
ar
X

iv
:2

40
8.

03
13

2v
1 

 [
m

at
h.

C
O

] 
 6

 A
ug

 2
02

4

Coloring the vertices of a graph with

mutual-visibility property

Sandi Klavžar a,b,c

sandi.klavzar@fmf.uni-lj.si

ORCID: 0000-0002-1556-4744

Dorota Kuziak d

dorota.kuziak@uca.es

ORCID: 0000-0001-9660-3284

Juan Carlos Valenzuela Tripodoro e

jcarlos.valenzuela@uca.es

ORCID: 0000-0002-6830-492X

Ismael G. Yero e

ismael.gonzalez@uca.es

ORCID: 0000-0002-1619-1572

August 7, 2024

a Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
b Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

c Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
d Departamento de Estadística e IO, Universidad de Cádiz, Algeciras Campus, Spain

e Departamento de Matemáticas, Universidad de Cádiz, Algeciras Campus, Spain

Abstract

Given a graph G, a mutual-visibility coloring of G is introduced as follows. We color

two vertices x, y ∈ V (G) with a same color, if there is a shortest x, y-path whose internal

vertices have different colors than x, y. The smallest number of colors needed in a mutual-

visibility coloring of G is the mutual-visibility chromatic number of G, which is denoted

χµ(G). Relationships between χµ(G) and its two parent ones, the chromatic number and

the mutual-visibility number, are presented. Graphs of diameter two are considered, and in

particular the asymptotic growth of the mutual-visibility number of the Cartesian product

of complete graphs is determined. A greedy algorithm that finds a mutual-visibility coloring

is designed and several possible scenarios on its efficiency are discussed. Several bounds are

given in terms of other graph parameters such as the diameter, the order, the maximum

degree, the degree of regularity of regular graphs, and/or the mutual-visibility number. For

the corona products it is proved that the value of its mutual-visibility chromatic number

depends on that of the first factor of the product. Graphs G for which χµ(G) = 2 are also

considered.
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1 Introduction

Given a connected graph G = (V (G), E(G)) and a set of vertices S ⊆ V (G), it is said that two

vertices x, y ∈ S are S-visible if there is a shortest x, y-path P such that V (P )∩S = {x, y}. The

set S is called a mutual-visibility set of G if any two vertices of S are S-visible. The cardinality

of a largest mutual-visibility set of G is the mutual-visibility number of G, denoted by µ(G).

By a µ-set of G we mean a mutual-visibility set of G with cardinality µ(G).

The concepts described above were introduced and studied for the first time by Di Stefano in

2022 in [12] motivated in part by some model of robot navigation in networks avoiding collisions

between themselves. Soon after, the variety of mutual-visibility problems in graphs consisting

of (total, dual, outer) mutual-visibility sets was presented in [8]. In just a few years, the area

has blossomed, not only because of the original computer science motivation on robot visibility,

but perhaps above all for the reason, that the visibility problems are intrinsically connected

with several classical combinatorial problems, as for instance the Zarankiewicz problem, see [9],

and Turán type problems, see [2, 5, 11]. Additional interesting contributions to the problem

are [1, 3, 6, 7, 10, 18–20,23].

When we look at the mutual-visibility problem from a practical point of view, we might need

more than just one mutual-visibility set, instead we wish to partition the vertex set of a graph

into mutual-visibility sets. Therefore, we present here a new research direction on the mutual-

visibility problem as follows. Given the connected graph G, we color its vertices by using the

following rule. Two vertices x, y ∈ V (G) are colored with a same color, if there exists a shortest

x, y-path whose internal vertices have different colors than x, y. Clearly, if x, y are adjacent,

then they can be colored equal. Such coloring shall be called a mutual-visibility coloring of G.

The smallest number of colors needed in a mutual-visibility coloring of G is the mutual-visibility

chromatic number of G, and will be denoted by χµ(G). In order to justify the terminology,

notice that in a mutual-visibility coloring, each color class forms a mutual-visibility set.

The rest of the article is structured as follows. Section 2 contains some preliminary first

results, including a lower bound of χµ(G) as a function of the mutual-visibility number of the

graph, as well as, a relationship with the classical chromatic number for graphs of diameter

two. In Section 3, we study the case of graphs with diameter two. Particularly, the asymptotic

growth of the mutual-visibility chromatic number of the Cartesian product of complete graphs

is established. A greedy algorithm will be described in Section 4. It will be proved there that

although the algorithm is optimal in many cases, it can also return arbitrarily bad results as a

consequence of an erroneous choice of the mutual-visibility sets at each stage of the algorithm.

Section 5 describes several bounds as a function of various structural parameters such as the

diameter, the order, the maximum degree, the degree of regularity of regular graphs, and/or the

mutual-visibility number. A realizability result is also proved, showing that for every feasible

value, there is a graph that attains it as a mutual-visibility chromatic number. This section also

contains a Nordhauss-Gaddum type upper bound for the mutual-visibility chromatic number.

Section 6 explores the corona product of two graphs G and H, by showing that its mutual-
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visibility chromatic number is either the mutual-visibility chromatic number of the first factor

of the product, or that one plus one. Section 7 is focused on finding all those graphs G for

which χµ(G) = 2, since this is the smallest possible value that such parameter can achieve, and

which means that V (G) can be partitioned into two mutual-visibility sets. Finally, we close

this work with Section 8, where we outline some remarks and open problems that might be of

interest to continue this investigation.

2 Preliminaries

Along our whole exposition, for a positive integer k we shall write [k] = {1, . . . , k}. Let G be a

graph and let Gi, i ∈ [k], be its connected components. Then it is evident that

χµ(G) =
k

∑

i=1

χµ(Gi) .

For this reason, from now on all the graphs considered are connected unless stated otherwise.

Also, all our graphs have neither loops nor multiple edges.

A first basic connection between χµ(G) and µ(G) is as follows. Let P = {Pi : i ∈ [χµ(G)]}
be a partition of V (G) into mutual-visibility sets. Clearly, |Pi| ≤ µ(G) for all i ∈ [χµ(G)]. This

already implies the following lower bound which we state as a lemma for subsequent use.

Lemma 2.1. If G is a graph, then

χµ(G) ≥
⌈

n(G)

µ(G)

⌉

.

On the other hand, the following arguments justify the term chromatic in our definition and

relate our investigation with the classical one of vertex coloring. A proper coloring of the vertex

set of a graph G is an assignment of labels (or colors) to the vertices of G in such a way that

each two adjacent vertices have different labels (colors). The chromatic number of G, denoted

χ(G), represents the smallest number of colors among all possible proper colorings of G. This

parameter is one of the classical ones in graph theory, and there are lots of variations of it. For

more information on this fact, see, for instance, the book [15].

It can be observed that a proper coloring of an arbitrary graph G does not induce a mutual-

visibility coloring in general. However, if we consider graphs of diameter two, then such relation-

ship becomes true. That is, let G be a connected graph of diameter two. Since a set of vertices

S having a same color in any proper coloring G forms an independent set (it induces an edgeless

graph), we hence deduce that such S must be a mutual-visibility set of G. Thus, the partition

of V (G) induced by the proper coloring, represents also a partition into mutual-visibility sets

for G. This leads to the following result.

Proposition 2.2. If G is a graph of diameter two, then χµ(G) ≤ χ(G). Moreover, this bound

is tight.
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Proof. The bound clearly follows from the previous comments. To see that it is tight, consider

the complete bipartite graphs Kr,t with (r, t) 6= (1, 1), for which χµ(Kr,t) = 2 = χ(Kr,t).

We close this section with some other extra terminology and notation that shall be further

used.

Let G be a graph. The maximum degree of G is denoted by ∆(G), and its order by n(G).

Given a vertex v ∈ V (G), the open neighborhood of v is denoted by NG(v). If X ⊆ V (G) and

F ⊆ E(G), then the subgraphs induced by X and by F are respectively denoted by G[X] and

G[F ]. The complement of G is denoted by G.

The distance between vertices u, v ∈ V (G) is denoted by dG(u, v). The diameter diam(G)

of G is the maximum distance bwteen its vertices. The graph G is geodetic if each pair of its

vertices is connected by a unique shortest path. A subgraph H of G is a geodetic subgraph if it

has the same property, that is, each pair of vertices of H is connected in G by a unique shortest

path. A subgraph H of G is a convex subgraph if for any vertices x and y of H, every shortest

x, y-path in G lies completely in H.

The Cartesian product G � H and the strong product G ⊠ H of graphs G and H both

have the vertex set V (G) × V (H). The vertices (g, h) and (g′, h′) are adjacent in G � H if

either gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). By a layer of G � H we mean a

subgraph induced by all the vertices in which one coordinate is fixed. Note that a layer is either

isomorphic to G or to H. The vertices (g, h) and (g′, h′) are adjacent in G⊠H if either one of

the two condition for the Cartesian product holds, or gg′ ∈ E(G) and hh′ ∈ E(H).

3 Diameter two graphs

In order to continue the flow initiated in Section 2 with graphs of diameter two, we next consider

this class of graphs with a bit more detail. In the main result we determine the asymptotic

growth of χµ(Kn � Kn), before that we prove the following.

Theorem 3.1. If G is a graph with diam(G) = 2 and each pair of vertices at distance two lies

in a 4-cycle, then χµ(G) = O(
√

∆(G)).

Proof. Consider an arbitrary partition E = {E1, . . . , Eℓ} of E(G) such that no part of it contains

C4 as a subgraph. Based on E , we form a partition V = {V1, . . . , Vℓ} of V (G) as follows. Let

v ∈ V (G) and let v lies in G[Ei], i ∈ I. Then we put v into Vk, where k = mini∈I i. Note that

some of the sets Vi might be empty, and let j be the largest index such that Vj 6= ∅. Assume

V ′ = {V1, . . . , Vj}. Then V ′ is a partition of V (G). Note also that since G[Ei], i ∈ [j], contains

no C4, the same holds for G[Vi].

We claim that V ′ forms a mutual-visibility coloring. For this sake consider a nonempty

part Vi ∈ V and let x, y ∈ Vi. If xy ∈ E(G), then they are Vi-visible. Assume next that

dG(x, y) = 2. Then by our assumption, x and y lie in a C4. But now at least one vertex of this
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C4 does not belong to Vi, which in turn implies that x and y are again Vi-visible. Hence Vi is

a mutual-visibility set for each i ∈ [j] and thus V ′ forms a mutual-visibility coloring.

To complete our argument, we recall from [16, Theorem 1] that every graph G admits

a decomposition of E(G) into O(
√

∆(G)) parts, such that none of them contains C4 as a

subgraph.

The next result implies that the upper bound of Theorem 3.1 is asymptotically tight.

Theorem 3.2. If n is large enough, then χµ(Kn � Kn) = Θ(
√
n).

Proof. First note that Kn � Kn fulfills the assumptions of Theorem 3.1, hence χµ(Kn � Kn) =

O(
√
n).

To prove that χµ(Kn � Kn) = Ω(
√
n), we recall from [9, Corollary 3.7] that if m,n ≥ 2, then

µ(Km � Kn) = z(m,n; 2, 2), where z(m,n; 2, 2) is the maximum number of 1s that an m × n

binary matrix can have, provided that it contains no 2× 2 submatrix of 1s. (To determine the

value z(m,n; 2, 2) is an instance of the Zarankiewicz’s problem, see [25].) When n is sufficiently

large, the value z(n, n; 2, 2) can be bounded as follows [4, 13]:

µ(Kn � Kn) ≤ z(n, n; 2, 2) ≤ 1

2
n(1 +

√
4n− 3) .

This implies that, provided that n is large enough, a largest mutual-visibility set of Kn � Kn is

of order n3/2. Therefore, we need Θ(
√
n) mutual-visibility sets to partition V (Kn � Kn), that

is, χµ(Kn � Kn) = Ω(
√
n).

Theorem 3.1 also shows that the bound given in Proposition 2.2 is in general not achieved,

since it is well known from [22] that χ(Kn � Kn) = n.

4 Greedy mutual-visibility coloring algorithm

A natural greedy algorithm for coloring a graph with mutual-visibility sets is to select at each

step a largest mutual-visibility set of G among the vertices which are not yet colored, and color

the selected set with a new color. This is formalized in Algorithm 1.

Algorithm 1: Greedy mutual-visibility coloring

1: Input: Connected graph G.

2: Output: Mutual-visibility coloring of G.

3: V = V (G), c = 1

4: while V 6= ∅:
5: determine a largest mutual-visibility set X of G, where X ⊆ V

6: color the vertices of X with c

7: V = V \X, c = c+ 1
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Algorithm 1 is optimal in many cases. It will follow from our subsequent results, that it

works optimally on block graphs (provided at each step of the algorithm the set of simplicial

vertices is selected, which is indeed a largest mutual-visibility set at each step). For another

example consider the strong grids Hk = P2k ⊠ P2k, k ≥ 1. If follows from [10, Theorem 4.4]

that µ(Hk) = 8k − 4. Moreover, the set of all vertices of Hk which are not of maximum degree

(that is, the set of boundary vertices of Hk) forms a µ-set of Hk. (It can be actually proved

that this set is the unique µ-set of Hk.) Then Algorithm 1 will color these vertices with color

1, and proceeding by induction, the algorithm will color Hk with k colors. On the other hand,

the main diagonal of Hk is the unique shortest path between its end vertices. Because this path

contains 2k vertices, we infer that χµ(Hk) ≥ k which in turn implies that Algorithm 1 returns

an optimal coloring.

The next result provides another example which demonstrates that Algorithm 1 is optimal,

and at the same time it gives a family of graphs for which the bound of Lemma 2.1 is sharp.

Proposition 4.1. If t = 6k, k ≥ 3, then χµ(Ct � Ct) = 2k.

Proof. By [18, Proposition 3.3] we have µ(Ct � Ct) = 3t. Hence by Lemma 2.1 we get

χµ(Ct � Ct) ≥ ⌈t2/3t⌉ = t/3 = 2k.

In the proof of [18, Proposition 3.3], a set M of cardinality 3t is constructed and proved to

be a mutual-visibility set of Ct � Ct. We will not repeat here the explicit (slightly complicated)

definition of this set, but instead identify its key properties. In each layer with respect to the

first factor of Ct � Ct, the set M has exactly three vertices which are uniformly spaced at

distance 2k, that is, the three vertices from M which lie in a given layer are pairwise at distance

2k. By the transitivity of Ct � Ct, X can be respectively shifted 2k−1 times, each time by 1 in

the first coordinate, to construct sets M2,M3, . . . ,M2k. Using the transitivity of Ct � Ct again,

each of the sets M2,M3, . . . ,M2k is a mutual-visibility set. Since V (Ct � Ct) = M
⋃2k

i=2 Mi,

we have thus found a mutual-visibility coloring of Ct � Ct using 2k colors. We conclude that

χµ(Ct � Ct) ≤ 2k and we are done.

We next show that Algorithm 1 is not optimal in general. For k ≥ 1, let Gk be the graph

obtained from C4 by amalgamating k private 4-cycles to each of the four edges of the original

C4, see Fig. 1. Setting V (C4) = [4], we denote the remaining vertices as can be seen from the

figure. Note that n(Gk) = 8k + 4.

Proposition 4.2. If k ≥ 1, then µ(Gk) = 8k and χµ(Gk) = 2.

Proof. It is straightforward to check that the set V (Gk) \ [4] is a mutual-visibility set, hence

µ(Gk) ≥ 8k. On the other hand, consider the following four paths: (i) (14)1, 1, (12)1 , (ii)

(21)1, 2, (23)1 , (iii) (32)1, 3, (34)1, and (iv) (43)1, 4, (41)1. Each of these paths is the unique

shortest path between its end vertices, hence an arbitrary mutual-visibility set can contain at

most two vertices from each of these four disjoint paths. It follows that µ(Gk) ≤ n(Gk)−4 = 8k.

We can conclude that µ(Gk) = 8k.
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(12)1
1

23

4

(21)k

(12)k

(21)1

(32)1 (23)1

(32)k (23)k

(41)1(14)1

(41)k (14)k

...

...

(43)k

(34)1

(43)1

(34)k
· · ·· · ·

Figure 1: Graph Gk

Assume now that

X = {1, 2}
⋃

{(32)i, (41)i, (34)i, (43)i : i ∈ [k]}

and let X ′ = V (Gk) \ X. See Fig. 1, where the black vertices are the vertices of X. By

examining all the possibilities (and taking into account the symmetries), we can verify that

X is a mutual-visibility set of Gk. Using the symmetry again we get that X ′ is likewise a

mutual-visibility set. Since V (Gk) = X ∪X ′ we conclude that χµ(Gk) = 2.

The graphs Gk of Proposition 4.2 thus demonstrate that Algorithm 1 is not optimal in

general. Indeed, in view of the proof of the proposition, the algorithm first color all the vertices

from the set V (Gk)\[4] with color 1. After that the vertices 1, 2, 3, 4 are yet to be colored. Since

they induce a geodetic subgraph of Gk isomorphic to C4, the algorithm colors three of these

vertices with color 2 and the remaining vertex with color 3. As χµ(Gk) = 2, the conclusion

follows.

Our next goal is to show that Algorithm 1 can return an arbitrarily bad result. For this

sake consider the class of graphs Fk, k ≥ 2, obtained from the disjoint union of C4k and P2k−1

by adding an edge between a vertex of C4k and one vertex of degree one in P2k−1. Let the

vertices of C4k be xi, i ∈ [4k], and let the vertices of P2k−1 be yi, i ∈ {2, 3, . . . , 2k}, where the

edges in both graphs are natural. Then Fk is obtained from these C4k and P2k−1 by adding the

edge x1y2. Fk belongs to the family of the so-called frog graphs, see [9], which also gives rise

to the notation for these graphs.
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Proposition 4.3. If k ≥ 2, then χµ(Fk) = 2k.

Proof. Consider the following partition of V (Fk):

{x1, x2k+1}, {y2, x2, x4k}, {y3, x3, x4k−1}, . . . , {y2k, x2k, x4k−(2k−2)} = {y2k, x2k, x2k+2} .

Since each part of this partition is a mutual-visibility set of Fk we infer that χµ(Fk) ≤ 2k. On

the other hand, we recall from [9, Theorem 4.4] that µ(Fk) = 3. By Lemma 2.1 we then get

χµ(G) ≥
⌈

n(Fk)

µ(Fk)

⌉

=

⌈

6k − 1

3

⌉

= 2k ,

and we are done.

Consider now the following sequence of mutual-visibility sets of Fk:

{x1, x2, x2k+1}, {x3, x4, x2k+3}, . . . , {x2k−1, x2k, x2k+(2k−1)} = {x2k−1, x2k, x4k−1} .

Algorithm 1 legally colors the vertices from these respective sets with colors 1, 2 . . . , k. At that

stage of the algorithm, the vertices

x2k+2, x2k+4, . . . , x4k, y2, y3, . . . , y2k

are not yet colored. They all lie on a shortest x2k+2, y2k-path. Moreover, this path is the

unique shortest path between x2k+2 and y2k, therefore a mutual-visibility set can contain at

most two vertices out of them. It follows that the algorithm uses at least ⌈(k + 2k − 1)/2⌉ =

⌈(3k − 1)/2⌉ colors for them, hence overall at least k + ⌈(3k − 1)/2⌉ colors are used. This

demonstrates that even if an optimal coloring uses color classes that are µ-sets, Algorithm 1

may (by selecting “wrong" µ-sets) return a coloring using arbitrary more colors than the mutual-

visibility chromatic number.

5 General bounds

Since the mutual-visibility properties of graphs stands on a geodetic distance frame, it is natural

to think that for a graph G, the parameter χµ(G) relates to the diameter of G. However, such

relationships becomes clear only for geodetic graphs. We open this section precisely with the

following result on geodetic graphs.

Proposition 5.1. Let G be a geodetic graph. Then

χµ(G) ≥
⌈

diam(G) + 1

2

⌉

.

Moreover, if G is a block graph, then the equality is achieved.
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Proof. Let P = {vi : i ∈ [diam(G) + 1]} be a diametral path of G. Since G is geodetic, no

three vertices in P may have the same color. Therefore, we need at least
⌈

diam(G)+1
2

⌉

colors in

a mutual-visibility coloring of the vertices of P . Hence, we deduce that χµ(G) ≥
⌈

diam(G)+1
2

⌉

.

Assume now that G is a block graph. (Note that block graphs are geodetic because for any

two vertices a shortest path between them follows cut vertices along the blocks between them

and is hence unique.) The equality holds when G is complete, hence assume in the rest that

diam(G) ≥ 2. Let S be the set of simplicial vertices of G. Then G− S is again a block graph.

Let x, y ∈ V (G) \ S such that dG−S(x, y) = diam(G − S). Hence x and y are cut vertices

of G and there exist simplicial vertices x′, y′ ∈ V (G), respectively adjacent to x, y. Therefore

diam(G− S) = dG−S(x, y) = dG(x, y) = dG(x
′, y′)− 2 = diam(G)− 2. Since the set S forms a

mutual-visibility set, we color its vertices with the same color. Continuing in the same manner

on the block graph G−S, we arrive to a mutual-visibility coloring using
⌈

diam(G)+1
2

⌉

colors.

Let P be the Petersen graph. Then it can be checked that χµ(P ) = 2, hence the Petersen

graph is a sporadic example for which the equality holds in Proposition 5.1. The latter result

also yields the mutual-visibility chromatic number of trees, a result worthy of special mention.

Corollary 5.2. If T is a tree, then

χµ(T ) =

{

rad(T ) + 1; diam(T ) even,

rad(T ); diam(T ) odd.

Apart from the trivial bound from Lemma 2.1, our parameter can be related to the classical

mutual-visibility number in a different way. The next upper bound appears to be a basic one,

but it shows to be very useful. We remark that the bound is somehow derived from the greedy

algorithm described in Section 4.

Proposition 5.3. If G is a connected graph, then

χµ(G) ≤
⌈

n(G)− µ(G) + 2

2

⌉

.

Proof. Let k =
⌈

n(G)−µ(G)
2

⌉

and let S be a µ-set of G. Consider {Sj : j ∈ [k]} as a partition

of V (G) \ S such that every Sj has cardinality two for every j ∈ [k]− 1, and |Sk| ≤ 2.

Now, it can be readily seen that the partition of V (G) given by P = S ∪ {Sj : j ∈ [k]}
induces a mutual-visibility coloring of G, since G is connected and each Sj has cardinality at

most 2. Thus, χµ(G) ≤ 1 +
⌈

n(G)−µ(G)
2

⌉

=
⌈

n(G)−µ(G)+2
2

⌉

.

Since the bound of Proposition 5.3 depends on the value of the mutual-visibility number,

and computing such parameter is an NP-hard problem (cf. [12]), the following corollary gives

us a tool to bound above the value of χµ(G) in terms of the maximum degree of a graph. This

is based on the fact that for any vertex of a graph G, its neighborhood forms a mutual-visibility

set of G, which implies that µ(G) ≥ ∆(G).
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Corollary 5.4. If G is a connected graph, then

χµ(G) ≤
⌈

n(G)−∆(G) + 2

2

⌉

.

Let us point out that the condition for G to be connected is essential for applying this result.

For example, consider the infinite family of graphs G(p, q) = Kp ∪Kq. In such case, for every

q ≥ 3 it holds that

χµ(G(p, q)) = q + 1 >

⌈

n(G(p, q)) −∆(G(p, q)) + 2

2

⌉

=

⌈

p+ q − (p − 1) + 2

2

⌉

=

⌈

q + 3

2

⌉

.

For graphs containing a vertex adjacent to all other vertices, the following consequence is

deduced.

Corollary 5.5. If G is not complete and ∆(G) = n(G)− 1, then χµ(G) = 2.

Proof. Since ∆(G) = n − 1 and G is not complete, µ(G) = n − 1. Therefore, Lemma 2.1 and

Corollary 5.4 became equalities and we may derive that χµ(G) = 2.

Observe that the maximum possible value of the upper bound from Corollary 5.4 is
⌈

n(G)
2

⌉

which appears when ∆(G) = 2. We next characterize the graphs achieving precisely this

maximum value.

Proposition 5.6. If G is a graph, then n(G)
2 < χµ(G) =

⌈

n(G)
2

⌉

if and only if G is a path of

odd order.

Proof. Let n = n(G) and ∆ = ∆(G). First, let us suppose that G = P2k+1. By Lemma 2.1 and

Proposition 5.3 we have that χµ(G) =
⌈

n
2

⌉

. On the other hand, assume now that n
2 < χµ(G) =

⌈

n
2

⌉

which implies that n is an odd integer. By Proposition 5.3 we deduce that

⌈n

2

⌉

=

⌈

n−∆+ 2

2

⌉

.

Since n is odd, we have that n+1
2 = n+1

2 +
⌈

1−∆
2

⌉

, and therefore, ∆ ≤ 2. Clearly, ∆ = 1 implies

that G = K2, because G is connected, which is not possible because n is odd. Hence, it is

derived that ∆ = 2 and G must be either an odd cycle, or a path of odd order.

If G is a cycle, then it is known that µ(G) = 3. Let S be a mutual visibility set of order

3 in the cycle. As |V (G) \ S| = n − 3 is even, we may consider a partition of V (G) \ S into

(|V (G) \ S|)/2 sets of cardinality 2, which are mutual-visibility sets. Then

χµ(G) ≤ 1 +
|V (G) \ S|

2
= 1 +

n− 3

2
=

n− 1

2
<

n+ 1

2
= χµ(G),

which is a contradiction. Therefore, we conclude that G must be a path with an odd number

of vertices.
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The following realization result complements Proposition 5.6.

Proposition 5.7. Let n, k be positive integers such that 2 ≤ k ≤
⌊

n
2

⌋

. Then there is a graph

G with n = n(G) and
⌈

n(G)

µ(G)

⌉

≤ χµ(G) = k ≤
⌊

n(G)

2

⌋

.

Proof. If k =
⌊

n
2

⌋

, then it is sufficient to consider the path graph G = P2k. From now on, we

may assume that 2 ≤ k ≤
⌊

n
2

⌋

− 1. Let G be the graph obtained by joining a leaf of a path

having p = 2k − 1 vertices with q = n− 2k + 1 isolated vertices, see Fig. 2.

v1 v2 v3 vp−1 vp

vp+1

vp+2

vp+q

Figure 2: A graph G or order n = p+ q with χµ(G) = k = p+1
2 .

Since 4 ≤ 2k ≤ n − 2, the graph G is well-defined and we have that 3 ≤ p, q ≤ n− 3. It is

straightforward to check that the set of vertices S = {v1, vp+1, . . . , vp+q} is a mutual-visibility

set of maximum cardinality q + 1. Hence, µ(G) = q + 1.

Note that G is a geodetic graph with diam(G) = 2k − 1. Then, by Proposition 5.1, we

have that χµ(G) ≥ k. On the other hand, let P = {Pi = {v2i, v2i+1} : i ∈ [k − 1]} ∪ {S} is a

mutual-visibility coloring of cardinality k. So, χµ(G) ≤ k and the equality holds.

Finally, we have to prove that
⌈

n(G)
µ(G)

⌉

≤ k = χµ(G). Note that n = p + q, p = 2k − 1,

and µ(G) = q + 1. Therefore,
⌈

n(G)
µ(G)

⌉

≤ k if and only if p+q
q+1 ≤ p+1

2 , which is equivalent to

p + q − 1 ≤ pq. Since p, q > 1, it is easy to check that the last inequality holds because

(p− 1)(q − 1) ≥ 0.

Next, we show an upper bound for regular graphs that improves the one given by Proposi-

tion 5.3.
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Proposition 5.8. If G is an r-regular graph, r ≥ 2, with girth g(G) ≥ 6, then

χµ(G) ≤
⌈

n(G)− r2 + 4

2

⌉

.

Proof. Set n = n(G). Let v ∈ V (G) and set S = NG(v) and T = NG(NG(v)) − v. Since

g(G) ≥ 6, we infer that S ∩ T = ∅, that G[T ] is an edgeless graph, and |T | = r(r − 1). And,

clearly, |S| = r.

The set S is a mutual-visibility set since it is an open neighborhood of a vertex. We further

claim that T is a mutual-visibility set as well. Consider arbitrary vertices x, y ∈ T and note

that dG(x, y) ≤ 4. We wish to see that x and y are T -visible. Since G[T ] is an edgeless graph,

there is nothing to show if dG(x, y) ≤ 2. The fact that G[T ] is an edgeless graph also implies

that if dG(x, y) = 3, then no shortest x, y-path contains a vertex of T as an interior vertex.

Finally, if dG(x, y) = 4, then there exits a shortest x, y-path containing v, hence also in this

case x and y are T -visible. We can conclude that T is a mutual-visibility set.

The set of vertices V (G) \ {S, T} has cardinality n− r2, let its vertices be vi, i ∈ [n − r2].

Consider now the partition of V (G) \ {S, T} given by P = {Pi = {v2i−1, v2i} : i ∈ [n−r2

2 ]}, if

n− r2 is even or P = {Pi = {v2i−1, v2i} : i ∈ [n−r2−1
2 ]} ∪ {vn−r2}, if n− r2 is odd. Since every

single element of P has cardinality at most 2, they are mutual-visibility sets of G. So, we can

color S and T with two different colors and we may assign one more distinct color to each set

Pi. Hence,

χµ(G) ≤ 2 +

⌈

n− r2

2

⌉

=

⌈

n− r2 + 4

2

⌉

which we needed to prove.

We can note that the bound given by Proposition 5.8 improves the one described in the

Proposition 5.3 for regular graphs, because r2 − 2 ≥ r = ∆(G) for every r-regular graph G.

We end this section with a Nordhaus-Gaddum-type upper bound related to the mutual-

visibility chromatic number of a graph.

Proposition 5.9. If G is a connected graph such that G is also connected, then

χµ(G) + χµ(G) ≤
⌈

n(G)− µ(G) + 2

2

⌉

+

⌈

δ(G) + 3

2

⌉

.

Proof. Since G is connected, Proposition 5.3 yields χµ(G) ≤
⌈

n(G)−µ(G)+2
2

⌉

. Also, as G is

connected, Corollary 5.4 gives χµ(G) ≤
⌈

n(G)−∆(G)+2
2

⌉

=
⌈

δ(G)+3
2

⌉

. Therefore,

χµ(G) + χµ(G) ≤
⌈

n(G)− µ(G) + 2

2

⌉

+

⌈

δ(G) + 3

2

⌉

which is the desired bound.
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It can be readily seen that the bound given by Proposition 5.9 is tight for paths of odd order

G = P2k+1. Since P2k+1 is a bipartite graph, it holds that χµ(G) = 2. By Proposition 5.6, we

know that χµ(P2k+1) = k + 1. Therefore equality holds in Proposition 5.9.

In addition to the comments above, Proposition 5.9 also leads to the following conclusion

by taking into account that χµ(G) ≥ ∆(G) for any graph G.

Corollary 5.10. If G is a connected graph such that G is also connected, then

χµ(G) + χµ(G) ≤
⌈

n(G) + 5

2

⌉

.

Notice that again the case of paths of odd order G = P2k+1 can be used to show the tightness

of the upper bound of Corollary 5.10.

6 Corona product graphs

Let G be a graph whose vertex set is V (G) = {v1, . . . , vn}, and let H be a graph. The corona

product G ⊙H of G and G is the graph defined as follows. We take one copy of G and n(G)

disjoint copies of H, denoted H1, . . . ,Hn. Next, for every integer i ∈ [n], we add all the possible

edges between any vertex vi ∈ V (G) and all the vertices of H i.

Proposition 6.1. If G is a connected graph of order at least two and H is a graph, then

χµ(G) ≤ χµ(G⊙H) ≤ χµ(G) + 1.

Proof. To prove the lower bound, let us consider a mutual-visibility coloring of G⊙H given by

the collection of sets P = {Pi}, with i ∈ [χµ(G⊙H)]. Since G is a convex subgraph of G⊙H,

it holds that the collection P ′ = {Pi ∩ V (G)} is a mutual-visibility coloring of G. Therefore

χµ(G) ≤ χµ(G⊙H).

Next, we prove the upper bound. If G is a complete graph Kn, then it can be readily

observed that χµ(Kn ⊙H) = 2 = χµ(Kn) + 1, since the vertex set V (Kn) and the complement

of it in Kn ⊙ H are both mutual-visibility sets of Kn ⊙ H. Moreover, if G is the graph P3,

then G ⊙ H contains a geodetic subgraph isomorphic to P5, hence it can be deduced that

χµ(P3 ⊙H) = 3 = χµ(P3) + 1. Thus, from now on we may assume that G is a non-complete

graph of order at least 4.

Let P = {P1, . . . , Pr} be a mutual-visibility coloring of G. We claim that P ∪ W , where

W =
⋃

i∈[n] V (H i), is a mutual-visibility coloring of G⊙H.

Clearly, any set Pi ∈ P is also a mutual-visibility set of G ⊙ H. On the other hand, if

x, y ∈ V (H i) for some i ∈ [n], then they are either adjacent or at distance two. Since they have

a common neighbor (the vertex vi) which is not in W , it holds that x, y are W -visible when

they are not adjacent. Assume now that x ∈ V (H i) and y ∈ V (Hj) for some distinct i, j ∈ [n].

Hence, they are clearly W -visible by using any shortest vi, vj-path. As a consequence, it follows

that P∪W is a mutual-visibility coloring of G⊙H as claimed, and so, χµ(G⊙H) ≤ χµ(G)+1.
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It is worth noting that the bounds given by Proposition 6.1 are tight. To see this, let

us consider the cycle C4 with vertex set V (C4) = [4]. Let us denote by Ki
m the copy of

Km corresponding to the vertex i in C4 ⊙ Km. We can readily check that χµ(C4 ⊙ Km) =

χµ(C4) = 2, by considering the mutual-visibility coloring of C4 ⊙ Km given by the sets of

vertices {{1, 2, V (K3
m), V (K4

m)}, {3, 4, V (K1
m), V (K2

m)}} (see Fig. 3). Similarly, we can verify

that χµ(Kn ⊙Km) = χµ(Kn) + 1 = 2 for any integers m,n with n ≥ 2 and m ≥ 1.

1 3

42

Figure 3: A mutual-visibility coloring of C4 ⊙K5 with χµ(C4) = 2 colors.

7 Graphs with mutual-visibility chromatic number two

It is straightforward to observe that χµ(G) = 1 if and only if G is a complete graph. In this

sense, the smallest non trivial value for χµ(G) is precisely 2. This motivates the study of this

section.

Consider the family A of graphs GA defined as follows. We begin with two graphs Ar and

As and two complete graphs Kr and Ks. Next, we add all possible edges between the vertices

of Ar and the vertices of Kr, as well as, all the possible edges between the vertices of As and

the vertices of Ks. Then, to obtain a graph GA ∈ A, we add some edges between the vertices of

Ar and As in such a way that any two not adjacent vertices of Ar will have a common neighbor

in V (As), and that any two not adjacent vertices of As will have a common neighbor in V (Ar).

We also consider the family B of graphs GB constructed as follows. We begin with two graphs

B and B′ satisfying that |diam(B) − diam(B′)| ≤ 2. Next, for any two not adjacent vertices

x, y ∈ V (B) with dB(x, y) = d, we select vertices x′, y′ ∈ V (B′) such that dB′(x′, y′) = d − 2,
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and add the edges xx′ and yy′. (Note that if d = 2, then x′ = y′.) Similarly, for any two not

adjacent vertices x′, y′ ∈ V (B′) with dB′(x′, y′) = d, we select two vertices x, y ∈ V (B) such

that dB(x, y) = d− 2, and add the edges xx′ and yy′.

By inspection we can check that the graphs Gk of Proposition 4.2 belong to the family B.

More generally, we have the following result.

Proposition 7.1. If G ∈ A ∪ B, then χµ(G) = 2.

Proof. Assume G = GA ∈ A. According to the construction of GA, we can readily see that

any two vertices of the set S = V (Ar) ∪ V (Kr) are S-visible, since they are either adjacent or

at distance two (in such case x, y ∈ V (Ar)). In the latter case, by the construction, any two

not adjacent vertices of V (Ar) have a common neighbor z ∈ V (As) and z /∈ S. Thus, S is a

mutual-visibility set of G. Similarly, the set S′ = V (Bs) ∪ V (Ks) is also a mutual-visibility set

of G. These facts allow to conclude that χµ(GA) = 2.

Assume next that G = GB ∈ B. In such situation, we claim that each set V (B) and V (B′)

are mutual-visibility sets of GB . Notice that for any two not adjacent vertices x, y ∈ V (B) with

dB(x, y) = d ≥ 2 there is a shortest x, y-path whose internal vertices are in V (B′) according to

the construction of GB . Thus, x, y are V (B)-visible and so, V (B) is a mutual-visibility set of

GB as claimed. The same conclusion can be readily deduced for V (B′). Thus, χµ(GB) = 2.

Another infinite family of graphs G satisfying χµ(G) = 2 is given by the strong product

graphs H ⊠K2 for any non-complete graph H. From the proof of [12, Theorem 5.1] one can

deduce that if V (K2) = {u, v}, then the two sets V (H) × {u} and V (H) × {v} are mutual-

visibility set of H ⊠ K2, and so, χµ(H ⊠ K2) ≤ 2. The equality follows because H is not a

complete graph. Yet another family of graphs G satisfying that χµ(G) = 2 is obtained from

the last comments of Section 6. That is, for any corona graph Kn ⊙Km (n ≥ 2 and m ≥ 1) it

holds that χµ(Kn ⊙Km) = 2.

The comments of the paragraph above and the results from Proposition 7.1 allow to observe

that there are graphs G satisfying that χµ(G) = 2 and whose structures are intrinsically differ-

ent. Note that the graphs GA ∈ A satisfy that diam(GA) ≤ 3, while the graphs GB ∈ B might

have diameter as large as we would require.

8 Concluding remarks

In this section we propose some open problems and suggestions that might be taken into account

for further investigation of the concept introduced in this paper. First, the following is a

fundamental question to be investigated.

Problem 8.1. Investigate the computational complexity of computing the mutual-visibility chro-

matic number.
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In Section 3, the value of the χµ(G) is computed (asymptotically) for the case of 2-

dimensional Hamming graphs. It is already known that finding the mutual-visibility number of

Hamming graphs is a very challenging problem (see for instance [9]). In this sense, the following

problem might be also challenging, but worth of exploring.

Problem 8.2. Compute or at least bound the mutual-visibility chromatic number of Hamming

graphs, and of the Cartesian product of at least two complete graphs in general.

In view of Proposition 2.2, and due to the fact that the chromatic number of graphs is one

of the most classical parameters in graph theory, we pose the following problem.

Problem 8.3. Characterize the graphs G of diameter two for which χµ(G) = χ(G) holds.

In particular, are there any additional such graphs besides the complete bipartite graphs? In

addition, are there some other relationships between χµ(G) and χ(G) for other graph classes?

Axenovich and Liu [1] proved that µ(Qn) > 0.186 · 2n for any hypercube graph Qn. This

raises the following:

Question 8.4. Does there exist an absolute constant M such that χµ(Qn) < M holds for any

integer n?

Section 7 deals the graphs G satisfying that χµ(G) = 2 and Corollary 5.10 shows a Nordhauss-

Gaddum type result for χµ(G). In this sense, it seems to be worth of considering the following.

Problem 8.5. Characterize the graphs G (at least partially) satisfying that χµ(G) = 2, as well

as, those connected graphs G whose complements are also connected, and for which χµ(G) +

χµ(G) =
⌈

n(G)+5
2

⌉

.

A variety of mutual-visibility problems in graph theory (variants called total, outer and dual)

was described in [8]. In this sense, it seems to be natural to consider the problem of coloring the

vertices of a graph with total, outer or dual mutual-visibility sets. Analogously, closely related

to the mutual-visibility sets of graphs there exist the general position sets, see [14,17,21,24,26].

Hence, coloring the vertices of a graph with general position sets is also of interest.
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