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1 Introduction

Local operations are valuable in graph theory for understanding and analyzing
the properties of graphs and refer to operations that affect only a small part of
a graph, rather than the whole structure. These operations include vertex/edge
removal/addition and edge subdivision or contraction, and often lead to respective
criticality concepts, cf. [2, 4, 7, 9, 21, 32].

The general position problem was introduced to graph theory in [5, 17] and
proved to be NP-hard in [17]. In [3], the structure of general position sets was
clarified. Afterwards, the problem of determining the general position number of a
graph received a wide attention, cf. [6, 23, 25, 28, 31]. This is in particular the case for
graph products. The general position number of the Cartesian product of paths [13],
of paths and cycles [16], and of two trees [30] were determined, while in [15] the
general position number of strong product graphs was investigated. The concept
has been modified and/or generalized into several directions. Let us point here
to d-position sets [12], Steiner general position problem [11], edge general position
problem [14, 19, 27], monophonic general position problem [26], and general position
polynomials [8].

In this paper, we focus on how much the general position number of a graph
can be affected by removing a vertex or by removing an edge. In the next section
we give definitions and recall known results needed. In Section 3, we prove that
gp(G−x) ≤ 2gp(G) holds for any vertex x of a graph G. Then we demonstrate that
gp(G−x) cannot be bounded from below by a function of gp(G). On the other hand,
if x lies in some gp-set of G, then we prove that gp(G)−1 ≤ gp(G−x). In Section 4,
we give two constructions which show that gp(G−x) can be much larger than gp(G)
also whenG−x is connected. In Section 5, we focus on the vertex removing operation
in diameter 2 graphs. We show that if diam(G) = 2, then gp(G − x) ≤ gp(G) and
prove that gp(G) − 1 ≤ gp(G − x) ≤ gp(G) when the diameter of G − x remains
2. In Section 6, we prove that gp(G)/2 ≤ gp(G − e) ≤ 2gp(G) holds for any edge
e of a graph G. For diameter 2 graphs G we sharpen the bound by proving that
gp(G)−1 ≤ gp(G−e) ≤ gp(G)+1. All the above bounds are along the way shown
to be sharp.

2 Preliminaries

Unless stated otherwise, the graphs G = (V (G), E(G)) considered in this paper
are simple and connected. For a positive integer k, we use [k] to represent the
set {1, . . . , k}. The degree of a vertex u is the number of vertices adjacent to u in
G. Vertices of degree one are called leaves. The number of leaves of G is denoted
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by ℓ(G). If S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]. In
particular, G− v denotes G[V (G) \ {v}]. A vertex subset S is an independent set of
G if G[S] is an edgeless graph. The independence number of G, denoted by α(G), is
the maximum cardinality of an independent set in G.

The distance dG(u, v) between vertices u and v of G is the number of edges on a
shortest u, v-path. A shortest path of G also is called a geodesic of G. The diameter

of G is the maximum distance between pairs of vertices of G and is denoted by
diam(G). A subgraph H of G is isometric if for each pair of vertices u, v ∈ V (H)
we have dH(u, v) = dG(u, v). The interval between vertices u and v is

IG[u, v] = {w : dG(u, v) = dG(u, w) + dG(w, v)} .

A set X ⊆ V (G) is a general position set of G if for each pair u, v ∈ X and
any shortest u, v-path P we have V (P ) ∩ X = {u, v}. The cardinality of a largest
general position set of G is the general position number of G denoted by gp(G) and
refereed to as the gp-number of G. A general position set X of cardinality gp(G) is
refereed to as a gp-set of G. For a vertex u ∈ V (G), a set X ⊆ V (G) is u-colinear if
X is a general position set such that u /∈ X and y /∈ IG[x, u] for any x, y ∈ X .

Subgraphs H1, . . . , Hk of a graph G form an isometric cover of G if each Hi, i ∈
[k], is isometric in G, and

⋃k

i=1
V (Hi) = V (G).

Theorem 2.1 [17, Theorem 3.1] If {H1,. . . , Hk} is an isometric cover of G, then

gp(G) ≤
k∑

i=1

gp(Hi) .

The isometric-path number of a graph G, denoted by ip(G), is the minimum
number of isometric paths required to cover the vertices of G.

Proposition 2.2 [17, Corollary 3.2] If G is a graph, then gp(G) ≤ 2ip(G).

The following result will be used several times, either implicitly or explicitly.

Proposition 2.3 [17, Corollary 3.7] If T is a tree, then gp(T ) = ℓ(T ).

The fan graph Fn, n ≥ 3, is obtained by taking the join of the path graph Pn and
the graph P1. Equivalently, a fan graph is obtained from a wheel graph by removing
an edge of it between two degree 3 vertices, cf. [24].

Proposition 2.4 [29, Corollary 2.9] If n ≥ 4, then gp(Fn) = ⌈2n
3
⌉.
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The final known result we recall describes general position sets in an arbitrary
graph. To state it, some more definitions are required. If P = {S1, . . . , St} a
partition of S ⊆ V (G), then P is distance-constant if for any i, j ∈ [t], i 6= j, there
exists a constant pij, such that dG(x, y) = pij for every x ∈ Si, y ∈ Sj. If so, we set
dG(Si, Sj) = pij . A distance-constant partition P is in-transitive if pik 6= pij + pjk
holds for i, j, k ∈ [t].

Theorem 2.5 [3, Theorem 3.1] Let G be a graph. Then S ⊆ V (G) is a general

position set if and only if the components of G[S] are complete subgraphs, the vertices

of which form an in-transitive, distance-constant partition of S.

3 General bounds

In this section we prove that gp(G−x) ≤ 2gp(G) holds for any vertex x of a graph G.
Then we demonstrate that gp(G− x) cannot be bounded from below by a function
of gp(G). On the other hand, if x lies in some gp-set, then gp(G)− 1 ≤ gp(G− x).

Theorem 3.1 If x is a vertex of a graph G, then gp(G− x) ≤ 2gp(G). Moreover,

the bound is sharp.

Proof. Let R be an arbitrary gp-set of G − x. Then clearly x 6∈ R. We partition
R into two sets R1 and R2 as follows. For every u ∈ R, we put each vertex from
(IG[u, x]\{u})∩R into R2. This defines R2, and then R1 = R\R2. By the definition
of the sets R1 and R2, the set R1 is an x-colinear set of G. We next claim that R2

is also an x-colinear set of G.
Consider two vertices u, u′ ∈ R2 and suppose by way of contradiction that there

exists a shortest x, u-path Px,u in G that contains u′. Then dG(u, x) = dG(u, u
′) +

dG(u
′, x). Since u ∈ R2, there exists a vertex u′′ ∈ R1, and a shortest x, u′′-path Px,u′′

of G passing through u. We are going to show that u′′, u, and u′ lie on a common
shortest path in G − x. If not, it follows that there exists a shortest u′, u′′-path in
G − x such that dG−x(u

′, u′′) < dG−x(u
′, u) + dG−x(u, u

′′). From our assumption, x
does not lie on any shortest u′, u′′-path, any shortest u′, u-path, and any shortest
u, u′′-path in G. Therefore, dG−x(u

′, u′′) = dG(u
′, u′′), dG−x(u, u

′′) = dG(u, u
′′), and
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dG−x(u, u
′) = dG(u, u

′). Then

dG(x, u
′′) = dG(x, u) + dG(u, u

′′)

= dG(x, u
′) + dG(u

′, u) + dG(u, u
′′)

= dG(x, u
′) + dG−x(u

′, u) + dG−x(u, u
′′)

> dG(x, u
′) + dG−x(u

′, u′′)

= dG(x, u
′) + dG(u

′, u′′)

≥ dG(x, u
′′) ,

which is not possible. This contradiction implies that dG−x(u
′, u′′) = dG−x(u

′, u) +
dG−x(u, u

′′), hence u lies on a shortest u′, u′′-path of G− x. Since we have assumed
that {u, u′, u′′} ⊆ R is a general position set of G − x, we have obtained a contra-
diction which implies that R2 is an x-colinear set of G.

We now claim that R1 and R2 are general position sets of G. Suppose first that
R1 is not a general position sets of G. Then there exist vertices u, v, w ∈ R1 and a
shortest u, w-path P in G that passes through v. Since R1 ⊆ R and R is a general
position set of G − x, the path P must contain the vertex x. But then v /∈ R1, a
contradiction. Suppose second that R2 is not a general position sets of G. Then
there exist vertices u, v, w ∈ R2 and a shortest u, w-path P in G that passes through
v. Again we see that the path P must contain the vertex x. Assume without loss
of generality that x lies between u and v on P . Since w ∈ R2, there exists a vertex
w′ ∈ R1, such that w is on a shortest w′, x-path. But then w′, w, v lie on a common
geodesic, a contradiction with the assumption that R is a general position set of
G− x.

Since R1 and R2 are general position sets of G, we can conclude that

gp(G) ≥ max{|R1|, |R2|} ≥
1

2
|R| =

1

2
gp(G− x) ,

hence gp(G− x) ≤ 2gp(G).
To show that the bound is sharp, consider the subdivided graph S(K1,n), n ≥ 2,

of the starK1,n, that is, the graph obtained fromK1,n by subdividing each of its edges
once. Let x be the vertex of degree n of S(K1,n). Since S(K1,n)−x ∼= nK2 and having
Proposition 2.3 in mind, we can conclude that gp(S(K1,n)−x) = 2n = 2gp(S(K1,n)).
�

There is no general lower bound on gp(G−x) in terms of gp(G). To demonstrate
it, consider the fan graphs Fn, n ≥ 3. By Proposition 2.4 we have gp(Fn) = ⌈2n

3
⌉.

Since clearly gp(Fn − x) = 2, where x is the vertex of Fn of degree n, we see that
gp(G − x) can indeed be arbitrary smaller than gp(G). The next result leads to
many additional such examples.
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Proposition 3.2 Let S be an independent set of a graph H with |S| = α(H). If G
is the graph obtained from the disjoint union of H and a vertex x by joining x to

each vertex of S, then gp(G) ≥ α(H).

Proof. In G, the set S is an independent set of vertices that are pairwise at distance
2. Hence S is a general position set of H and the conclusion follows. �

In Proposition 3.2 we have H ∼= G − x, hence gp(G − x) = gp(H). Thus, if
gp(H) is much smaller than α(H), then gp(G − x) is much smaller than gp(G).
For instance, such graphs are grids Pn�Pm, n,m ≥ 3, for which we know that
gp(Pn �Pm) = 4 [18, Corollary 3.2].

On the other hand, under some additional assumption, gp(G−x) can be bounded
from below with gp(G) as follows.

Proposition 3.3 Let x be a vertex of a graph G. If x lies in some gp-set of G, then

gp(G)− 1 ≤ gp(G− x).

Proof. Let S be a gp-set of G and x ∈ S. Suppose that S \ {x} is not a general
position set of G− x. Then there are three distinct vertices u, v, w ∈ S \ {x} lying
on a shortest path in G − x. Without loss of generality, assume that v lies on
a u, w-geodesic in G − x. Since S is a gp-set of G, but S \ {x} is not a general
position set of G − x, x must lie on a u, w-geodesic in G. This contradicts our
assumption. Hence, S \ {x} is a general position set of G − x. It concludes that
gp(G− x) ≥ |S| − 1 = gp(G)− 1. �

4 Two constructions

In Theorem 3.1 we have proved that the bound gp(G − x) ≤ 2gp(G) is sharp.
However, the sharpness examples were such that G − x is not connected. In this
section we give two constructions which show that gp(G − x) can be much larger
than gp(G) also when G− x is connected.

In the first construction let Hn, n ≥ 3, be the graph defined as follows. Its vertex
set is Y2n∪{x, x

′}∪Zn, where Y2n = {y1, . . . , y2n} and Zn = {z1, . . . , zn}. The vertices
of Y2n induce a complete subgraph K2n, the vertices of {x, x

′}∪Zn induce a complete
bipartite graph K2,n with the corresponding bipartition, the vertex x is adjacent to
vertices y1, . . . , yn, and the vertex x′ is adjacent to yn+1. See Fig. 1.

Proposition 4.1 If n ≥ 3, then gp(Hn) = 2n + 1 and gp(Hn − x) = 3n− 1.
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y1

yn

yn+1

yn+2

y2n

x

x′

z1

z2

zn

Y2n Zn

......

Figure 1: Graph Hn.

Proof. Set Yj = {y1, . . . , yj} for j ∈ {n, n + 1}. We claim that Yn+1 ∪ Zn is a
general position set of Hn. Consider any two vertices u and v from Yn+1 ∪ Zn. If
u, v ∈ Yn+1, then dHn

(u, v) = 1. If u, v ∈ Zn, then since Hn[{x, x
′} ∪ Zn] ∼= K2,n,

we have dHn
(u, v) = 2. Finally, if u ∈ Yn+1 and v ∈ Zn, then dHn

(u, v) = 2. Hence,
having Theorem 2.5 in mind, Yn+1 ∪ Zn is a general position set of Hn. It follows
that gp(Hn) ≥ |Yn+1 ∪ Zn| = 2n+ 1.

To prove the upper bound on gp(Hn), suppose on the contrary that gp(Hn) ≥
2n+2 and let R be a gp-set of Hn. We claim first that |Yn∩R| ≥ 1 and |Zn∩R| ≥ 1.
Indeed, if |Yn ∩ R| = 0, then R = {yn+1, . . . , y2n} ∪ {x, x′} ∪ Zn, but this is clearly
not a general position set. Similarly, if |Zn ∩ R| = 0, then R = Y2n ∪ {x, x′}, which
is also not a general position set as y2n, yn+1, and x′ lie on a common shortest path.
Hence the claim. Since |Yn ∩ R| ≥ 1 and |Zn ∩ R| ≥ 1, we get that x 6∈ R and
(Y2n \ Yn+1) ∩ R = ∅. It follows that R = Yn+1 ∪ {x′} ∪ Zn. But then zn, x

′, and
yn+1 are on a shortest path. This final contradiction proves that gp(Hn) ≤ 2n + 1.
We have thus shown that gp(Hn) = 2n+ 1.

Consider now Hn − x and note that diam(Hn − x) = diam(Hn) = 3. In [5,
Theorem 2.4] it was proved that if G is a graph, then gp(G) ≤ n(G)− diam(G)+ 1.
Hence gp(Hn−x) ≤ 3n−1. Invoking Theorem 2.5 again, we infer that (Y2n\{yn+1})∪
Zn is a general position set of Hn−x which in turn implies that gp(Hn−x) = 3n−1.
�

We next give another family of graphs in which the general position number
increases arbitrary by removing a vertex. If k ≥ 2, then let the graph Gk be
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constructed as follows. Let V (Gk) = Xk∪Yk∪Zk+1∪{w}, where Xk = {x1, . . . , xk},
Yk = {y1, . . . , yk}, and Zk+1 = {z1, . . . , zk+1}. The vertex w is adjacent to every
vertex of Xk ∪Yk, the vertices of Zk+1 induce a complete graph Kk+1, z2 is adjacent
to y2, . . . , yk, and z1 is adjacent to y1, see Fig. 2. Note that diam(Gk) = 4, and that
Xk and Yk are independent sets of vertices.

w

x1

x2

xk

y1

y2

yk

z1

z2

zk

zk+1

Xk Yk Zk+1

......
...

...

Figure 2: Graph Gk.

Proposition 4.2 If k ≥ 2, then gp(Gk) = 2k and gp(Gk − z2) = 3k − 2.

Proof. Let P1 be the path induced by the vertices x1, w, y1, and z1. Let Pi =
xiwyiz2zi+1 be a path of Gk, where 2 ≤ i ≤ k. Set Ψ = {Pi : i ∈ [k]}. Then
it follows that |Ψ| = k. It is observed that Ψ is a set of isometric paths of Gk.
By Proposition 2.2, gp(Gk) ≤ 2k. To show gp(Gk) ≥ 2k, note that G[Xk ∪ Yk ∪
{w}] ∼= K1,2k, hence Proposition 2.3 implies that gp(G[Xk ∪ Yk ∪ {w}]) = 2k. Since
G[Xk ∪Yk∪{w}] is an isometric subgraph of Gk, we conclude that gp(Gk) ≥ 2k and
thus gp(Gk) = 2k.

Consider Gk−z2. It is straightforward to check that S = V (Gk−z2)\{w, y1, z1}
is a general position set of Gk − z2. For instance, any shortest path between a
vertex xi ∈ Xk and any other vertex from S avoids other vertices of S because
dGk−z2(xi, xj) = 2, dGk−z2(xi, yj) = 2, and dGk−z2(xi, zj) = 4 for j ≥ 3. In the latter
case, a shortest xi, zj-path, induced by the vertices xi, w, y1, z1, and zj , is unique.
Thus gp(Gk− z2) ≥ 3k−2. On the other hand, suppose that S is a general position
set of Gk−z2 of size 3k−1. Because n(Gk−z2) = 3k+1, we have S∩{w, y1, z1} 6= ∅.
But then we find a vertex from Xk, a vertex from {w, y1, z1}, and a vertex from
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Zk+1 \ {z1, z2}, such that these three vertices from S and lie on a common shortest
path in Gk − z2. As a consequence, we conclude that gp(Gk − z2) ≤ 3k− 2 and thus
we have gp(Gk − z2) = 3k − 2. �

5 Vertex removing in diameter 2 graphs

Note that for the graphs Hn from Proposition 4.1 we have diam(Hn) = 3 as well as
diam(Hn−x) = 3. Also, for the graphs Gk from Proposition 4.2 we have diam(Gk) =
4 as well as diam(Gk − z2) = 4. In both cases we have seen that removing a vertex
increases the general position number arbitrarily. In this section we therefore focus
on the vertex removing operation in diameter 2 graphs. We first show that in
this case Theorem 3.1 sharpens as gp(G − x) ≤ gp(G). Second, we prove that if
the diameter of G − x remains 2, then gp(G) − 1 ≤ gp(G − x) ≤ gp(G). Before
presenting these results, we consider some examples.

The gp-number of a diameter 2 graph may stay the same after a vertex is re-
moved. Consider for instance complete bipartite graphs Kn,m, where 2 ≤ n ≤ m.
Then it is known that gp(Kn,m) = m, see [5, Proposition 2.2]. Hence if x is a vertex
of Kn,m from a smaller partition set, then gp(Kn,m − x) = m = gp(Kn,m). Consider
next the Petersen graph P . Then gp(P ) = 6, see [17, page 184]. If x ∈ V (P ), then
diam(P − x) = 3. Moreover, by a case analysis we can check that gp(P − x) = 5.
See Fig. 3 where a gp-set in P − x is marked with black vertices.

x

Figure 3: A gp-set of P − x.

Proposition 5.1 If x is a vertex of a diameter 2 graph G, then gp(G−x) ≤ gp(G).

Proof. To prove the proposition it suffices to show that if S is a gp-set of G − x,
then S is also a general position set of G. Let u, v, w be vertices from S and suppose
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by way of contradiction that they lie on a shortest path in G. As diam(G) = 2, the
vertices u, v, w induce an isometric P3 in G. But then this path is also isometric in
G− x, a contradiction. �

Theorem 5.2 Let x be a vertex of a diameter 2 graph G. If diam(G−x) = 2, then
gp(G)− 1 ≤ gp(G− x) ≤ gp(G). Moreover, the bounds are sharp.

Proof. The upper bound follows by Proposition 5.1. Assume that diam(G) =
diam(G− x) = 2, where x ∈ V (G). Then we can prove along the lines of the proof
of Proposition 5.1 that if S is a gp-set of G, then S \ {x} is a general position set of
G− x. Hence gp(G− x) ≥ |S \ {x}| ≥ |S| − 1 = gp(G)− 1.

Let n1 ≥ · · · ≥ nk ≥ 2, k ≥ 3, and let Gn1,...,nk
be the graph obtained from the

disjoint union of Kn1
, . . . , Knk

by selecting a vertex in each of the complete graphs
and identify all of them into a single vertex. Then gp(Gn1,...,nk

) = n1 + · · ·+ nk − k.
If x is an arbitrary vertex of Gn1,...,nk

which is not its maximum degree vertex, then
gp(Gn1,...,nk

−x) = gp(Gn1,...,nk
)−1. This demonstrates sharpness of the lower bound

as these graphs are of diameter 2.
Let next n1 ≥ · · · ≥ nk ≥ 2, where k ≥ 2 and n1 > k, and consider the complete

multipartite graph Kn1,...,nk
. Then gp(Kn1,...,nk

) = n1 and if x is an arbitrary vertex
which does not lie in the n1-part, then gp(Kn1,...,nk

− x) = n1, which demonstrates
sharpness of the upper bound. �

Another family which demonstrates sharpness of the upper bound in Theorem 5.2
is the family Kn ⊠ Cm, where n ≥ 2 and m ∈ {4, 5}. By [15, Proposition 4.3] we
have gp(Kn ⊠ C4) = 2n and gp(Kn ⊠ C5) = 3n. Moreover, it is straightforward to
check that the general position number does not change after one vertex is removed
from these graphs.

Putting together Propositions 3.3 and 5.1, and Theorem 5.2, the following con-
clusion follows.

Corollary 5.3 Let x be a vertex of a diameter 2 graph G. If diam(G− x) = 2, or
x lies in some gp-set of G, then

gp(G)− 1 ≤ gp(G− x) ≤ gp(G) .

6 Edge removing in general graphs

In this section we consider how much the general position number can be affected by
removing an edge. Contrary to the vertex removal, we can give general sharp lower
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and upper bounds. To prove them, we first recall the following well-known sets from
metric graph theory. For instance, these sets are constitutional stones of partial
cubes [22], of distance-balanced graphs [10], of ℓ-distance-balanced graphs [20], and
of the Mostar index [1].

If e = uv is an edge of a graph G, then

Wuv = {w ∈ V (G) : dG(u, w) < dG(v, w)},

Wvu = {w ∈ V (G) : dG(v, w) < dG(u, w)},

vWu = {w ∈ V (G) : dG(u, w) = dG(v, w)} .

For vertices x, y ∈ V (G), let further PG(x, y) be the set of all shortest x, y-paths in
G. The following technical lemma about these sets will be crucial for our following
arguments.

Lemma 6.1 Let e = uv be an edge in a graph G and let x, y ∈ Wuv ∪ vWu. Then

PG(x, y) = PG−e(x, y).

Proof. Let P ∈ PG(x, y). We claim that P does not contain e. Suppose on the
contrary that P contains e. Assume first that the sequence of the vertices on P is
x, . . . , v, u, . . . , y. Since dG(x, u) ≤ dG(x, v), the path P is not shortest in G, a con-
tradiction. Assume second that the sequence of the vertices on P is x, . . . , u, v, . . . , y.
But now the fact that dG(y, u) ≤ dG(y, v) gives another contradiction with the as-
sumption that P is shortest in G. We can conclude that P ∈ PG−e(x, y), therefore
PG(x, y) ⊆ PG−e(x, y).

Let now P ∈ PG−e(x, y). Suppose that P /∈ PG(x, y). This means that there
exists an x, y-path Q in G shorter than P . For this to happen, Q must necessarily
contain the edge uv. But then we can argue analogously as in the first paragraph
that Q is not a shortest path. This contradiction implies that P ∈ PG(x, y). Con-
sequently, PG−e(x, y) ⊆ PG(x, y), and we are done. �

The main result of this section reads as follows.

Theorem 6.2 If e is an edge of a graph G, then

gp(G)

2
≤ gp(G− e) ≤ 2gp(G) .

Moreover, both bounds are sharp.
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Proof. Let e = uv and let X be a gp-set of G. Setting

Xuv = {w ∈ X : dG(u, w) < dG(v, w)},

Xvu = {w ∈ X : dG(v, w) < dG(u, w)},

vXu = {w ∈ X : dG(u, w) = dG(v, w)},

we have X = Xuv ∪Xvu ∪ vXu. Let Xu = Xuv ∪ vXu and Xv = Xvu ∪ vXu. We now
show that Xu and Xv are general position sets of G − e. By symmetry it suffices
to prove the claim for Xu. Consider any two vertices x, y ∈ Xu and let P be an
arbitrary shortest x, y-path in G− e. By Lemma 6.1, the path P is also a shortest
x, y-path in G, hence V (P ) ∩Xu ⊆ {x, y}. It follows that Xu is a general position
set of G− e and hence also Xv is such. Therefore

gp(G− e) ≥ max{|Xu|, |Xv|} ≥
|X|

2
=

gp(G)

2
.

This proves the lower bound.
To prove the upper bound we proceed similarly as above. For this sake let Y be

a gp-set of G− e and partition Y into the following subsets:

Yuv = {w ∈ Y : dG−e(u, w) < dG−e(v, w)},

Yvu = {w ∈ Y : dG−e(v, w) < dG−e(u, w)},

vYu = {w ∈ Y : dG−e(u, w) = dG−e(v, w)}.

Then, using Lemma 6.1 as above, Yu = Yuv ∪ vYu and Yv = Yvu ∪ vYu are general
position sets of G. Hence

gp(G) ≥ max{|Yu|, |Yv|} ≥
|Y |

2
=

gp(G− e)

2
,

which proves the upper bound.
To prove sharpness of the lower bound, let k ≥ 3 and let G′

k be the graph
constructed as follows. Consider the disjoint union of four copies of K2,k, where in
two copies an extra edge between its degree k vertices is added (these are the edges
f and f ′ in Fig. 4). Then circularly connect these four graphs by three edges and a
path of length 8 as shown in Fig. 4.

Let e be the edge incident with f and f ′. Then it is straightforward to check
that gp(G′

k) = 4k and gp(G′

k − e) = 2k.
To prove sharpness of the upper bound, let k ≥ 3 and let G′′

k be a graph con-
structed similarly as G′

k, the construction of G′′

k should be clear from Fig. 5.
We can directly check that gp(G′′

k) = 2k and gp(G′′

k − e) = 4k. �

We next consider how the general position number changes when removing an
edge from diameter 2 graphs.
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f f ′

Figure 4: Graph G′

k.

...
...

...
...

e

Figure 5: Graph G′′

k.

Theorem 6.3 If e is an edge of a diameter 2 graph G, then

gp(G)− 1 ≤ gp(G− e) ≤ gp(G) + 1 .

Moreover, the bounds are sharp.

Proof. Let e = uv and letX be an arbitrary gp-set of G. Assume first that u, v /∈ X .
Then we claim that X is also a general position set in G− e. To see it, consider any
two vertices x, y ∈ X . Since diam(G) = 2 and u, v /∈ X , no shortest x, y-path of
G contains the edge uv, hence PG(x, y) = PG−e(x, y). Thus X is a general position
set of G − e, so that in this case gp(G − e) ≥ gp(G). Assume second that u ∈ X .
Then we claim that X ′ = X \ {u} is a general position set in G− e. If v /∈ X , then
we see by the same argument as above that X ′ is a general position set of G − e.
It remains to consider the subcase when v ∈ X . Since diam(G) = 2, the only way
that X ′ is not a general position set in G− e would be when there is a shortest path
Q in G − e containing v and two other vertices of X ′. Since Q is not a shortest
path in G, there is a shortest path in G containing u, v, and another vertex of X ,
a contradiction. We can conclude that X ′ is a general position set of G − e and
therefore gp(G− e) ≥ gp(G)− 1.

Let Y be an arbitrary gp-set of G − e. Assume that u, v /∈ Y . We claim that
Y is a general position set of G. Consider any two vertices x, y from Y and let P

13



be an arbitrary shortest x, y-path in G. Then the path P does not contain the edge
uv in G as diam(G) = 2, hence PG(x, y) = PG−e(x, y). We thus have that Y is a
general position set of G, and gp(G) ≥ gp(G− e). Assume now that u ∈ Y . Then
we claim that Y ′ = Y \{u} is a general position set of G−e. If v /∈ Y , then similarly
as above, Y ′ is a general position set of G. It remains to consider the case when
v ∈ Y . Suppose on the contrary that there are three vertices from Y ′ such that they
lie on a common shortest path P ′ in G. Then the path P ′ contains v and two other
vertices from Y ′. Since P ′ is not a shortest path in G− e and diam(G) = 2, there is
a shortest path in G containing u, v, and two another vertices of Y ′. It contradicts
with the fact that diam(G) = 2. Hence Y ′ is a general position set of G and we can
conclude that gp(G) ≥ gp(G− e)− 1.

To show that the lower bound is sharp, consider once fan graphs Fn, this time
of order n = 3k, k ≥ 3, see Fig. 6.

. . .

u

v

e

3k − 1

Figure 6: Fan graph Fn with n = 3k.

By Proposition 2.4 we known that gp(Fn) = ⌈2n
3
⌉, see Fig. 6 where the black

vertices form a gp-set of Fn. Let uv be the edge of Fn as shown in the figure. Then
it is straightforward to check that all the black vertices but v form a gp-set of Fn−e,
hence gp(Fn − e) = gp(Fn)− 1.

To show sharpness of the upper bound, let m ≥ 3 and let Gm be the graph
constructed as follows. Start with Km and let x, y be arbitrary, fixed vertices of it.
Then we set:

V (Gm) = V (Km) ∪ {x′, y′} ,

E(Gm) = E(Km) ∪ {x′y′, x′x, y′y, x′y} .

Set e = xx′. Then diam(Gm) = 2 and it is easy to verify that gp(Gm−e) = m+1 =
gp(Gm) + 1. �
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