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Abstract

A connected graph G of diameter diam(G) ≥ ℓ is ℓ-distance-balanced if
|Wxy| = |Wyx| for every x, y ∈ V (G) with dG(x, y) = ℓ, where Wxy is the set
of vertices of G that are closer to x than to y. It is proved that if k ≥ 3 and
n > k(k + 2), then the generalized Petersen graph GP (n, k) is not distance-
balanced and that GP (k(k + 2), k) is distance-balanced. This significantly
improves the main result of Yang et al. [Electron. J. Combin. 16 (2009) #N33].
It is also proved that if k ≥ 6, where k is even, and n > 5

4k
2 + 2k, or if k ≥ 5,

where k is odd, and n > 7
4k

2 + 3
4k, then GP (n, k) is not 2-distance-balanced.

These results partially resolve a conjecture of Miklavič and Šparl [Discrete
Appl. Math. 244 (2018) 143–154].

Keywords: Distance-balanced graph; ℓ-distance-balanced graph; Generalized Pe-
tersen graph

AMS Subj. Class. (2020): 05C12

1 Introduction

If G = (V (G), E(G)) is a connected graph and x, y ∈ V (G), then the distance,
dG(x, y), between x and y is the number of edges on a shortest x, y-path. The
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diameter, diam(G), of G is the maximum distance between its vertices. The set Wxy

contains the vertices that are closer to x than to y, that is,

Wxy = {w ∈ V (G) : dG(w, x) < dG(w, y)} .

Vertices x and y are balanced if |Wxy| = |Wyx|. For an integer ℓ ∈ [diam(G)] =
{1, 2, . . . , diam(G)}, the graph G is ℓ-distance-balanced if each pair x, y of its vertices
with dG(x, y) = ℓ is balanced.

1-distance-balanced were first considered by Handa [12] in 1999. The term
“distance-balanced” for these graphs was proposed a decade later in [14]. This has
prompted a widespread research into these graphs, see [1–8,11,13,16–19,22,24–26].
It was Frelih who in [9] extended distance-balanced graphs to ℓ-distance balanced
graphs. Also these graphs have already been investigated a lot, see [10,15,20,21,23].

If n ≥ 3 and 1 ≤ k < n/2, then the generalized Petersen graph GP (n, k) is the
graph with

V (GP (n, k)) = {ui : i ∈ Zn} ∪ {vi : i ∈ Zn},

E(GP (n, k)) = {uiui+1 : i ∈ Zn} ∪ {vivi+k : i ∈ Zn} ∪ {uivi : i ∈ Zn}.

As it turned out, in general it is difficult to determine whether a generalized Pe-
tersen graphs is ℓ-distance-balanced for some ℓ. Back in the seminal paper [14], the
following conjecture was proposed for the case ℓ = 1.

Conjecture 1. [14] For any k ≥ 2, there exists a positive integer n0 such that

GP (n, k) is not distance-balanced for every n ≥ n0.

The conjecture has been positively resolved by Yang et al. as follows.

Theorem 2. [26] If k ≥ 2 and n > 6k2, then GP (n, k) is not distance-balanced.

Miklavič and Šparl [23] expanded and specified Conjecture 1 to ℓ-distance-
balancedness as follows.

Conjecture 3. [23] Let k ≥ 2 be an integer and let

nk =







11; k = 2,
(k + 1)2; k odd,
k(k + 2); k ≥ 4 even.

Then GP (n, k) is not ℓ-distance-balanced for any n > nk and for any 1 ≤ ℓ <
diam(GP (n, k)). Moreover, nk is the smallest integer with this property.
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Conjecture 3 has by now been confirmed for k = 2 in [23] and for k ∈ {3, 4}
in [21]. These results assert that if k = 2 and n > 11, or k = 3 and n > 16, or
k = 4 and n > 24, then GP (n, k) is not distance-balanced. These are significant
improvements over the bound of Theorem 2 for k ∈ {2, 3, 4}. In the first main result
of this paper we improve the bound of Theorem 2 for an arbitrary k, where the case
k = 2 is included for completeness.

Theorem 4. Let n and k be integers, where 2 ≤ k < n/2.

(i) If k ≥ 3 and n > k(k+2), then GP (n, k) is not distance-balanced. In addition,

GP (k(k + 2), k) is distance-balanced.

(ii) If k = 2 and n > 10, then GP (n, 2) is not distance-balanced. In addition,

GP (10, 2) is distance-balanced.

In our second main result we deal with 2-distance-balancedness, where the cases
k ∈ {2, 3, 4} are included for completeness.

Theorem 5. Let n and k be integers, where 2 ≤ k < n/2.

(i) If k ≥ 6 and k is even, then GP (n, k) is not 2-distance-balanced for any

n > 5
4
k2 + 2k.

(ii) If k ≥ 5 and k is odd, then GP (n, k) is not 2-distance-balanced for any n >
7
4
k2 + 3

4
k.

(iii) If k = 2 and n > 10, or k = 3 and n > 10, or k = 4 and n > 21, then

GP (n, k) is not 2-distance-balanced. In addition, GP (10, 2), GP (10, 3), and

GP (21, 4) are 2-distance-balanced.

Proofs of Theorems 4 and 5 are respectively given in Sections 2 and 3.

2 Proof of Theorem 4

Let x, y be vertices of a graph G. In addition to the already defined sets Wxy and
Wyx, let

xWy = {w ∈ V (G) : dG(w, x) = dG(w, y)} .

Clearly, |Wxy|+ |Wyx|+ |xWy| = |V (G)|, which in turn implies the following simple,
but useful fact.

Lemma 6. Let x, y be vertices of a graph G with dG(x, y) = ℓ, where 1 ≤ ℓ ≤
diam(G). If 2|Wxy|+ |xWy| > |V (G)|, then G is not ℓ-distance-balanced.
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As already mentioned, Conjecture 3 holds true for k = 2. Moreover, GP (11, 2) is
not distance-balanced, but GP (10, 2) is distance-balanced, see [23, Table 1]). These
results cover the case k = 2 of Theorem 4.

In the rest we assume that k ≥ 3 and n ≥ k(k + 2). We consider the vertices u0

and v0, and the corresponding sets Wu0v0 , Wv0u0
, and u0

Wv0 .

Case 1: k even, k ≥ 4. In this case we have

• ui, u−i ∈ Wu0v0 when 0 ≤ i ≤ k
2
; there are 2k

2
+ 1 = k + 1 such vertices.

• ui, u−i ∈ u0
Wv0 when i = k+2

2
; there are two such vertices.

• ui, u−i ∈ Wv0u0
when k+2

2
< i ≤ n

2
; there are n− (k + 3) such vertices.

Subcase 1.1: n mod k = 0. In this subcase we get

• vik ∈ Wv0u0
when 0 ≤ i ≤ n

k
− 1; there are n

k
such vertices.

• {vi : 0 ≤ i ≤ n− 1}‖setminus{vik : 0 ≤ i ≤ n
k
− 1} ⊂ Wu0v0 ; there are n− n

k

such vertices.

From the above we obtain

|Wv0u0
| − |Wu0v0 | =

[

n− (k + 3) +
n

k

]

−
[

(k + 1) + (n−
n

k
)
]

=
2n

k
− 2k − 4.

If n > k(k + 2), then 2n
k
− 2k − 4 > 0 and hence |Wv0u0

| > |Wu0v0 |. We can
conclude that GP (n, k) is not distance-balanced if n > k(k + 2).

Assume now that n = k(k+2). Then 2n
k
−2k−4 = 0 and hence |Wv0u0

| = |Wu0v0 |.
Since any two adjacent vertices from the set {ui : 0 ≤ i ≤ n− 1} as well as any two
adjacent vertices from {vi : 0 ≤ i ≤ n − 1} are symmetrical, we can conclude that
GP (k(k + 2), k) is distance-balanced.

Subcase 1.2: n mod k 6= 0.
In this subcase we have n mod 2k 6= 0. If n > k(k + 2), then

• vik, v−ik ∈ Wv0u0
when 0 ≤ i ≤ ⌊ n

2k
⌋; there are 2⌊ n

2k
⌋ + 1 such vertices.
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Hence |Wv0u0
| ≥ n − (k + 3) + (2⌊ n

2k
⌋ + 1) and |u0

Wv0 | ≥ 2. From this, we can
estimate as follows:

2|Wv0u0
|+ |u0

Wv0 | ≥ 2
[

n− (k + 3) + (2
⌊ n

2k

⌋

+ 1)
]

+ 2

= 2n+ 4
⌊ n

2k

⌋

− 2k − 2

≥ 2n+ 4

(

k + 2

2

)

− 2k − 2

= 2n+ 2 > 2n.

Applying Lemma 6 we can conclude that GP (n, k) is not distance-balanced.

Case 2: k odd, k ≥ 3. Now we obtain

• ui, u−i ∈ Wu0v0 when 0 ≤ i ≤ k+1
2

; there are 2(k+1
2
) + 1 = k + 2 such vertices.

• ui, u−i ∈ Wv0u0
when k+1

2
< i ≤ n

2
; there are n− (k + 2) such vertices.

Case 2.1: n mod k = 0. In this subcase we have

• vik ∈ Wv0u0
when 0 ≤ i ≤ n

k
− 1; there are n

k
such vertices.

• {vi : 0 ≤ i ≤ n − 1} \ {vik : 0 ≤ i ≤ n
k
− 1} ⊂ Wu0v0 ; there are n − n

k
such

vertices.

By the above it follows that

|Wv0u0
| − |Wu0v0 | =

[

n− (k + 2) +
n

k

]

−
[

(k + 2) + (n−
n

k
)
]

=
2n

k
− 2k − 4.

If n > k(k + 2), then |Wv0u0
| − |Wu0v0 | > 0 and GP (n, k) is not distance-balanced.

If n = k(k + 2), then |Wv0u0
| − |Wu0v0 | = 0. Since any two adjacent vertices from

{ui : 0 ≤ i ≤ n− 1} as well as any two adjacent vertices from {vi : 0 ≤ i ≤ n− 1}
are symmetrical, we can deduce that GP (k(k + 2), k) is distance-balanced.

Case 2.2: n mod k 6= 0.
Now we have n mod 2k 6= 0. Assume that n > k(k + 2). Then

• vik, v−ik ∈ Wv0u0
when 0 ≤ i ≤ ⌊ n

2k
⌋+1; there are 2(⌊ n

2k
⌋+1)+1 such vertices.
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Having in mind that k is odd, we have ⌊ n
2k
⌋ ≥ k+1

2
. From here we can estimate as

follows:

2|Wv0u0
|+ |u0

Wv0 | ≥ 2
[

n− (k + 2) + (2
⌊ n

2k

⌋

+ 3)
]

+ 0

= 2n+ 4
⌊ n

2k

⌋

− 2k + 2

≥ 2n+ 4

(

k + 1

2

)

− 2k + 2

= 2n+ 4 > 2n.

Using Lemma 6 once more we infer that also in this case GP (n, k) is not distance-
balanced. This completes the proof of Theorem 4.

3 Proof of Theorem 5

For the case k = 2, Theorem 5 holds because Conjecture 3 is right for k = 2 [23]
and the fact that GP (11, 2) is not 2-distance-balanced, but GP (10, 2) is 2-distance-
balanced (see Table 1 of [23]). For the case k = 3, Theorem 5 holds because
Conjecture 3 is right for k = 3 [21] and the fact that GP (n, 3) is not 2-distance-
balanced when 11 ≤ n ≤ 16, but GP (10, 3) is 2-distance-balanced (see Table 1
of [23]). For the case k = 4, Theorem 5 holds because Conjecture 3 is right for
k = 4 [21] and the fact that GP (n, 4) is not 2-distance-balanced when 22 ≤ n ≤ 24,
but GP (21, 4) is 2-distance-balanced (see Table 1 of [23]).

In the rest we assume that k ≥ 5. Note that d(u0, v−k) = 2 and v
−k = vn−k. We

will compute |Wv
−ku0

| and |u0
Wv

−k
|. Two cases are discussed according to the parity

of k.

Case 1: k is even, k ≥ 6, and n > 5
4
k2 + 2k.

We distinguish three subcases which are separated according to which vertices are
being addressed.

Subcase 1.1: Vertices u
−i and v

−i, where 1 ≤ i ≤ k − 1.
Then u

−i ∈ Wu0v−k
and v

−i ∈ Wu0v−k
when if 1 ≤ i ≤ k

2
, and u

−i ∈ Wv
−ku0

and
v
−i ∈ u0

Wv
−k

when k+2
2

≤ i ≤ k − 1. So, there are k
2
− 1 such vertices which are in

Wv
−ku0

and k
2
− 1 such vertices which are in u0

Wv
−k

.

Subcase 1.2: Vertices ui, where 0 ≤ i ≤ n− k.
For 0 ≤ i ≤ k we have ui ∈ Wu0v−k

when 0 ≤ i ≤ k
2
+ 1, and ui ∈ u0

Wv
−k

when
k
2
+ 2 ≤ i ≤ k. Thus, there are k

2
− 1 such vertices which are in u0

Wv
−k

.
For k+1 ≤ i ≤ n− k we have ui ∈ u0

Wv
−k

or ui ∈ Wv
−ku0

. We first consider the
vertices ui such that ui ∈ Wv

−ku0
. Note that if n−2k < i ≤ n−k, then ui ∈ Wv

−ku0
.
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Let t be the largest integer such that the maximum distance of a vn−k, ui-path is
less than the minimum distance of a u0, uj-path, where n− (t+1)k < i, j ≤ n− tk.
That is, t is the maximal integer such that

(t− 1) + 1 +
k

2
<

⌊

n− tk

k

⌋

+ 2 ⇐⇒

(t− 1) + 1 +
k

2
<

⌊n

k

⌋

− t + 2 ⇐⇒

t <
1

2

⌊n

k

⌋

−
k

4
+ 1.

Because t is the largest integer satisfying the above inequality, we get

t ≥
1

2

(n

k
− 1

)

−
k

4
+ 1 =

n

2k
−

k

4
+

1

2
.

By the definition of t, if 1 ≤ s ≤ t, then ui ∈ Wv
−ku0

, where n−(s+1)k < i ≤ n−sk.
That is, ui ∈ Wv

−ku0
for any n−(t+1)k < i ≤ n−k, and there are kt ≥ k( n

2k
− k

4
+ 1

2
)

such vertices which are in Wv
−ku0

.
Note that if 1 ≤ j ≤ k, then the difference of the distance of a vn−k, un−(t+1)k+j-

path, and the distance of a vn−k, un−(t+2)k+j-path is −1. So, among the vertices ui,
where n − (t + 2)k < i ≤ n − (t + 1)k, there are at most two vertices which are
not in Wv

−ku0
. That is, there are at least k − 2 vertices among these which are in

Wv
−ku0

. Using similar discussions we can get that the number of vertices ui, where
k < i ≤ n− (t+ 1)k, which are in Wv

−ku0
, is at least

(k − 2) + (k − 4) + · · ·+ 2 =
k(k − 2)

4
.

Among the vertices ui, where 0 ≤ i ≤ n−k, there are at least k( n
2k
− k

4
+ 1

2
)+ k(k−2)

4

vertices which are in Wv
−ku0

, and n− 3
2
k− 1− k( n

2k
− k

4
+ 1

2
)− k(k−2)

4
vertices which

are in u0
Wv

−k
∪Wv

−ku0
and not counted in Wv

−ku0
.

Subcase 1.3: Vertices vi, where 0 ≤ i ≤ n− k.
Firstly, consider vertices vsk such that vsk ∈ u0

Wv
−k

. Note that v0 ∈ u0
Wv

−k
. Let t

be the largest integer such that the maximum distance of a u0, vtk-path is less than
or equal to the minimum distance of a vn−k, vtk-path. That is, t is the largest integer
such that

t + 1 ≤

⌊

n− k − tk

k

⌋

⇐⇒ t+ 1 ≤
⌊n

k

⌋

− 1− t ⇐⇒ t ≤
1

2

⌊n

k

⌋

− 1 .

7



Because t is the largest integer satisfying the above inequality, we get

t >
1

2

(n

k
− 1

)

− 1 =
n

2k
−

3

2
.

By the definition of t we have vsk ∈ u0
Wv

−k
if 0 ≤ s ≤ t. That is, there are

t + 1 > n
2k

− 1
2

such vertices which are in u0
Wv

−k
.

Secondly, consider vertices vn−k−sk, such that vn−k−sk ∈ Wv
−ku0

. Note that
vn−k ∈ Wv

−ku0
. Let t be the largest integer such that the maximum distance of a

vn−k, vn−k−tk-path is less than the minimum distance of a u0, vn−k−tk-path. So t is
the largest integer such that

t <

⌊

n− k − tk

k

⌋

+ 1 ⇐⇒ t <
⌊n

k

⌋

− 1− t+ 1 ⇐⇒ t <
1

2

⌊n

k

⌋

.

Because t is the largest integer satisfying the above inequality, it can be concluded
that

t ≥
1

2

(n

k
− 1

)

=
n

2k
−

1

2
.

By the definition of t we get that vn−k−sk ∈ Wv
−ku0

for 0 ≤ s ≤ t. That is, there are
t + 1 ≥ n

2k
+ 1

2
such vertices which are in Wv

−ku0
.

Thirdly, consider vertices vi with 0 < i < n− k, i 6= sk, and i 6= n− k− sk, such
that vi ∈ u0

Wv
−k

. Note that vi ∈ u0
Wv

−k
if n− 2k < i < n− k. Let t be the largest

integer such that the maximum distance of a vn−k, vi-path is less than or equal to
the minimum distance of a u0, vj-path, where n− (t+ 1)k < i, j ≤ n− tk. IN other
words, t is the largest integer such that

(t− 1) +
k

2
+ 2 ≤

⌊

n− tk

k

⌋

+ 1 ⇐⇒

(t− 1) +
k

2
+ 2 ≤

⌊n

k

⌋

− t+ 1 ⇐⇒

t ≤
1

2

⌊n

k

⌋

−
k

4
.

Because t is the largest integer satisfying the above inequality, we can conclude that

t >
1

2

(n

k
− 1

)

−
k

4
=

n

2k
−

k

4
−

1

2
.

By the definition of t, if 1 ≤ s ≤ t, then vi ∈ u0
Wv

−k
, where n−(s+1)k < i < n−sk.

That is, there are t(k − 1) > ( n
2k

− k
4
− 1

2
)(k − 1) such vertices which are in u0

Wv
−k

.
If 1 ≤ j < k, then the difference between the distance of a vn−k, vn−(t+1)k+j-path

and the distance of a vn−k, vn−(t+2)k+j-path is −1. So among the vertices vi with

8



n − (t + 2)k < i < n − (t + 1)k, there are at most two vertices which are not
in u0

Wv
−k

. That is, there are at least k − 3 vertices among the vertices vi, where
n− (t+ 2)k < i < n− (t+ 1)k, which are in u0

Wv
−k

. Similarly we can get that the
number of vertices vi (0 < i < n− (t+ 1)k, where i 6= sk and i 6= n− k− sk, which
are in u0

Wv
−k

, is at least

(k − 3) + (k − 5) + · · ·+ 1 =
(k − 2)2

4
.

Among the vertices vi, where 0 ≤ i ≤ n − k, there are at least n
2k

+ 1
2

vertices
which are in Wv

−ku0
and more than

(

n

2k
−

1

2

)

+

[(

n

2k
−

k

4
−

1

2

)

(k − 1) +
(k − 2)2

4

]

vertices which are in u0
Wv

−k
.

Combining the above three subcases, we obtain that

|Wv
−ku0

| ≥

(

k

2
− 1

)

+

[

k

(

n

2k
−

k

4
+

1

2

)

+
k(k − 2)

4

]

+

(

n

2k
+

1

2

)

=
n

2
+

n

2k
+

k

2
−

1

2
,

which in turn implies that the number of vertices in u0
Wv

−k
∪Wv

−ku0
which are not

counted in |Wv
−ku0

| is at least
(

k

2
− 1

)

+

[

n−
3

2
k − 1− k

(

n

2k
−

k

4
+

1

2

)

−
k(k − 2)

4

]

+

(

n

2k
−

1

2

)

+

[(

n

2k
−

k

4
−

1

2

)

(k − 1) +
(k − 2)2

4

]

= n−
9

4
k − 1.

Therefore,

2|Wv
−ku0

|+ |u0
Wv

−k
| ≥ 2

(

n

2
+

n

2k
+

k

2
−

1

2

)

+

(

n−
9

4
k − 1

)

= 2n+
n

k
−

5

4
k − 2.

Since n > 5
4
k2+2k, we get 2|Wv

−ku0
|+|u0

Wv
−k
| > 2n. Lemma 6 yields that GP (n, k)

is not 2-distance-balanced.
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Case 2: k is odd, k ≥ 5, and n > 7
4
k2 + 3

4
k.

Just as in Case 1, we are going to distinguish three subcases separated according to
which vertices are being addressed.

Subcase 2.1: Vertices u
−i and v

−i, where 1 ≤ i ≤ k − 1.
If 1 ≤ i < k+1

2
, then u

−i ∈ Wu0v−k
and v

−i ∈ Wu0v−k
. If i = k+1

2
, then u

−i ∈ u0
Wv

−k

and v
−i ∈ u0

Wv
−k

, and thus there are two such vertices in u0
Wv

−k
. If k+1

2
< i ≤ k−1,

then u
−i ∈ Wv

−ku0
and v

−i ∈ u0
Wv

−k
. So, there are k−3

2
such vertices in Wv

−ku0
and

k−3
2

such vertices in u0
Wv

−k
.

Subcase 2.2: Vertices ui, where 0 ≤ i ≤ n− k.
If 0 ≤ i ≤ k, then ui ∈ Wu0v−k

when 0 ≤ i ≤ k+1
2

, and ui ∈ u0
Wv

−k
when k+3

2
≤ i ≤ k.

Thus, there are k−1
2

such vertices which are in u0
Wv

−k
.

If k + 1 ≤ i ≤ n − k, then ui ∈ u0
Wv

−k
or ui ∈ Wv

−ku0
. We first consider the

vertices ui such that ui ∈ Wv
−ku0

. Note that if n−2k < i ≤ n−k, then ui ∈ Wv
−ku0

.
Let t be the largest integer such that the maximum distance of a vn−k, ui-path is
less than the minimum distance of a u0, ui-path, where n − (t + 1)k < i ≤ n − tk.
In other words, t is the largest integer such that

(t− 1) + 1 +
k + 1

2
<

⌊

n− tk

k

⌋

+ 2 ⇐⇒

(t− 1) + 1 +
k + 1

2
<

⌊n

k

⌋

− t+ 2 ⇐⇒

t <
1

2

⌊n

k

⌋

−
k

4
+

3

4
.

Because t is the largest integer satisfying the above inequality, we get

t ≥
1

2

(n

k
− 1

)

−
k

4
+

3

4
=

n

2k
−

k

4
+

1

4
.

By the definition of t, if 1 ≤ s ≤ t, then ui ∈ Wv
−ku0

, where n − (s + 1)k <
i ≤ n − sk. That is, ui ∈ Wv

−ku0
for any n − (t + 1)k < i ≤ n − k, and there are

kt ≥ k( n
2k

− k
4
+ 1

4
) such vertices which are in Wv

−ku0
.

If 1 ≤ j ≤ k, then the difference between the distance of a vn−k, un−(t+1)k+j-path
and the distance of a vn−k, un−(t+2)k+j-path is −1. Hence, among the vertices ui,
where n− (t+ 2)k < i ≤ n− (t+ 1)k, there are at most two vertices which are not
in Wv

−ku0
. That is, there are at least k − 2 vertices among these vertices which are

in Wv
−ku0

. Similarly, the number of vertices ui, where k < i ≤ n − (t + 1)k, which
are in Wv

−ku0
, is at least

(k − 2) + (k − 4) + · · ·+ 1 =
(k − 1)2

4
.
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Among the vertices ui, where 0 ≤ i ≤ n− k, there are at least k( n
2k
− k

4
+ 1

4
)+ (k−1)2

4

vertices which are in Wv
−ku0

, and

n−
3

2
k −

1

2
− k

(

n

2k
−

k

4
+

1

4

)

−
(k − 1)2

4

vertices which are in u0
Wv

−k
∪Wv

−ku0
and not counted in Wv

−ku0
.

Subcase 2.3: Vertices vi, where 0 ≤ i ≤ n− k.
By a similar discussion as in Case 1.3 we obtain that vsk ∈ u0

Wv
−k

if 0 ≤ s ≤ t
(t > n

2k
− 3

2
), and vn−k−sk ∈ Wv

−ku0
if 0 ≤ s ≤ t (t ≥ n

2k
− 1

2
). That is, there are

t + 1 > n
2k

− 1
2

such vertices which are in u0
Wv

−k
and t + 1 ≥ n

2k
+ 1

2
such vertices

which are in Wv
−ku0

.
We next consider vertices vi, where 0 < i < n − k, i 6= sk, and i 6= n − k − sk,

such that vi ∈ u0
Wv

−k
. If n− 2k < i < n− k, then vi ∈ u0

Wv
−k

. Let t be the largest
integer such that the maximum distance of a vn−k, vi-path is less than or equal to
the minimum distance of a u0, vj-path, where n− (t+ 1)k < i, j ≤ n− tk. That is,
t is the largest integer such that

(t− 1) +
k + 1

2
+ 2 ≤

⌊

n− tk

k

⌋

+ 1 ⇐⇒

(t− 1) +
k + 1

2
+ 2 ≤

⌊n

k

⌋

− t+ 1 ⇐⇒

t ≤
1

2

⌊n

k

⌋

−
k

4
−

1

4
.

As t is the largest integer satisfying the above inequality, we get

t >
1

2

(n

k
− 1

)

−
k

4
−

1

4
=

n

2k
−

k

4
−

3

4
.

By the definition of t, if 1 ≤ s ≤ t, then vi ∈ u0
Wv

−k
where n−(s+1)k < i < n−sk.

That is, there are t(k − 1) > ( n
2k

− k
4
− 3

4
)(k − 1) such vertices which are in u0

Wv
−k

.
If 1 ≤ j < k, then the difference between the distance of a vn−k, vn−(t+1)k+j-path

and the distance of a vn−k, vn−(t+2)k + j-path is −1. So among the vertices vi, where
n−(t+2)k < i < n−(t+1)k, there are at most two vertices which are not in u0

Wv
−k

.
Consequently, there are at least k−3 vertices vi, where n−(t+2)k < i < n−(t+1)k,
which are in u0

Wv
−k

. Similarly, the number of vertices vi, where 0 < i < n−(t+1)k,
i 6= sk, and i 6= n− k − sk, which are in u0

Wv
−k

, is at least

(k − 3) + (k − 5) + · · ·+ 2 =
(k − 3)(k − 1)

4
.
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Among the vertices vi, where 0 ≤ i ≤ n− k, there are at least n
2k

+ 1
2

vertices which
are in Wv

−ku0
and more than
(

n

2k
−

1

2

)

+

[(

n

2k
−

k

4
−

3

4

)

(k − 1) +
(k − 3)(k − 1)

4

]

vertices which are in u0
Wv

−k
.

Combining the above three subcases, we obtain that

|Wv
−ku0

| ≥
k − 3

2
+

[

k

(

n

2k
−

k

4
+

1

4

)

+
(k − 1)2

4

]

+

(

n

2k
+

1

2

)

=
n

2
+

n

2k
+

k

4
−

3

4
.

Consequently, the number of vertices in u0
Wv

−k
∪Wv

−ku0
which are not counted in

|Wv
−ku0

| is at least

k + 1

2
+

[

n−
3

2
k −

1

2
− k

(

n

2k
−

k

4
+

1

4

)

−
(k − 1)2

4

]

+

(

n

2k
−

1

2

)

+

[(

n

2k
−

k

4
−

3

4

)

(k − 1) +
(k − 3)(k − 1)

4

]

= n−
9

4
k +

3

4
.

Consequently,

2|Wv
−ku0

|+ |u0
Wv

−k
| ≥ 2

(

n

2
+

n

2k
+

k

4
−

3

4

)

+

(

n−
9

4
k +

3

4

)

= 2n+
n

k
−

7

4
k −

3

4
.

Under the assumption n > 7
4
k2 + 3

4
k we get 2|Wv

−ku0
| + |u0

Wv
−k
| > 2n, hence

Lemma 6 yields that GP (n, k) is not 2-distance-balanced.
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