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Abstract

The Maker-Breaker resolving game is a game played on a graph G by
Resolver and Spoiler. The players taking turns alternately in which each
player selects a not yet played vertex of G. The goal of Resolver is to select
all the vertices in a resolving set of G, while that of Spoiler is to prevent this
from happening. The outcome o(G) of the game played is one of R, S, and N ,
where o(G) = R (resp. o(G) = S), if Resolver (resp. Spoiler) has a winning
strategy no matter who starts the game, and o(G) = N , if the first player
has a winning strategy. In this paper, the game is investigated on corona
products G⊙H of graphs G and H. It is proved that if o(H) ∈ {N ,S}, then
o(G ⊙ H) = S. No such result is possible under the assumption o(H) = R.
It is proved that o(G⊙ Pk) = S if k = 5, otherwise o(G⊙ Pk) = R, and that
o(G ⊙ Ck) = S if k = 3, otherwise o(G ⊙ Ck) = R. Several results are also
given on corona products in which the second factor is of diameter at most 2.

Keywords: Maker-Breaker game; resolving set; Maker-Breaker resolving game;
Maker-Breaker resolving number; corona product of graphs;
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1 Introduction

Graphs in this paper are finite and simple. If G = (V (G), E(G)) is a connected
graph and W ⊆ V (G), then W is a resolving set of G if for every pair of distinct
vertices x and y of G, there exists z ∈ W such that the shortest path distances
between x and z and between y and z are different. The metric dimension dim(G)
of G is the minimum of the cardinalities over all resolving sets of G. A resolving
set of cardinality dim(G) is a metric basis for G. This concept was independently
introduced in the 1970’s in [6, 18] and afterwards investigated in several hundreds of
papers, see the recent survey [19]. A fundamental reason for this incredible interest
is that resolving sets and the metric dimension found numerous applications in a
wide spectrum of research fields.

The Maker-Breaker game was introduced by Erdős and Selfridge [4], also in the
1970’s. The game is played on an arbitrary hypergraph by two players named Maker
and Breaker. The players alternately select an unplayed vertex of the hypergraph
during the game. Maker’s aim is to occupy all the vertices of some hyperedge,
the goal of Breaker is to prevent him from doing it. The game has been extensively
researched, see the book [7], the recent papers [2, 5, 8, 14, 17], and references therein.
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In this paper we are interested in the Maker-Breaker game in which winning
sets are resolving sets. This game was introduced in [9]. Closely related Maker-
Breaker games with respect to distance-k resolving sets and strong resolving sets
were recently studied by Kang and Yi respectively in [10, 11]. In the Maker-Breaker
resolving game (MBRG for short) two players, named Resolver and Spoiler, alter-
nately select unplayed vertices of a given graph G. The aim of Resolver is to select
all the vertices of some resolving set of G, while Spoiler aims to select at least one
vertex from every resolving set of G. If Resolver starts the game we speak of an
R-game, otherwise we speak of an S-game.

It was stated in [9] that for the outcome o(G) of the MBRG played on G we have
o(G) ∈ {R,S,N}, with the following meaning:

• o(G) = R: Resolver has a winning strategy no matter who starts the game;

• o(G) = S: Spoiler has a winning strategy no matter who starts the game;

• o(G) = N : the first player has a winning strategy.

Besides knowing who wins the game, it is of interest also how fast the winner
can achieve this. The Maker-Breaker resolving number, RMB(G), is the minimum
number of moves of Resolver to win the R-game on G when both players play
optimally. The Maker-Breaker spoiling number, SMB(G), is the minimum number
of moves of Spoiler to win the R-game on G when both players play optimally. For
the S-game the corresponding invariants are denoted by R′

MB(G) and S ′

MB(G).
The corona product G⊙H of a connected graph G and a graph H is the graph

obtained by taking one copy of G and n(G) copies of H by joining the ith vertex
of G to each vertex in the ith copy of H , where n(G) = |V (G)|. For some recent
studies of corona products we refer to [1, 3, 12, 15, 16, 20].

In this paper, we investigate the MBRG played on corona products. (We note
in passing that the Maker-Breaker strong resolving game has already been studied
on corona products in [11].) In the next section further definitions and known
results needed are stated. In Section 3 we prove that if o(H) ∈ {N ,S}, then
o(G ⊙ H) = S. The situation when o(H) = R is more complex. We prove that
o(G ⊙ Pk) = S if k = 5, otherwise o(G ⊙ Pk) = R. In addition, o(G ⊙ Ck) = S
if k = 3, otherwise o(G ⊙ Ck) = R. We also give two sufficient conditions which
guarantee that o(G⊙H) = R. In the final section we consider corona products in
which the second factor is of diameter at most 2. Among other results we prove
that if diam(H) = 2, o(H) = R, and RMB(H) = R′

MB(H), then RMB(G ⊙ H) =
R′

MB(G⊙H) = n(G)RMB(H).
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2 Preliminaries

In this section we collect results to be used later on and along the way introduce
some additional concepts needed. The following result will be used throughout the
paper either explicitly or implicitly.

Lemma 2.1 [9, Lemma 2.2] If the Maker-Breaker game is played on a hypergraph,
then in an optimal strategy of Maker to win in the minimum number of moves it is
never an advantage for him skip a move. Moreover, it never disadvantage Maker
for Breaker to skip a move.

Lemma 2.1 is known as No-Skip Lemma.

Proposition 2.2 [9, Proposition 2.3] If G is a connected graph, then the following
hold.

(i) If o(G) = R, then R′

MB(G) ≥ RMB(G) ≥ dim(G).

(ii) If o(G) = S, then SMB(G) ≥ S ′

MB(G).

Let A = {{u1, v1}, . . . , {uk, vk}} be a set of 2-subsets of V (G) such that |
⋃k

i=1 {ui, vi}| =
2k. Then A is a pairing resolving set if every set {x1, . . . , xk}, where xi ∈ {ui, vi},
is a resolving set of G.

Proposition 2.3 [9, Proposition 3.3] If a connected graph G admits a pairing re-
solving set, then o(G) = R.

Let G be a connected graph and let H be a graph. In the rest we adapt the
following notation. First, V (G) = [n(G)], where we used the convention that for
a positive integer k, we write [k] = {1, . . . , k}. Second, in G ⊙ H , the copy of H
which corresponds to the vertex i ∈ V (G) will be denoted by Hi. We will further set

V (Hi) = {v(i)1 , . . . , v
(i)
n(H)} and denote the subgraph of G⊙H induced by V (Hi)∪{i}

by Ĥi.
Let diam(G) denote the diameter of G, that is, the largest distance between

all the pairs of vertices of G. The following proposition can be deduced from [21,
Lemma 1(iv)] and from the proof of [21, Theorem 3].

Proposition 2.4 Let G and H be connected graphs each of order at least two. If
S is a resolving set of G ⊙ H, then S ∩ V (Hj) is a resolving set in Hj. Moreover,

if diam(H) ≤ 2 and Si is a resolving set of Hi for i ∈ [n(G)], then ∪n(G)
i=1 Si is a

resolving set of G⊙H.
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Let G be a graph. Then a vertex x ∈ V (G) is universal if its degree is equal to
n(G)− 1. The maximum degree of G is denoted by ∆(G). For a vertex v ∈ V (G),
its open neighbourhood is NG(v) = {u ∈ V (G) : uv ∈ E(G)}. S ⊆ V (G) is a
locating set of G if NG(u)∩S 6= NG(v)∩S for every two vertices u, v ∈ V (G) \S. If
in addition NG(u) ∩ S 6= S, for every u ∈ V (G) \ S, then S is a strictly locating set
of G. We need the following result which can be read off from [13, Theorem 3.6].

Theorem 2.5 Let H be a connected graph and S ⊆ V (H). Then S is a resolving
set of K1 ⊙H if and only if S is a strictly locating set of H.

It is worth to observe the following consequence of Theorem 2.5.

Corollary 2.6 If Resolver has a strategy to select a strictly locating set of a con-
nected graph H in both R-game and S-game, then o(K1 ⊙H) = R.

From [9] we recall that if X is a graph of order at least two, then RMB(X) = 1
if and only if X is a path. Similarly, R′

MB(X) = 1 if and only if X is a path. In
addition, SMB(X) ≥ 2 and S ′

MB(X) ≥ 2. From these facts we can easily deduce that
RMB(G⊙H) = 1 = R′

MB(G⊙H) if and only if G⊙H ∼= Pk, where k ∈ {2, 3, 4}.

3 Outcome of the game

In this section, we consider the outcome of the MBRG played on corona products.
We first show that in the case when o(H) ∈ {N ,S}, the outcome on G ⊙ H is
always S. The situation when o(H) = R is more complex. This is demonstrated by
the first main result of the section in which we determine the outcome for corona
products G⊙ Pk. In the second main result we determine o(G⊙ Ck). We conclude
the section by two sufficient conditions which guarantee that o(G⊙H) = R.

Proposition 3.1 Let G and H be connected graphs with at least two vertices. If
o(H) ∈ {N ,S}, then o(G⊙H) = S.

Proof. Assume that o(H) ∈ {N ,S}. Then Spoiler has a winning strategy in H

when she starts the game. Consider an MBRG played on G ⊙ H with Resolver as
the first player. Let his first move be from the subgraph Ĥi. Let j ∈ [n(G)] be an
arbitrary index with j 6= i. Then Spoiler responds by an optimal vertex with respect
to the MBRG played on Hj. (This is possible as n(G) ≥ 2.) In the continuation of
the game, Spoiler selects vertices from Hj according to her optimal strategy played
on Hj . In view of No-Skip Lemma 2.1, no matter, whether Resolver plays some
vertices of Hj or not, Spoiler can select a subset of vertices of Hj such that she
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wins the game restricted to Ĥj. When the game is over, by the first assertion of
Proposition 2.4 we can conclude that Resolver cannot form a resolving set in G⊙H ,
which in turn implies that Spoiler wins the MBRG on G ⊙ H as a second player.
Therefore, by applying the No-Skip Lemma she also wins the game as the first
player. Hence o(G⊙H) = S. �

If o(H) = R, then the outcome of the MBRG played on G ⊙ H cannot be
determined in general. This is demonstrated by the next theorem in which o(G⊙Pk)
is determined. Recall that o(Pk) = R for k ≥ 2 and that o(Ck) = R for k ≥ 4 [9].

To prove the main results, we need the following lemma.

Lemma 3.2 Let ℓ ≥ 3 and let V (P2ℓ) = V (C2ℓ) = [2ℓ]. If W = {w1, . . . , wℓ}, where
wi ∈ {2i − 1, 2i} for i ∈ [ℓ], then W is a strictly locating set of P2ℓ as well as a a
strictly locating set of C2ℓ.

Proof. Consider arbitrary vertices x, y ∈ V (P2ℓ) \ W . If x = 1, then 2 ∈ W , and
then, no matter whether 3 ∈ W or 4 ∈ W , we have NP2ℓ

(1) ∩W 6= NP2ℓ
(y) ∩W . If

x = 2, then 1 ∈ W and 1 is clearly not in NP2ℓ
(y). The cases x = 2ℓ and x = 2ℓ− 1

are symmetric. In the rest hence assume that 3 ≤ x, y ≤ 2ℓ− 2.
Let x = 2j − 1. Then 2j ∈ W . If 2j − 2 ∈ W , then we easily see that

NP2ℓ
(x) ∩ W 6= NP2ℓ

(y) ∩ W . And if 2j − 3 ∈ W then we again reach the same
conclusion. The cases when x = 2j are done analogously. This proves the assertion
for paths.

To prove the result for cycles, note that the only obstruction for W not to form
a strictly locating set, is that there exist five consecutive vertices of it such that only
the middle one belongs to W . But it readily follows that this cannot happen. �

Theorem 3.3 If G is a connected graph of order at least two and k ≥ 1, then

o(G⊙ Pk) =

{
S; k = 5,

R; otherwise.

Proof. We distinguish several cases.

Case 1: k = 1.
Recall that v

(i)
1 , i ∈ [n(G)], is the vertex of (P1)i. Then {{1, v(1)1 }, . . . , {n(G), v

(n(G))
1 }}

is a pairing resolving set, hence by Proposition 2.3 we have o(G⊙ P1) = R.

Case 2: k = 2.
In this case the set {{v(1)1 , v

(1)
2 }, . . . , {v(n(G))

1 , v
(n(G))
2 }} is pairing resolving, hence we

can again apply Proposition 2.3 to conclude that o(G⊙ P2) = R.
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Case 3: k = 3.
In this case the strategy of Resolver is to select one of the degree two vertices in
each of (P3)i. He can clearly achieve this goal and it is straightforward to see that
the selected vertices form a resolving set.

Case 4: k = 4.
Let v

(i)
1 , v

(i)
2 , v

(i)
3 , v

(i)
4 be the consecutive vertices of (P4)i. Then sets {v(i)1 , v

(i)
3 } and

{v(i)2 , v
(i)
4 } form a pairing resolving set for K1⊙ (P4)i. Hence the result is true in this

case also.

Case 5: k = 5.
We are going to show that Spoiler has a winning strategy no matter who starts the
game. Assume without loss of generality that the first move of Resolver is in (P̂5)i,

where i > 1. Then Spoiler replies by selecting the vertex v
(1)
3 . If the next move

of Resolver is v
(1)
1 , then Spoiler replies by v

(1)
5 . In the rest of the game Spoiler will

be able to select at least one of v
(1)
2 and v

(1)
4 . In either case she will win the game.

In the second subcase let the next move of Resolver be v
(1)
2 . Then Spoiler replies

by the vertex v
(1)
4 , and afterwards she will be able to select at least one of v

(1)
1 and

v
(1)
5 to win the game again. The remaining cases are symmetric, hence we have
o(G⊙ P5) = S.

Case 6: k = 2ℓ, ℓ ≥ 3.
To prove that o(G⊙ Pk) = R, Resolver follows the strategy that in each subgraph

(Pk)i he selects one vertex from each of the sets {v(i)2j−1, v
(i)
2j }, j ∈ [ℓ]. This strategy

is indeed possible no matter who starts the game because he just follows Spoiler and
as soon as she selects one vertex from {v(i)2j−1, v

(i)
2j }, j ∈ [ℓ], he selects the other one.

Using the described strategy, Resolver selects in each subgraph (Pk)i a set Wi

which is by Lemma 3.2 a strictly locating set of Pk
∼= (Pk)i. By Theorem 2.5 we can

conclude that Resolver wins the game.

Case 7: k = 2ℓ+ 1, ℓ ≥ 3.
In this case we partition the vertex set of (Pk)i, i ∈ [n(G)], as follows:

Zi =
{
{v(i)1 , v

(i)
2 }, {v(i)3 , v

(i)
4 }, . . . , {v(i)2ℓ−3, v

(i)
2ℓ−2}, {v

(i)
2ℓ−1, v

(i)
2ℓ , v

(i)
2ℓ+1}

}
.

The strategy of Resolver is the following. As soon as Spoiler selects a vertex from
some part {v(i)2j−1, v

(i)
2j }, Resolver selects the other vertex from this part. Let now

Spoiler selects for the first time a vertex from the part {v(i)2ℓ−1, v
(i)
2ℓ , v

(i)
2ℓ+1}.

Assume that the first vertex selected from {v(i)2ℓ−1, v
(i)
2ℓ , v

(i)
2ℓ+1} is v

(i)
2ℓ−1. In the case

that v
(i)
2ℓ−2 has not yet been selected, Resolver selects it. Since before the end of

7



the game Resolver will be able to select also one of v
(i)
2ℓ and v

(i)
2ℓ+1, he will select in

this way a strictly locating set of (Pk)i. Consider next the subcase when v
(i)
2ℓ−2 has

already been selected. If v
(i)
2ℓ−2 has been selected by Resolver (and hence v

(i)
2ℓ−3 by

Spoiler), then Resolver selects next the vertex v
(i)
2ℓ . And if v

(i)
2ℓ−2 has been selected by

Spoiler (and hence v
(i)
2ℓ−3 by Resolver), then Resolver selects next the vertex v

(i)
2ℓ+1.

In each of the cases the vertices selected by Resolver form a strictly locating set of
(Pk)i. Using Proposition 2.3 once more we obtain o(G⊙ Pk) = R.

If the first vertex selected from {v(i)2ℓ−1, v
(i)
2ℓ , v

(i)
2ℓ+1} is v

(i)
2ℓ or v

(i)
2ℓ+1, then Resolver

replies by selecting v
(i)
2ℓ−1. We can then argue as above that in this way Resolver has

constructed a strictly locating set of (Pk)i. �

The result parallel to Theorem 3.3 for the case G = K1 is the following.

Theorem 3.4 If k ≥ 2, then

o(K1 ⊙ Pk) =

{
N ; k ∈ {2, 5},

R; otherwise.

Proof. The proof proceeds along with the same lines as the proof of Theorem 3.3,
hence we skip the details here. We only emphasize that the different outcome for
P2 and P5 comes from the fact that in G ⊙ Pk, where n(G) ≥ 2, there are at least

two different subgraphs Ĥi, hence in one of them Resolver can be the first player to
select a vertex, while in another it is Spoiler who selects the first vertex. �

Theorem 3.5 If G is a connected graph and k ≥ 3, then

o(G⊙ Ck) =

{
S; k = 3,

R; otherwise.

Proof. If k = 3, then Spoiler can play at least two vertices in at least one subgraph
(C3)i. Hence she wins the game.

If k ∈ {4, 5}, then Resolver follows the strategy to select two adjacent vertices
in each subgraph (Ck)i. Such two vertices form a strictly locating set of (Ck)i and
hence in view of Theorem 2.5 Resolver is the winner.

Assume next that k ≥ 6 is even. Then the strategy of Resolver is to select in each
subgraph (Ck)i a set of vertices Wi as described in Lemma 3.2. This can be achieved
by accordingly responding to the moves of Spoiler. Hence we get the assertion also
for even k ≥ 6 by Theorem 2.5.
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Let now k = 2ℓ + 1 ≥ 7. Using the proposed notation, let v
(i)
1 , v

(i)
2 , . . . , v

(i)
2ℓ+1 be

the consecutive vertices of (C2ℓ+1)i. We may without loss of generality assume that

Spoiler starts the game by selecting the vertex v
(1)
2ℓ+1. Resolver replies by playing the

vertex v
(1)
2ℓ . After that, Resolver continues using the following strategy on (C2ℓ+1)1.

Consider the subsets Zi = {v(1)2i−1, v
(1)
2i }, i ∈ [ℓ−2]. Set also Z ′ = {v(1)2ℓ−3, v

(1)
2ℓ−2, v

(1)
2ℓ−1}.

Whenever Spoiler selects a vertex from some set Zi, Resolver replies by playing the
other vertex from the set. At some point Spoiler will select a vertex from Z ′. If
this vertex is v

(1)
2ℓ−3 or v

(1)
2ℓ−1, then Resolver replies by playing v

(1)
2ℓ−2. And if the first

vertex from Z ′ selected by Spoiler is v
(1)
2ℓ−2, then Resolver replies by playing v

(1)
2ℓ−1.

We claim that using the above described strategy, Resolver constructs a strictly
locating set of (C2ℓ+1)1. To show it, we need to demonstrate that no four consecutive
vertices were selected by Spoiler, and that there are no five consecutive vertices such
that only the middle one was selected by Resolver. The first situation cannot happen
because in every set Zi Resolver selected one vertex and because in Z ′ he has also
selected one vertex. The second situation could only happen if Spoiler selects v

(1)
2ℓ+1

and v
(1)
1 , but then since Resolver selected one of the vertices v

(1)
2ℓ−1 and v

(1)
2ℓ−2, this

also does not happen in this case. This proves the claim.
Using the No-Skip Lemma, Resolver can select a strictly locating set in every

(C2ℓ+1)i. By Theorem 2.5 we can conclude that Resolver is the winner. �

To conclude the section we determine two sufficient conditions which guarantee
that o(G⊙H) = R. In the first we add the assumption diam(H) ≤ 2 to o(H) = R.
For the second recall that we have seen that the assumption o(H) = R does not
necessarily imply o(G⊙H) = R.

Theorem 3.6 Let G and H be connected graphs with n(G) ≥ 2 and n(H) ≥ 2, and
let at least one of the following two conditions hold:

(i) o(H) = R and diam(H) ≤ 2,

(ii) o(K1 ⊙H) = R.

Then o(G⊙H) = R.

Proof. (i) Since diam(H) ≤ 2, we infer that dHi
(v

(i)
j , v

(i)
k ) = dG⊙H(v

(i)
j , v

(i)
k ) holds for

any two vertices v
(i)
j , v

(i)
k in Hi. Consider an MBRG played on G⊙H with Spoiler

as the first player. Spoiler selects either a vertex in G say v
(i)
j or a vertex in Hi of

G ⊙ H . Then Resolver responds optimally by choosing a non-played vertex in Hi

and applies his winning strategy in Hi as a second player. In the continuation of
the game, the strategy of Resolver is to follow Spoiler in all of the subgraphs Hj.
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Using the above strategy, Resolver forms a resolving set Si in each Hi. Since
diam(H) ≤ 2, Proposition 2.4 implies that

⋃n(G)
i Si is a resolving set of G ⊙ H .

Hence Resolver wins in this game as a second player. Therefore Resolver wins the
game as the first player too and o(G⊙H) = R.

(ii) Assume that o(K1 ⊙ H) = R. Then Resolver has a strategy to win the
MBRG played on K1⊙H no matter who starts the game. The strategy of Resolver
is to apply his optimal strategy in each of the subgraphs Ĥi, i ∈ [n(G)], by following

Spoiler in these subgraphs. In this way Resolver forms a resolving set Si in each Ĥi.
Since

⋃n(G)
i=1 Si is a resolving set of G⊙H , Resolver wins the game. �

4 Games on G⊙H, where diam(H) ≤ 2

In this section we consider corona products in which the second factor is of diameter
at most 2. We distinguish the cases when the first factor is K1 or has at least two
vertices, and bound or determine exactly the corresponding Maker-Breaker resolving
numbers.

In Theorem 3.6(i) we have seen that if G is a graph of order at least 2, H is a
graph with n(H) ≥ 2, o(H) = R, and diam(H) ≤ 2, then o(G⊙H) = R. A parallel
result for the G = K1 reads as follows.

Proposition 4.1 Let H be a graph with diam(H) = 2, ∆(H) ≤ n(H) − 2, and
o(H) = R. Then o(K1 ⊙H) = R, RMB(K1 ⊙H) = RMB(H), and R′

MB(K1 ⊙H) =
R′

MB(H).

Proof. In both, R-game and S-game, played on K1 ⊙ H , Resolver plays only on
the subgraph H by mimicking his optimal strategy in the games played on H .
Since ∆(H) ≤ n(H) − 2, the only universal vertex in K1 ⊙ H is the vertex of
K1. Hence, having in mind that diam(H) = 2, the set of vertices selected by
Resolver in H is also a resolving set of K1 ⊙ H . It follows that o(K1 ⊙ H) = R,
RMB(K1 ⊙ H) ≤ RMB(H), and R′

MB(K1 ⊙ H) ≤ R′

MB(H). Moreover, the equality
holds in the last two inequalities because otherwise by finishing a game on K1 ⊙H

faster, Resolver could also be able to finish a game on H faster than in RMB(H)
moves or in R′

MB(H) moves. �

The special case of Proposition 4.1 when H is the Petersen graph complements [9,
Theorem 4.7].

The assumption ∆(H) ≤ n(H) − 2 in Proposition 4.1 is needed to avoid the
situation in which K1 ⊙ H has more than one universal vertex. For instance, let
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Y be the paw graph, that is, the graph obtained from K3 by attaching a pendant
vertex to one of its vertices. Then one can check that o(Y ) = R but o(K1⊙Y ) = N .

A result parallel to Proposition 4.1 for graphs G of order at least two read as
follows.

Proposition 4.2 Let G be a connected graph with n(G) ≥ 2, and let H be a graph
with diam(H) = 2 and o(H) = R. Then

RMB(G⊙H) ≤ R′

MB(G⊙H) ≤ n(G)R′

MB(H) .

If, in addition, RMB(H) = R′

MB(H), then

RMB(G⊙H) = R′

MB(G⊙H) = n(G)RMB(H) .

Proof. Let G and H be graphs as assumed by the proposition. By Theorem 3.6 we
have o(G ⊙ H) = R. Moreover, from the proof of the same theorem we infer that

Resolver will select at most R′

MB(H) vertices in each subgraph Ĥi. Since o(G⊙H) =
R, we know from Proposition 2.2(i) that RMB(G ⊙ H) ≤ R′

MB(G ⊙ H). It follows
that RMB(G⊙H) ≤ R′

MB(G⊙H) ≤ n(G)R′

MB(H).
Assume now that RMB(H) = R′

MB(H). Then Resolver selects exactly RMB(H) =

R′

MB(H) vertices in each Ĥi. It follows that RMB(G ⊙ H) ≤ R′

MB(G ⊙ H) ≤
n(G)RMB(H). To complete the argument, we claim thatRMB(G⊙H) ≥ n(G)RMB(H).
Indeed, if this is not the case, then by using his optimal strategy, Resolver selects
strictly less than RMB(H) vertices in some Ĥi. But this would mean that Resolver
can also finish the game in strictly less than RMB(H) moves in H , which is not
possible. �

Considering the outcome of the MBRG on corona products K1⊙H is equivalent
to considering o(G), where G is a graph with a universal vertex. Note also that such
a graph G has diam(G) ≤ 2. This problem appears very difficult in general.

To conclude the paper we propose a stronger assumption o(G⊙H) = R and get
the following result.

Proposition 4.3 Let G and H be connected graphs of order at least two and let
diam(H) ≤ 2. If o(G⊙H) = R, then

n(G)RMB(H) ≤ RMB(G⊙H) ≤ RMB(H) + (n(G)− 1)R
′

MB(H) .

Proof. By Proposition 3.1 it follows that o(H) = R. Therefore all MBRG parame-
ters associated with the R-game played on G⊙H and H are well defined.
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The lower bound follows from the fact that the union of resolving sets ofHi forms
a resolving set of G⊙H . For the upper bound, recall that RMB(H) ≤ R′

MB(H) since

o(H) = R. Since in at least one subgraph Ĥi Resolver will be the first to select a
vertex, we can conclude that he will win in at most RMB(H) + (n(G)− 1)R′

MB(H)
moves. �
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