≥ 2 and let f ∈ KKm
n . Then the following hold.

(i) If m ≤ n, then gp(Km ⊗f Kn) ≥ vn−1(Km ⊗f Kn) ≥ (n − m + 1)m. In
particular,

gpS(Km, Kn) ≥ (n−m+ 1)m.

(ii) If m ≥ n, then gp(Km ⊗f Kn) ≥ max{2(n− 1), m}. In particular,

gpS(Km, Kn) ≥ max{2(n− 1), m} .

Proof. Let f ∈ KKm
n , and set Z = Km ⊗f Kn for the rest of the proof.

(i) Note that a vertex of Z is of degree n− 1 if and only if it is not incident to a
connecting edge. For each i ∈ [m], let Xi be the set of vertices from V (Z)∩V (iKn)
of degree n − 1. (Note that it is possible that Xi = ∅.) Then Xi clearly induces a
complete subgraph. Moreover, if i 6= j, and if (i, xk) ∈ Xi and (j, xℓ) ∈ Xj, then
dZ((i, xk), (j, xℓ)) = 3. Theorem 2.3 implies that

⋃m

i=1
Xi is a general position set.

This in turn yields gp(Km ⊗f Kn) ≥ vn−1(Km ⊗f Kn) because each vertex not in
⋃m

i=1
Xi is of degree at least n. Moreover, since each iKn contains at most m − 1

connecting edges, we have |Xi| ≥ n − m + 1, so we also have vn−1(Km ⊗f Kn) ≥
(n−m+ 1)m.

The above argument holds true for any function f ∈ KKm
n , hence we have

gpS(Km, Kn) ≥ (n−m+ 1)m.
(ii) Assume first that f is an identity function, without loss of generality let

f(i) = x1 for i ∈ [m]. By Theorem 2.3 we then get that V (Z)\{(1, x1), . . . , (m, x1)}
is a general position set, hence in this case gp(Z) ≥ 2(n−1). Assume second that f
is not an identity function and assume without loss of generality that f(1) = x1 and
f(2) = x2. Now we claim that S = V (1Kn)∪ V (2Kn) \ {(1, x2), (2, x1)} is a general
position set. To prove this claim it suffices to show (again in view of Theorem 2.3)
that if (1, xi), (2, xj) ∈ S, then dZ((1, xi), (2, xj)) = 3. Suppose on the contrary that
dZ((1, xi), (2, xj)) = 2. Then there exits a vertex (p, xk), where k 6= 1, 2, such that
(1, xi)(p, xk) ∈ E(Z) and (2, xj)(p, xk) ∈ E(Z). But this means that f(1) = xk

and f(2) = xk, a contradiction since we have assumed that f(1) 6= f(2). This
contradiction proves the claim. We conclude that S is a general position set of Z
and as |S| = 2(n− 1) we have proved that gp(Z) ≥ 2(n− 1).
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To prove that gp(Z) ≥ m, we may assume without loss of generality that the
function f is non-decreasing with respect to the indices of xis. That is, let k1 ≥
· · · ≥ kn ≥ 0, where k1 + · · ·+ kn = m, and set k0 = 0. Then for i ∈ [n],

f(j) = xi for j ∈ {k1 + · · ·+ ki−1 + 1, . . . , k1 + · · ·+ ki} .

For i ∈ [n], set

Xi =
{

(j, xi) : j ∈ {k1 + · · ·+ ki−1 + 1, . . . , k1 + · · ·+ ki}
}

.

Note that for some i we can have Xi = ∅, but in any case
∑n

i=1
|Xi| = m.

We claim that X =
⋃n

i=1
Xi is a general position set of Z. Note first that Xi,

i ∈ [n], induces a complete graph Kki of Z. Therefore, in view of Theorem 2.3, to
prove that X is a general position set, it suffices to demonstrate that if (j, xi) ∈ Xi

and (j′, xi′) ∈ Xi′ , where i 6= i′, then dZ((j, xi), (j
′, xi′)) = 3. Since (j, xi) and

(j′, xi′) are not adjacent, suppose on the contrary that dZ((j, xi), (j
′, xi′)) = 2. Then

there exists a vertex (p, xq), where p 6= j, j′, such that (j, xi)(p, xq) ∈ E(Z) and
(j′, xi′)(p, xq) ∈ E(Z). Then it follows that f(j) = xq and f(j′) = xq, contradicting
our assumption. This contradiction proves the claim, hence gp(Z) ≥ m.

Again, the above arguments hold true for any function f ∈ KKm
n , hence we have

gpS(Km, Kn) ≥ max{2(n− 1), m}. �

For the lower Sierpiński general position number of two complete graphs we have
the following result, where we need to assume that the second factor is relatively
large with respect to the first factor.

Theorem 5.3 If m ≥ 2 and n ≥ 2m− 2, then

gpS(Km, Kn) = m(n−m+ 1) .

Proof. Using Lemma 5.2(i) once more we have gpS(Km, Kn) ≥ m(n−m+ 1).

To prove that gpS(Km, Kn) = m(n − m + 1), consider the function f ∈ KKm
n

defined by f(i) = xi for i ∈ [m]. Setting G = Km ⊗f Kn we are going to show that
gp(G) ≤ m(n−m+ 1).

Suppose on the contrary that gp(G) ≥ m(n−m+ 1) + 1 and let R be a gp-set
of G. Then it follows that there exists an index i ∈ [m] such that |V (iKn) ∩ R| ≥
n−m+ 2 ≥ 2. Assume, without loss of generality, that |V (1Kn) ∩R| is as large as
possible.

We claim that if (1, xj) ∈ V (1Kn) ∩ R, then V (jKn) ∩ R = ∅, j ∈ [m]. Indeed,
since |V (1Kn)∩R| ≥ 2, there exists a vertex (1, xj′) ∈ R, where j′ 6= j and j′ ∈ [m].
Then the vertices (1, xj′), (1, xj), (j, x1), and (j, xp) ∈ V (jKn) form a shortest path,
hence we conclude that (j, xp) /∈ R for p ∈ [n].
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As we have assumed that gp(G) ≥ m(n−m+1)+1, we can write |V (1Kn)∩R| =
n−m+ 1+ k, where k ≥ 1 (and k ≤ m− 1). Then |V (sKn)∩R| ≤ n−m+ 1+ k,
where 2 ≤ s ≤ m. By the above, G contains at least k copies iKn such that
V (iKn) ∩ R = ∅. Then we have

|R| ≤ (n−m+ 1 + k) + (m− k − 1)(n−m+ 1 + k)

= m(n−m+ 1) + k(2m− n− 1− k)

< m(n−m+ 1) + 1.

Here the last inequality holds because n ≥ 2m − 2 and k ≥ 1 which implies that
2m− n− 1 − k ≤ 2 − 1 − k = 1 − k ≤ 0. This contradiction implies that gp(G) ≤
m(n−m+ 1). We conclude that gpS(Km, Kn) = m(n−m+ 1). �

In Theorem 5.3 we have assumed that n ≥ 2m−2. The following result explains
why this assumption cannot be avoided in general.

Proposition 5.4 gpS(K6, K9) = 25.

Proof. By Lemma 5.2(i), we have gpS(K6, K9) ≥ 24. To prove that gpS(K6, K9) =

25, we consider two cases depending on the function f ∈ KK6

9 .

Case 1. f is injective.
In this case we may assume, without loss of generality, that f(i) = xi for i ∈ [6]. The
obtained graph K6⊗f K9 is shown in Fig. 3, where the edges of complete subgraphs
iK9, i ∈ [6], and the edges of the factors K6 and K9 are not drawn for a clearer
picture.

We can check that the set consisting of black vertices from Fig. 3 is a general
position set of cardinality 25 of K6 ⊗f K9. Hence gp(K6 ⊗f K9) ≥ 25. To prove the
reverse inequality, suppose there exists a general position set X of K6 ⊗f K9 with
|X| ≥ 26. Let Xi = X ∩ V (iK9), i ∈ [6]. We may assume without loss of generality
that |X1| ≥ |Xi| for i ∈ {2, . . . , 6}. Clearly, |X1| ≥ 5. If |X1| = 5, then for some
i ∈ {2, . . . , 6} we have Xi = ∅. This implies that |X| ≤ 25. Hence we must have
|X1| = 4 + k, where 2 ≤ k ≤ 5. Then there are k copies iK9 with no vertex from
X . It follows that |X| ≤ (4 + k) + (6 − 1 − k)(4 + k) ≤ 25. We can conclude that
gp(K6 ⊗f K9) ≤ 25 and thus gp(K6 ⊗f K9) = 25.

Case 2. f is not injective.
In this case we may assume, without loss of generality, that f(1) = f(2). Then
in each of the copies iK9, i ∈ {3, 4, 5, 6}, the graph K6 ⊗f K9 contains at least
five vertices of degree 8. Since in each of 1K9 and 2K9 there are at least four
such vertices, we can see (using the argument from the proof of Lemma 5.2(i)) that
gp(K6 ⊗f K9) ≥ 8 + 20 = 28. �
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Figure 3: The Sierpiński product graph K6 ⊗f K9, where f(i) = xi for i ∈ [6]

6 Concluding remarks

In Proposition 3.3 we have bounded from below the general position number of
graphs with bridges. It would be interesting to characterize the graphs that attain
the equality in the proved bound.

In view of Theorem 4.2 it would be interesting to characterize the graphs G with
gp(G) = ξM(G). Such graphs are, for instance, grid graphs Pn�Pm, n,m ≥ 3, for
which we have gp(Pn�Pm) = 4 = ξM(Pn�Pm). Similarly, in view of Theorem 4.4
it would be interesting to study the graphs G with ξm(G) = ξM(G).

In Theorem 5.3 we have proved that gpS(Km, Kn) = m(n−m+1) if m ≥ 2 and
n ≥ 2m− 2. It remains as an open problem to determine gpS(Km, Kn) for the cases
when n < 2m − 2. In Proposition 5.4 the particular case of gpS(K6, K9) has been
solved.
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