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Abstract

Outer, dual, and total general position sets are studied on strong and lex-

icographic products of graphs. Sharp lower and upper bounds are proved for

the outer and the dual general position number of strong products and several

exact values are obtained. For the lexicographic product, the outer general

position number is determined in all the cases, and the dual general position

number in many cases. The total general position number is determined for

both products. Along the way some results on outer general position sets are

also derived.
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1 Introduction

Let G = (V (G), E(G)) be a graph and X ⊆ V (G). Vertices u, v ∈ V (G) are X-
positionable if for any shortest u, v-path P we have V (P ) ∩ X = {u, v}. Clearly,
adjacent vertices are X-positionable no matter whether they belong to X . Setting
X = V (G) \X , the set X is

• a general position set, if every u, v ∈ X are X-positionable;

• a total general position set, if every u, v ∈ V (G) are X-positionable;

• an outer general position set, if every u, v ∈ X are X-positionable, and every
u ∈ X , v ∈ X are X-positionable; and

• a dual general position set, if every u, v ∈ X are X-positionable, and every
u, v ∈ X are X-positionable.

The cardinality of a largest general position set, a largest total general position
set, a largest outer general position set, and a largest dual general position set of a
graph G will be respectively denoted by gp(G), gpt(G), gpo(G), and gpd(G). These
graph invariants will be respectively called the general position number, the total
general position number, the outer general position number, and the dual general
position number of G. Moreover, for any τ(G) ∈ {gp(G), gpt(G), gpo(G), gpd(G)},
by a τ -set we mean a set of cardinality τ(G) having the respective property.

The above described variety of general position sets was introduced in [21], while
(standard) general position sets have already been investigated a lot after their
independent introduction in [6, 16]. In particular, a lot of attention has been given
to general position sets of graph operations [8, 10, 11, 13, 22, 23]. Among other
contributions on the topic we highlight the papers [18, 20, 24]. With respect to graph
operations, general position sets were also investigated in [12] on strong products.
Among other matters covered in [12] we point to the problem whether the general
position number of the strong product of two graphs equals the product of the general
position numbers of the factors, which is one of the main outstanding problems in
the area.

In this paper we focus on the recently introduced three general position numbers
of strong and lexicographic products. In the next section we give necessary defini-
tions and call up the known results that we need later. In Section 3 we prove some
results on outer general position sets that are on one hand interesting in their own
right and are on the other hand applied later on. The strong product is the topic
of Section 4. We prove general lower and upper bounds on the outer and the dual
general position number, demonstrate their sharpness, and give exact values in some
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specific cases. Then, in Section 5, we turn our attention to lexicographic products.
We first determine the outer general position number in all the cases, and complete
the paper by establishing the dual general position number in many cases. Along
the way we also determine the total general position number of both products.

2 Preliminaries

Unless stated otherwise, graphs G = (V (G), E(G)) considered in this paper are
simple and connected. For a positive integer k, we use [k] to represent the set
{1, . . . , k}. For a vertex u of G, NG(u) denotes the set of neighbors of u in G and
NG[u] = NG(u) ∪ {u}. Vertices u and v of G are true twins if NG[u] = NG[v].
True twins are thus adjacent vertices such that for each vertex w 6= u, v we have
uw ∈ E(G) if and only if vw ∈ E(G). The degree of a vertex u is dG(u) = |NG(u)|
and the largest degree in the graph G is the maximum degree ∆(G). A vertex of
G is universal if it is adjacent to all the other vertices of G. A vertex u of G is
simplicial if NG(u) induces a complete subgraph. The set of simplicial vertices of G
will be denoted by S(G) and the cardinality of S(G) by s(G). The order, the number
of leaves, and the complement of G are respectively denoted by n(G), n1(G), and
G. Moreover, ω(G) and α(G) stand for the clique number and the independence
number of G.

The distance dG(u, v) between vertices u and v of G is the number of edges on
a shortest u, v-path. The diameter of G is the maximum distance between pairs of
vertices of G and is denoted by diam(G). Let H be a subgraph of G. Then H is
isometric if for each pair of vertices u, v ∈ V (H) we have dH(u, v) = dG(u, v), and H
is convex if for any vertices u, v ∈ V (H), any shortest u, v-path in G lies completely
in H . By abuse of language we will also say that a set X ⊆ V (G) is convex if X
induces a convex subgraph.

The vertex u of G is maximally distant from a vertex v ∈ V (G) if every w ∈
NG(u) satisfies dG(v, w) ≤ dG(u, v). If u is maximally distant from v, and v is
maximally distant from u, then u and v are mutually maximally distant, MMD for
short. Note that true twins are MMD. The set of MMD vertices of G is called the
boundary of G and denoted by ∂(G), see [3, 5, 14], that is,

∂(G) = {u ∈ V (G) : u is an MMD vertex} .

We further set b(G) = |∂(G)|. The strong resolving graph GSR of G has V (G) as the
vertex set, two vertices being adjacent in GSR if they are MMD in G. The notion
of the strong resolving graph was introduced in [17] while investigating the strong
metric dimension of graphs. Note that there could be vertices in a graph G which
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are not MMD with any other vertex in G (they do not belong to ∂(G)). Hence such
vertices are isolated in GSR. In this sense, from now on we denote by G′

SR the graph
obtained from GSR by removing all (possibly zero) of its isolated vertices. Note that
V (G′

SR) = ∂(G).
We next collect characterizations of the three newly introduced general position

sets as respectively proved in [21, Theorems 2.1, 2.3, 3.1].

Theorem 2.1 If G is a connected graph and X ⊆ V (G), then the following hold.

(i) X is a total general position set of G if and only if X ⊆ S(G). Moreover,
gpt(G) = s(G).

(ii) If |X| ≥ 2, then X is an outer general position set of G if and only if each
pair of vertices from X is mutually maximally distant. Moreover, gpo(G) =
ω(GSR).

(iii) If X is a general position set of G, then X is a dual general position set if and
only if G−X is convex.

Notice that by the definition of G′
SR it follows that ω(G′

SR) = ω(GSR). Moreover,
by Theorem 2.1(ii), we have that for any connected graph G,

gpo(G) = ω(G′
SR) . (1)

3 On outer general position sets

In this section we prove some results on outer general position sets that are inter-
esting in their own right and that we will need later in the paper. The first of them
holds for all types of general position sets.

Lemma 3.1 Let H be an isometric subgraph of a graph G. If X is (dual, outer,
total) general position set of G, then X ∩ V (H) is a (dual, outer, total) general
position set of H.

Proof. Set XH = X ∩ V (H).
Assume that X is a general position set of G and suppose on the contrary that

XH is not a general position set of H . Then there exist vertices h, h′, h′′ of XH such
that h′′ lies on a shortest h, h′-path P in H . Since H is isometric in G, the path
P is also a shortest path in G, but then X is not a general position set of G. This
contradiction shows that XH is a general position set of H .
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Assume now that X is a dual general position set of G. We already know that
XH is a general position set of H , hence in view of Theorem 2.1(iii) we claim that
V (H) \XH is convex in H . Assume on the contrary that this is not the case. Then
there exist two vertices u, v ∈ V (H) \ XH and a shortest u, v-path Q in H which
contains a vertex of XH . As H is isometric, Q is also a shortest path in G. But
since u, v ∈ V (G)\X , this implies that V (G)\X is not convex in G, a contradiction
with Theorem 2.1(iii). It follows that XH is a dual general position set of H .

Assume next that X is an outer general position set of G. Then XH is a general
position set of H and similarly as above we infer that also no shortest path between
a vertex from XH and a vertex from V (H) \XH contains a vertex of XH . It follows
that XH is an outer general position set of H .

Finally, if X is a total general position set of G, then the above arguments imply
that XH is a total general position set of H . �

The case of Lemma 3.1 for general position sets was earlier implicitly proved
within the proof of [16, Theorem 3.1].

By G−
tt we represent the graph obtained from G by removing the edge between

each pair of true twins. In particular, if G has no true twins, then G−
tt
∼= G, and

(Kn)
−
tt is the edgeless graph of order n.

Proposition 3.2 If G is a graph with diam(G) = 2, then gpo(G) = ω(G−
tt). In

particular, if G has no true twins, then gpo(G) = α(G).

Proof. We have already observed that every pair of true twins are MMD in a
graph. Since diam(G) = 2, vertices u and v of G are MMD if and only if either
dG(u, v) = 2, or u and v are true twins. Then for every u, v ∈ V (G), vertices u, v are
MMD in G if and only if they are MMD in G−

tt which means that GSR
∼= (G−

tt)SR.
By Theorem 2.1(ii) and diam(G) = 2, we have gpo(G) = ω(GSR) = ω((G−

tt)SR) =

ω(G−
tt) = α(G−

tt).
Note that any two non-adjacent vertices are MMD as diam(G) = 2. If G has no

true twins, we have ω(GSR) = ω(G) = α(G) and hence gpo(G) = α(G). �

A parallel result to Proposition 3.2 for the case of general position sets was
proved in [12, Proposition 2.4], where it is established that if G has no true twins
and diam(G) = 2, then gp(G) = ω(GSR) if and only if gp(G) = α(G).

If k ≥ 1, then a set X ⊆ V (G) is k-independent if dG(u, v) > k for each pair of
vertices u, v ∈ X . The k-independence number of G is the cardinality of a largest
k-independent set in G and denoted by αk(G). Note that α1(G) = α(G).

Proposition 3.3 If G is a graph with diam(G) = k ≥ 2, then gpo(G) ≥ αk−1(G).
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Proof. Let X be a (k− 1)-independent set of G with |X| = αk−1(G). Let u, v ∈ X ,
where u 6= v. As diam(G) = k and dG(u, v) > k−1, we necessarily have dG(u, v) = k.
Using again the fact that diam(G) = k we see that u and v are MMD. It follows
that X induces a clique of GSR, so that ω(GSR) ≥ |X| = αk−1(G). Theorem 2.1(ii)
completes the argument. �

The bound of Proposition 3.3 is sharp for all k ≥ 2. To see it, we give two
constructions depending on the parity of k.

First, let k ≥ 2 be even and let r = k−2
2
. Then the graph Kr

1,s, s ≥ 2, is obtained
from K1,s by subdividing all edges r times. Notice that diam(Kr

1,s) = k = 2r + 2
and all leaves of this graph form the largest (2r + 1)-independence set. Hence
αk−1(K

r
1,s) = n1(K

r
1,s). Moreover, by Theorem 2.1(ii) we have that gpo(K

r
1,s) =

ω((Kr
1,s)SR) = n1(K

r
1,s).

For k ≥ 3 odd, let t = k−1
2
. Then the graph Kt

n, n ≥ 2, is obtained by attaching
a path Pt to every vertex of Kn. By construction, diam(Kt

n) = k = 2t + 1 and
αk−1(K

t
n) = n1(K

t
n). Using Theorem 2.1(ii) again we can conclude that gpo(K

t
n) =

ω((Kt
n)SR) = n1(K

t
n) = αk−1(K

t
n).

4 Strong products

The strong product of two graphs G and H is the graph G⊠H such that V (G⊠H) =
V (G)×V (H), and two vertices (g, h), (g′, h′) ∈ V (G⊠H) are adjacent if either g = g′

and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′, or gg′ ∈ E(G) and hh′ ∈ E(H). For
a vertex h ∈ V (H), set Gh = {(g, h) ∈ V (G ⊠ H) : g ∈ V (G)}. The set Gh is
called a G-layer of G ⊠H and induces a subgraph of G⊠H isomorphic to G. For
g ∈ V (G), H-layer gH is defined as gH = {(g, h) ∈ V (G ⊠ H) : h ∈ V (H)}. If
X ⊆ V (G ⊠ H), the projection pG(X) of X to G is the set {g ∈ V (G) : (g, h) ∈
X for some h ∈ V (H)}. The projection pH(X) of X to H is defined analogously.

The following formulas are well-known, cf. [9]:

dG⊠H((g, h), (g
′, h′)) = max{dG(g, g

′), dH(h, h
′)} and (2)

NG⊠H [(g, h)] = NG[g]×NH [h] . (3)

In [12], several exact results and bounds were proved on the general position
number of strong products. In addition, the problem was posed whether gp(G⊠H) =
gp(G)gp(H) holds for any graphs G and H [12, Problem 4.8]. In this section we
consider the other three versions of general position sets on strong products.

The next result follows from (3) and can also be deduced from the proof of [4,
Proposition 4].
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Lemma 4.1 If G and H are graphs, then S(G⊠H) = S(G)× S(H).

Lemma 4.1 together with Theorem 2.1(i) yield:

Corollary 4.2 If G and H are graphs, then gpt(G⊠H) = s(G)s(H).

4.1 Outer general position sets

To prove bounds on the outer general position number of strong products, we recall
the following result that clarifies MMD vertices of strong products.

Lemma 4.3 [17, Lemma 2.6] Let G and H be two connected graphs. Let g, g′ be
two vertices of G and h, h′ two vertices of H. Then (g, h) and (g′, h′) are MMD in
G⊠H if and only if one the following conditions holds:

(i) g, g′ are MMD in G and h, h′ are MMD in H;

(ii) g, g′ are MMD in G and h = h′;

(iii) h, h′ are MMD in H and g = g′;

(iv) g, g′ are MMD in G and dG(g, g
′) > dH(h, h

′);

(v) h, h′ are MMD in H and dG(g, g
′) < dH(h, h

′).

Recall that the boundary ∂(G) of G contains its MMD vertices and that b(G) =
|∂(G)|. The bounds on the outer general position number of strong products now
read as follows.

Theorem 4.4 If G and H are connected graphs of order at least 2, then

gpo(G)gpo(H) ≤ gpo(G⊠H) ≤ b(G)b(H) .

Moreover, if G and H are block graphs, then the bounds coincide.

Proof. To prove the lower bound, let X be a gpo-set of G and Y be a gpo-set of
H . We will prove that X × Y is an outer general position set of G ⊠H . Consider
any two vertices (g, h), (g′, h′) from X × Y . Assume first that g 6= g′ and h 6= h′.
Since X and Y are gpo-sets of G and H , Theorem 2.1(ii) implies that g, g′ are MMD
in G and h, h′ are MMD in H . By Lemma 4.3(i), the vertices (g, h), (g′, h′) are
MMD in G ⊠ H . Assume second that g = g′ and h 6= h′. Since h, h′ ∈ Y and Y
is a gpo-set of H , the vertices h, h′ are MMD in H by Theorem 2.1(ii). In view of
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Lemma 4.3(iii), the vertices (g, h) and (g′, h′) are MMD in G ⊠H . Analogously, if
h = h′ and g 6= g′, then (g, h), (g′, h′) are MMD in G⊠H by Lemma 4.3(ii). From
Theorem 2.1(ii), we can conclude that X × Y is an outer general position set of
G⊠H , hence gpo(G⊠H) ≥ gpo(G)gpo(H).

To prove the upper bound, let S be a gpo-set of G⊠H and consider the following
cases.

Case 1: pG(S) ⊆ ∂(G) and pH(S) ⊆ ∂(H).
In this case gpo(G⊠H) = |S| ≤ b(G)b(H).

Case 2: S contains a vertex (g, h) such that h /∈ ∂(H).
Let (g′, h′) be a vertex from S, where g′ 6= g. Since S is an outer general position set
of G⊠H , Theorem 2.1(ii) implies that (g, h) and (g′, h′) are MMD in G⊠H . Since
h /∈ ∂(H), Lemma 4.3 yields that g and g′ are MMD in G. We thus see that each
vertex of pG(S) \ {g} is adjacent to g in the strong resolving graph GSR and hence
|pG(S) \ {g}| ≤ ∆(GSR). Using Lemma 4.3 once more we see that each H-layer
g′H has at most gpo(H) vertices belonging to S, that is, |V (g

′

H) ∩ S| ≤ gpo(H).
Moreover, since h /∈ ∂(H), we have |V (gH)∩ S| = 1. Indeed, for otherwise a vertex
(g, h′) ∈ S, where h′ 6= h, would imply that h ∈ ∂(H) by Lemma 4.3(iii). Then |S| ≤
∆(GSR)gpo(H)+1. By definitions of boundary sets and strong resolving graphs, we
have ∆(GSR) ≤ b(G) − 1 and ω(HSR) ≤ b(H). Together with Theorem 2.1(ii) we
get

|S| ≤ ∆(GSR)gpo(H) + 1

≤ (b(G)− 1)ω(HSR) + 1

≤ (b(G)− 1)b(H) + 1

< b(G)b(H).

Case 3: S contains a vertex (g, h) such that g /∈ ∂(G).
By the commutativity of the strong product we can use parallel arguments as in
Case 2 to derive the conclusion |S| ≤ ∆(HSR)gpo(G) + 1 < b(G)b(H).

Case 4: S contains a vertex (g, h) such that g /∈ ∂(G) and h /∈ ∂(H).
Lemma 4.3 implies that one of g and h must actually respectively lie in ∂(G) and
∂(H), hence this case is not possible.

We have exhausted all the possibilities for S, hence the claimed upper bound is
proved.

Assume now that G and H are block graphs. Then we know from [21] that
gpo(G) = s(G) and gpo(H) = s(H). Since in a block graph every two simplicial
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vertices are MMD, we get b(G) = s(G) and b(H) = s(H). Hence the bounds of the
theorem coincide if G and H are block graphs. �

The bounds of Theorem 4.4 are thus sharp on block graphs. On the other
hand, recall from [19] that α(C5 ⊠ C5) = 5. By (2) we get diam(C5 ⊠ C5) = 2,
hence Proposition 3.2 yields gpo(C5 ⊠C5) = 5, the value which lies strictly between
gpo(C5)gpo(C5) = 4 and b(C5)b(C5) = 25.

Denoting the strong product of k copies of G by Gk,⊠, the last result of this
subsection reads as follows.

Proposition 4.5 If G is a diameter two graph without true twins and k ≥ 1, then
gpo(G

k,⊠) = α(Gk,⊠).

Proof. If k = 1, the assertion is just Proposition 3.2. Since G has no true twins,
we can deduce by applying [2, Lemma 9] that G ⊠ G also has no true twins. By
induction on k, the power Gk,⊠ also has no true twins for each k ≥ 2. Moreover, by
(2) and induction we also have diam(Gk,⊠) = 2. Applying Proposition 3.2 again we
reach the conclusion. �

4.2 Dual general position sets

For the dual general position number of strong products we have the following
general bounds.

Theorem 4.6 If G and H are connected graphs, then

s(G)s(H) ≤ gpd(G⊠H) ≤ min{s(G)n(H) + s(H)n(G)− s(G)s(H),

n(G)gpd(H), n(H)gpd(G)} .

Proof. In [21, Corollary 3.2] it was proved that if G is a graph and X ⊆ S(G), then
X is a dual general position set of G. Hence S(G ⊠ H) is a dual general position
set of G⊠H . Lemma 4.1 then yields the lower bound.

Lemma 3.1 applied to dual general position sets implies that gpd(G ⊠ H) ≤
n(G)gpd(H) and gpd(G⊠H) ≤ n(H)gpd(G).

To prove that gpd(G ⊠ H) ≤ s(G)n(H) + s(H)n(G) − s(G)s(H), suppose on
the contrary that there exists a dual general position set R of G ⊠ H such that
|R| > s(G)n(H)+s(H)n(G)−s(G)s(H). Then there exists a vertex (x, y) ∈ R such
that x /∈ S(G) and y /∈ S(H), that is, x and y are not simplicial vertices of G and
H , respectively. Let x′, x′′ ∈ NG(x), and let y′, y′′ ∈ NH(y), where x′x′′ 6∈ E(G) and
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y′y′′ 6∈ E(H). Then the subgraph induced by {x′, x, x′′} × {y′, y, y′′} is isomorphic
to P3 ⊠ P3 with the universal vertex (x, y).

Since R is a dual general position set of G ⊠ H and because (x, y) ∈ R, Theo-
rem 2.1(iii) implies that one of the vertices (x′, y) and (x′′, y) must be in R, we may
without loss of generality assume that (x′, y) ∈ R. Using again that R is a general
position set of G⊠H , we get (x′′, y′) /∈ R and (x′′, y′′) /∈ R. Since the complement
of R is convex, we then infer that (x′, y′) and (x′, y′′) must be in R. But then the
vertices (x′, y′), (x′, y), and (x′, y′′) induce a shortest (x′, y′), (x′, y′′)-path, a contra-
diction with the assumption that R is a general position set. �

To demonstrate that the three upper bounds of Theorem 4.6 are pairwise incom-
parable, consider the following example. Let C+

n be the graph obtained from Cn by
attaching a new vertex to an arbitrary vertex of Cn. Now we consider C+

2k+1⊠C+
2ℓ+1,

k, ℓ ≥ 2, and compute the values of the upper bounds of Theorem 4.6. Since
s(C+

2k+1) = s(C+
2ℓ+1) = 1, the first bound is

s(C+
2k+1)n(C

+
2ℓ+1) + s(C+

2ℓ+1)n(C
+
2k+1)− s(C+

2k+1)s(C
+
2ℓ+1)

= (2ℓ+ 2) + (2k + 2)− 1

= 2ℓ+ 2k + 3 .

For the other two bounds, we first infer that gpd(C
+
2k+1) = 3 and gpd(C

+
2ℓ+1) = 3.

Assume without loss of generality that k ≤ ℓ. Then we have

min{gpd(C
+
2k+1)n(C

+
2ℓ+1), gpd(C

+
2ℓ+1)n(C

+
2k+1)} = min{6ℓ+ 6, 6k + 6} = 6k + 6 .

Theorem 4.6 thus gives

gpd(C
+
2k+1 ⊠ C+

2ℓ+1) ≤

{

2ℓ+ 2k + 3; k ≤ ℓ ≤ 2k + 3
2
,

6k + 6; ℓ > 2k + 3
2
.

We conclude this section with the following exact result on the dual general
position number of strong products.

Theorem 4.7 If H is a connected graph, then gpd(Kn ⊠H) = n · gpd(H) .

Proof. By Theorem 4.6, gpd(Kn ⊠H) ≤ n · gpd(H).
To prove the lower bound, let V (Kn) = [n] and let X be a gpd-set of H . We

claim that X ′ = [n] × X is a dual general position set of Kn ⊠ H . We first need
to show that X ′ is a general position set of Kn ⊠H . For the sake of contradiction
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suppose this is not the case and let (i, h), (i′, h′), (i′′, h′′) be three vertices of X ′ such
that (i′′, h′′) lies on a shortest (i, h), (i′, h′)-path P in Kn ⊠H . Then pH(P ) induces
a shortest h, h′-path in H which contains h′′, a contradiction with the assumption
that X is a general position set of H .

We second need to verify that V (Kn⊠H)\X ′ is convex in Kn⊠H . For this sake
consider arbitrary two vertices (i, h) and (i′, h′) from V (Kn⊠H)\X ′. Suppose that
there exists a shortest (i, h), (i′, h′)-path P containing a vertex from X ′, say (j, k),
such that k ∈ X . Then it follows that there exists a shortest h, h′-path containing
the vertex k in H . Since V (H) \ X is convex, dH(h, h

′) < dH(h, k) + dH(k, h
′).

By (2), we have

dKn⊠H((i, h), (i
′, h′)) = dH(h, h

′),

dKn⊠H((i, h), (j, k)) = dH(h, k),

dKn⊠H((j, k), (i
′, h′)) = dH(k, h

′).

Then

dKn⊠H((i, h), (i
′, h′)) < dKn⊠H((i, h), (j, k)) + dKn⊠H((j, k), (i

′, h′)) ,

which implies that P is not a shortest (i, h), (i′, h′)-path in Kn ⊠ H . This contra-
diction yields that V (Kn ⊠H) \X ′ is convex. By Theorem 2.1(iii) we can conclude
that X ′ is a dual general position set of Kn ⊠H and hence gpd(Kn ⊠H) ≥ |X ′| =
n · gpd(H), and we are done. �

Let H be an arbitrary graph with gpd(H) = s(H), for instance, an arbitrary
block graph. Then Theorem 4.7 yields

gpd(Kn ⊠H) = n · gpd(H) = s(Kn)s(H) ,

which demonstrates sharpness of the lower bound of Theorem 4.6.

5 Lexicographic products

The lexicographic product G◦H of two graphsG andH has V (G◦H) = V (G)×V (H).
Two vertices (g, h), (g′, h′) ∈ V (G◦H) are adjacent if either g = g′ and hh′ ∈ E(H),
or gg′ ∈ E(G). The projections pG(X) and pH(X) of X ⊆ V (G◦H) on G and H are
defined just as for the strong product, and G-layers and H-layers are also defined
analogously.

The following result is parallel to Lemma 4.1. Since we did not find it in the
literature, its proof is provided.
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Lemma 5.1 If G and H are connected graphs of order at least 2, then

S(G ◦H) =

{

S(G)× V (H); H is complete,

∅; otherwise .

Proof. We first assume that H is a non-complete graph and suppose on the con-
trary that S(G ◦ H) 6= ∅. Let (x, y) ∈ S(G ◦ H). As G is a connected graph
with at least two vertices, there exists x′ ∈ V (G) such that xx′ ∈ E(G). Since
H is non-complete, there exist two non-adjacent vertices y′, y′′ ∈ V (H). Then
(x′, y′), (x′, y′′) ∈ NG◦H((x, y)) but they are not adjacent, a contradiction.

Assume second that H is complete. Consider a vertex (x, y) ∈ S(G)×V (H) and
let (x′, y′), (x′′, y′′) ∈ NG◦H((x, y)). If x

′ = x′′, then (x′, y′) and (x′′, y′′) are adjacent
since H is complete. And if x′ 6= x′′, then (x′, y′) and (x′′, y′′) are adjacent because
x ∈ S(G) and hence y′y′′ ∈ E(H). This proves that S(G)× V (H) ⊆ S(G ◦H). To
see that also S(G ◦ H) ⊆ S(G) × V (H) holds, we can use the argument from the
first paragraph of the proof. �

Lemma 5.1 together with Theorem 2.1(i) yield:

Corollary 5.2 If G and H are graphs of order at least 2, then

gpt(G ◦H) =

{

s(G)n(H); H is complete,

0; otherwise .

5.1 Outer general position sets

In this subsection we determine the outer general position number of lexicographic
products. For this sake, we first need to recall some concepts and results presented
in [15]. Moreover, the fact ω(G◦H) = ω(G)ω(H), see [7, Theorem 3], is used several
times in this subsection.

Given a graph G, by G2 it is denoted the graph with vertex set V (G2) = V (G)
such that two vertices u, v are adjacent in G2 if either dG(u, v) ≥ 2 or u, v are true
twins. Further, by G′ we denote the graph obtained from G by removing all its
isolated vertices. (Note that this notation is consistent with G′

SR used earlier for
strong resolving graphs.) The next result is a direct consequence of [15, Remark 6],
where G+H denotes the join of graphs G and H .

Proposition 5.3 Let G be a connected graph of order at least 2.

(i) If G has no universal vertex, then ω(G2) = ω((K1 +G)′SR).
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(ii) If diam(G) ≤ 2, then ω(G′
2
) = ω(G′

SR).

(iii) If G has no true twins, then ω(G2) = α(G).

We next collect [15, Propositions 8, 11, 13, 16] into the following result. Before
that some extra preparation is needed. The TF-boundary of a non-complete graph
G is a set ∂TF (G) ⊆ ∂(G), where x ∈ ∂TF (G) whenever there exists y ∈ ∂(G),
such that x and y are MMD in G and NG[x] 6= NG[y] (x, y are not true twins).
Moreover, the strong resolving TF-graph of G is a graph GSRS with vertex set
V (G′

SRS) = ∂TF (G), where two vertices x, y are adjacent in G′
SRS if x and y are

MMD in G and NG[x] 6= NG[y]. Finally, if F is a subgraph of H , then for a given
vertex v ∈ V (G), by (F )v we denote the subgraph of G ◦H isomorphic to F which
lies in the H-layer of G ◦H corresponding to the vertex v of G.

Proposition 5.4 [15, Propositions 8, 11, 13, 16] If G and H are connected graphs
of order at least 2, then the following properties hold.

(i) If G has no true twins and H is non-complete, then

(G ◦H)′SR
∼= (G′

SR ◦H2) ∪
⋃

v∈V (G)\∂(G)

(H ′
2)v.

(ii) If m ≥ 2, then

(G ◦Km)
′
SR

∼= (G′
SR ◦Km) ∪

⋃

v∈V (G)\∂(G)

(Km)v.

(iii) If m ≥ 2 and H has no universal vertex, then

(Km ◦H)′SR
∼=

⋃

v∈V (Km)

(H2)v.

(iv) If G is non-complete and H has no universal vertex, then

(G ◦H)′SR
∼= (G′

SRS ◦H2) ∪
⋃

v∈V (G)\∂TF (G)

(H2)v.

With Proposition 5.4 in hand, we can deduce the subsequent results. In the first
one, we avoid true twins in the first factor of the product, and complete graph in
the second one.
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Theorem 5.5 Let G be a connected graph without true twins of order at least 2 and
let H be a non-complete graph.

(i) If H has no universal vertex, then gpo(G ◦H) = gpo(G)gpo(K1 +H).

(ii) If diam(H) = 2, then gpo(G ◦H) = gpo(G)gpo(H).

(iii) If H has no true twins, then gpo(G ◦H) = gpo(G)α(H).

Proof. By (1) and Proposition 5.4(i), we have

gpo(G ◦H) = ω((G ◦H)′SR) = ω((G′
SR ◦H2) ∪

⋃

v∈V (G)\∂(G)

(H ′
2)v)

= ω (G′
SR ◦H2) = ω(G′

SR)ω(H2) .

Combining Proposition 5.3 with (1) we get the conclusion. �

Theorem 5.6 If G is a connected graph of order at least 2 and m ≥ 2, then

gpo(G ◦Km) = m · gpo(G).

Proof. By (1) and Proposition 5.4(ii), we have

gpo(G ◦Km) = ω((G ◦Km)
′
SR) = ω((G′

SR ◦Km) ∪
⋃

v∈V (G)\∂(G)

(Km)v)

= ω (G′
SR ◦Km) = ω(G′

SR)ω(Km).

Using (1) once more, we get the formula. �

We have considered the case in which the second factor in the product is a
complete graph. Since this product is not commutative, we now study the case in
which the first factor is a complete graph.

Theorem 5.7 Let m ≥ 2 be an integer and let H be a graph of order at least 2
without universal vertex.

(i) If diam(H) = 2, then gpo(Km ◦H) = gpo(H).

(ii) If diam(H) > 2, then gpo(Km ◦H) = gpo(K1 +H).
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Proof. By (1) and Proposition 5.4(iii), we have

gpo(Km ◦H) = ω((Km ◦H)′SR) = ω(
⋃

v∈V (Km)

(H2)v) = ω(H2).

Therefore, by Proposition 5.3 and again (1) we conclude the proof. �

Theorem 5.5 deals with first factors in the lexicographic product without true
twins. Hence in the last result we focus on the case in which this first factor has
true twins.

Theorem 5.8 Let G be a connected non-complete graph, and let H be a graph of
order at least 2 without universal vertices.

(i) If diam(H) = 2, then gpo(G ◦H) = ω(G′
SRS)gpo(H).

(ii) If diam(H) > 2, then gpo(G ◦H) = ω(G′
SRS)gpo(K1 +H).

Proof. Using (1) and Proposition 5.4(iv), we get

gpo(G ◦H) = ω((G ◦H)′SR) = ω((G′
SRS ◦H2) ∪

⋃

v∈V (G)\∂TF (G)

(H2)v)

= ω (G′
SRS ◦H2) = ω(G′

SRS)ω(H2) ,

and then Proposition 5.3 and (1) yield the desired conclusion. �

5.2 Dual general position sets

We finally investigate the dual general position number. For this sake we recall that
in [1, Theorem 2.1], non-complete convex sets of lexicographic products G ◦H are
characterized with three conditions. One of them asserts that G ◦H can contain a
non-complete convex subgraph only if H is a complete graph.

Theorem 5.9 If G is a connected graph, then the following hold.

(i) If G has no simplicial vertex and H is a graph with no simplicial vertex, then
gpd(G ◦H) = 0.

(ii) If n ≥ 1, then gpd(G ◦Kn) = gpd(G) · n.
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Proof. (i) Let X be a dual general position set of G ◦H and let (g, h) ∈ X . Since
g /∈ S(G), it has neighbors g′ and g′′ such that g′g′′ /∈ E(G). Consider now the
vertices (g′, h) and (g′′, h) and note that dG◦H((g

′, h), (g′′, h)) = 2. Thus we cannot
have (g′, h) ∈ X and (g′′, h) ∈ X . Moreover, we also cannot have (g′, h) /∈ X and
(g′′, h) /∈ X because (G◦H)\X is convex. Hence, assume without loss of generality
that (g′, h) ∈ X and (g′′, h) /∈ X . Let now (g′′, h′) be a vertex with dH(h, h

′) = 2.
Such a vertex exists since h is not simplicial. Then (g′, h) ∈ X and (g, h) ∈ X
imply that (g′′, h′) /∈ X . But then (g′′, h′)− (g, h)− (g′′, h) is a shortest path with
(g, h) ∈ X , a contradiction with the convexity of (G ◦H) \X .

(ii) Let X be a gpd-set of G and let V (Kn) = [n]. Set Y = X × [n] and
Y = (V (G) − X) × [n]. We first claim that Y is a general position set of G ◦ H .
Suppose this is not the case and let (g, h), (g′, h′), (g′′, h′′) be three vertices of Y such
that (g′′, h′′) lies on a shortest (g, h), (g′, h′)-path P in G ◦Kn. Then pG(P ) induces
a shortest g, g′-path in G which contains g′′, a contradiction with the assumption
that X is a general position set of G.

Next, we prove that Y is convex. Suppose on the contrary that there exist
two vertices (g, h) and (g′, h′) from Y such that some shortest (g, h), (g′, h′)-path in
G ◦Kn contains a vertex (g′′, h′′) ∈ Y , where g′′ ∈ X . By the definition of G ◦Kn,
since {h, h′, h′′} induces a complete subgraph in Kn, our assumption implies that
g′′ lies on a shortest g, g′-path in G. By Theorem 2.1(iii), since X is a dual general
position set of G, there are no shortest g, g′-paths of G containing the vertex g′′.
This contradiction implies that Y is convex.

We have thus proved that Y is a dual general position set of G ◦Kn and hence
gpd(G ◦Kn) ≥ |Y | = gpd(G) · n.

Note that each G-layer has (at most) gpd(G) vertices contained in a dual general
position set of G ◦Kn, hence we have gpd(G ◦Kn) ≤ gpd(G) · n. We can conclude
that gpd(G ◦Kn) = gpd(G) · n. �
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[3] B. Brešar, S. Klavžar, A. Tepeh Horvat, On the geodetic number and related
metric sets in Cartesian product graphs, Discrete Math. 308 (2008) 5555–5561.
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[5] J. Cáceres, M.L. Puertas, C. Hernando, M. Mora, I.M. Pelayo, C. Seara, Search-
ing for geodetic boundary vertex sets, Electron. Notes Discrete Math. 19 (2005)
25–31.

[6] U. Chandran S.V., G.J. Parthasarathy, The geodesic irredundant sets in graphs,
Int. J. Math. Combin. 4 (2016) 135–143.
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