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Abstract

The Maker-Breaker domination game (MBD game) is a two-player game
played on a graph G by Dominator and Staller. They alternately select un-
played vertices of G. The goal of Dominator is to form a dominating set with
the set of vertices selected by him while that of Staller is to prevent this from
happening. In this paper MBD game critical graphs are introduced. Their
existence is established and critical graphs are characterized for most of the
cases in which the first player can win the game in one or two moves.
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1 Introduction

Erdős and Selfridge introduced the Maker-Breaker game in [10]. This is a two-person
game played on an arbitrary hypergraph H. The players named Maker and Breaker
alternately select an unplayed vertex of H during the game. Maker aims to occupy
all the vertices of some hyperedge, on the other hand, Breaker’s goal is to prevent
Maker from doing it. The game has been extensively researched, both in general
and in specific cases, cf. the book [16], the recent paper [18], and references therein.

In this paper, we are interested in the domination version of the Maker-Breaker
game which was introduced in 2020 by Duchêne, Gledel, Parreau, and Renault [8].
The Maker-Breaker domination game (MBD game for short) is a game played on a
graphG = (V (G), E(G)) by two players named Dominator and Staller. These names
were chosen so that the players are named in line with the previously intensively
researched domination game [1, 2]. Just as in the general case, the two players
alternately select unplayed vertices of G. The aim of Dominator is to select all the
vertices of some dominating set of G, while Staller aims to select at least one vertex
from every dominating set of G. There are two variants of this game depending on
which player has the first move. A D-game is the MBD game in which Dominator
has the first move and an S-game is the MBD game in which Staller has the first
move.

The following graph invariants are naturally associated with the MBD game [3,
15]. The Maker-Breaker domination number, γMB(G), is the minimum number of
moves of Dominator to win the D-game on G when both players play optimally.
That is, γMB(G) is the minimum number of moves of Dominator such that he wins
in this number of moves no matter how Staller is playing. If Dominator has no
winning strategy in the D-game, then set γMB(G) = ∞. The Staller-Maker-Breaker
domination number, γSMB(G), is the minimum number of moves of Staller to win the
D-game onG when both players play optimally, where γSMB(G) = ∞ if Staller has no
winning strategy. In a similar manner, γ′

MB(G) and γ′

SMB(G) are the two parameters
associated with the S-game. Briefly, we will call γMB(G), γ′

MB(G), γSMB(G), and
γ′

SMB(G) the MBD numbers of G.
In the seminal paper [8] it was proved, among other things, that deciding the win-

ner of the MBD game can be solved efficiently on trees, but it is PSPACE-complete
even for bipartite graphs and split graphs. In [9] the authors give a complex linear
algorithm for the Maker-Maker version of the game played on forests. The paper [3]
focuses on γSMB(G) and γ′

SMB(G) and among other results establishes an appealing
exact formula for γ′

SMB(G) where G is a path. In [4], for every positive integer k, trees
T with γSMB(T ) = k are characterized and exact formulas for γSMB(G) and γ′

SMB(G)
derived for caterpillars. In the main result of [12], γMB and γ′

MB are determined for
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Cartesian products of K2 by a path. In [7], the MBD game is further studied on
Cartesian products of paths, stars, and complete bipartite graphs. The total version
of the MBD game was introduced in [14] and further investigated in [11].

It is known from [7, Lemma 2.3] that all the four graph invariants associated
with the MBD game are monotonic for adding and deleting an edge. This motivates
us to introduce MBD game critical graphs. For the classical domination game, this
aspect has already been studied in [5, 17, 19, 20]. In the preliminaries, additional
definitions are listed and known results about the MBD game needed later on are
stated. MBD game critical graphs are formally defined in Section 3. In the same
section the existence of the MBD game critical graphs is established for all four
related invariants, in three of the four cases explicit constructions are provided. In
Section 4 critical graphs are characterized for most of the cases in which Dominator
wins the game in one or two moves. Parallel results for graphs in which Staller wins
the game in one or two moves are derived in Section 5.

2 Preliminaries

Let G = (V (G), E(G)) be a graph. The order of G is denoted by n(G). For a vertex
v ∈ V (G), its open neighbourhood is denoted by N(v) and its closed neighbourhood
by N [v]. The degree of v is deg(v) = |N(v)|. The minimum and the maximum
degree of G are respectively denoted by δ(G) and ∆(G). An isolated vertex is a
vertex of degree 0, a leaf is a vertex of degree 1. A support vertex is a vertex
adjacent to a leaf and a strong support vertex is a vertex that is adjacent to at least
two leaves. A set S ⊆ V (G) is x-free for x ∈ V (G) if x /∈ S.

A dominating set of G is a set D ⊆ V (G) such that each vertex from V (G)\D has
a neighbour in D. The domination number γ(G) of G is the minimum cardinality of
a dominating set of G. If X is a dominating set of G with |X| = γ(G), then X is a
γ-set of G. A vertex of degree n(G)− 1 is a dominating vertex. If G is a connected
bipartite graph, then its vertex x is a bipartite dominating vertex if x is adjacent to
all the vertices of the bipartition set of G which does not contain x. An edge of a
graph G is a dominating edge if it is adjacent to all the other edges of G.

The outcome o(G) of the MBD game played on G can be one of D, S, and N ,
where o(G) = D, if Dominator has a winning strategy no matter who starts the
game; o(G) = S, if Staller has a winning strategy no matter who starts the game;
and o(G) = N , if the first player has a winning strategy. See [8] that the fourth
possible option for the outcome never happens.

In the rest of the preliminaries, we recall known results needed later. For X ⊆
V (G), let G|X denote the graph G in which vertices from X are considered as being
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already dominated. Then we have:

Theorem 2.1 (Continuation Principle [15]) Let G be a graph with A,B ⊆ V (G).
If B ⊆ A then γMB(G|A) ≤ γMB(G|B) and γ′

MB(G|A) ≤ γ′

MB(G|B).

Proposition 2.2 [3] If G is a graph, then the following properties hold.

1. If o(G) = D then o(G+ e) = D for every e /∈ E(G).

2. If o(G) = S then o(G− e) = S for every e ∈ E(G).

3. If o(G) = N then o(G+ e) ∈ {N ,D} for every e /∈ E(G).

4. If o(G) = N then o(G− e) ∈ {N ,S} for every e ∈ E(G).

Lemma 2.3 [7] If G is a graph, then the following properties hold.

(i) γMB(G) ≤ γMB(G− e) for every e ∈ E(G).

(ii) γ′

MB(G) ≤ γ′

MB(G− e) for every e ∈ E(G).

(iii) γSMB(G) ≤ γSMB(G+ e) for every e /∈ E(G).

(iv) γ′

SMB(G) ≤ γ′

SMB(G+ e) for every e /∈ E(G).

3 MBD game critical graphs

In this section, we introduce MBD game critical graphs. It is known from [3] that
the outcome of the MBD game of a graph G may change when an edge is removed
or added. It was observed in [7] that the MBD number of a graph G never decreases
by removing an edge and that its SMBD number never decreases by adding an edge.
Hence the MBD numbers and the SMBD numbers of G are monotonic with respect
to the deletion and addition of an edge. This motivates us to define the MBD game
critical graphs as follows.

Definition 3.1 A graph G is

• γMB-critical, if γMB(G) < ∞ and γMB(G) 6= γMB(G− e), for any e ∈ E(G);

• γ′

MB-critical, if γ
′

MB(G) < ∞ and γ′

MB(G) 6= γ′

MB(G− e), for any e ∈ E(G);

• γSMB-critical, if γSMB(G) < ∞ and γSMB(G) 6= γSMB(G−e), for any e ∈ E(G);
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• γ′

SMB-critical, if γ
′

SMB(G) < ∞ and γ′

SMB(G) 6= γ′

SMB(G−e), for any e ∈ E(G).

Note that if G is a graph with γMB(G) = ∞, then by Lemma 2.3(i) we have
γMB(G− e) ≥ γMB(G) = ∞, thus it is not possible that γMB(G) 6= γMB(G− e) holds
for any edge e ∈ E(G). Therefore we could omit the condition γMB(G) < ∞ from
the definition of γMB-critical graphs. By the same reasoning, we could also omit the
condition γ′

MB(G) < ∞ from the definition of γ′

MB-critical graphs.

Lemma 3.2 If G is a graph and e ∈ E(G), then the following properties hold.

(i) If G is γMB-critical, then γMB(G) < γMB(G− e).

(ii) If G is γ′

MB-critical, then γ′

MB(G) < γ′

MB(G− e).

(iii) If G is γSMB-critical, then γSMB(G) > γSMB(G− e).

(iv) If G is γ′

SMB-critical, then γ′

SMB(G) > γ′

SMB(G− e).

Proof. Assume that G is γMB-critical. Then γMB(G) 6= γMB(G − f) holds for any
f ∈ E(G), hence (i) follows by Lemma 2.3(i). Statements (ii), (iii), and (iv) follow
by the same argument by respectively applying Lemma 2.3(ii), (iii), and (iv). �

If G is γMB-critical and γMB(G) = k, then we say that G is a k-γMB-critical. We
analogously define k-γ′

MB-critical, k-γSMB-critical, and k-γ′

SMB-critical graphs.
It is clear that the disjoint union of k copies of K2 is a k-γMB-critical graph. To

show that there exist connected such graphs, consider graphs Gk, k ≥ 1, constructed
as follows. First, take the disjoint union of k copies of K2,2 with respective biparti-
tions {xi, x

′

i}, {yi, y
′

i}, where i ∈ [k]. Then add vertex w and make it adjacent to xi

and x′

i for i ∈ [k]. Finally, add a vertex w′ and the edge ww′. See Fig. 1.

Proposition 3.3 If k ≥ 1, then Gk is a (k + 1)-γMB-critical graph.

Proof. We first note that γ(Gk) = k + 1, so that γMB(Gk) ≥ k + 1. Assume now
that Dominator starts the game on Gk by selecting the vertex w. Then in the rest
of the game, he can select one of the vertices xi and x′

i for each i ∈ [k]. It follows
that γMB(Gk) ≤ k + 1.

To show that γMB(Gk−e) > k+1 for any edge e ∈ E(Gk), by the symmetry of Gk

it suffices to consider three typical edges. Let first e = ww′. Then Dominator must
start the game by playing w′. Since the domination number of the large component
of Gk − ww′ is k + 1, it follows that γMB(Gk − ww′) ≥ k + 2. Consider next the
edge e = wx1. Clearly, w is an optimal first move of Dominator. Now Staller replies
with the move x1. Since x1, y1, and y′1 are not yet dominated, Dominator will need
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x1 x′

1

y2 y′2

x2 x′
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· · ·

· · ·

· · ·

yk−1 y′k−1

xk−1 x′
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yk y′k

xk x′

k

Figure 1: The graph Gk which is a connected (k + 1)-γMB critical graph

two moves to dominate them. This in turn implies that γMB(Gk − wx1) ≥ k + 2.
Consider finally the edge e = x1y1. In this case, we again see that w is an optimal
first move of Dominator and if now Staller replies by playing x′

1 we can see as in the
previous case that γMB(Gk − x1y1) ≥ k + 2. �

To show that there exist connected k-γ′

MB-critical graphs, consider graphs Hk,
k ≥ 1, obtained as follows. First, take the disjoint union of k + 1 copies of K2,3

whose respective bipartitions are {xi, x
′

i}, {yi, y′i, y
′′

i }, where i ∈ [k + 1]. Then
add all possible edges between xk+1 and x1, x

′

1, . . . , xk, x
′

k, and between x′

k+1 and
x1, x

′

1, . . . , xk, x
′

k. See Fig. 2.

Proposition 3.4 If k ≥ 1, then Hk is a (k + 1)-γ′

MB-critical graph.

Proof. Since γ(Hk) = k + 1 and because during the S-game Dominator is able to
select one vertex from each of the sets {xi, x

′

i}, i ∈ [k+1], we infer that γ′

MB(Hk) =
k + 1.

To show that Hk is (k + 1)-γ′

MB-critical, by the symmetry of Hk it suffices to
consider three typical edges of Hk. Assume first that e = xk+1yk+1. Then in the
S-game played on Hk−xk+1yk+1, Staller’s strategy is that she first selects the vertex
x′

k+1. Then Dominator must reply by choosing the vertex yk+1 for otherwise Staller
wins in her next move by selecting yk+1. Then Staller selects xk+1 as her second
move. Because y′k+1 and y′′k+1 are adjacent only to both xk+1 and x′

k+1, Staller will
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Figure 2: The graph Hk which is a connected (k + 1)-γ′

MB-critical graph

be able to win the game in her third move by either selecting y′k+1 or y′′k+1. As a
consequence, γ′

MB(Hk − xk+1yk+1) = ∞. The next typical edge to be considered is
e = x1xk+1. Then Staller in her strategy first selects the vertex x′

k+1. This move
forces Dominator to play xk+1. As her second move, Staller then plays x1 which in
turn forces Dominator to play x′

1. But now since x1 is not yet dominated, we can
conclude that in the rest of the game, Dominator must play at least k more moves.
Hence also in this case, at least k+2 vertices will be selected by him. The last typical
edge to be considered is the edge x1y1. In this case, Staller first selects x′

1 which
forces Dominator to play y1 (otherwise Staller will win in her next move). Now
Staller plays x1 and then she wins in her next move. Hence γ′

MB(Hk − x1y1) = ∞.
�

We next construct (connected) examples of k-γ′

SMB-critical graphs. To this end,
we recall from [3, Theorem 5.2] that for an odd n,

γ′

SMB(Pn) = ⌊log2(n)⌋ + 1 . (1)

Proposition 3.5 If k ≥ 1, then P2k+1 is a (k + 1)-γ′

SMB-critical graph.

Proof. Let n = 2k + 1 for some positive integer k. Then by (1), γ′

SMB(Pn) = k + 1.
Let e be an arbitrary edge of the path. Then at least one component of Pn − e is
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a path P of odd order strictly smaller than 2k. Then the strategy of Staller is to
select vertices from P . Since the order of P is strictly less than 2k it follows from [3]
that γ′

SMB(Pn − e) = γ′

SMB(P ) < k + 1. �

From Proposition 3.5 we can deduce that the disjoint union of P2k+1 and an
isolated vertex is a (k+1)-γSMB-critical graph. In the following proposition, we give
an existential proof of the existence of k-γSMB-critical graphs.

Proposition 3.6 For any integer k > 1, there exists a k-γSMB-critical graph.

Proof. Let G be an arbitrary graph with γSMB(G) = k. (It is known from [3,
Theorem 3.2] that such graphs exist.) If G is k-γSMB-critical we are done. Otherwise
G contains an edge e such that γSMB(G−e) = k. Continuing the process of removing
such edges from G we arrive at a graph G′ with γSMB(G

′) = k and such that
γSMB(G

′ − e) 6= k for every e ∈ E(G′). Hence G′ is k-γSMB-critical. �

Note that the proof of Proposition 3.6 reveals that any graph G contains a
spanning subgraph G′ which is is γSMB-critical.

4 MBD game critical graphs with small MBD

numbers

In this section, we describe critical graphs for the cases in which Dominator wins
the game in one or two moves.

Theorem 4.1 A connected graph G is 1-γMB-critical if and only if G = K1,n, n ≥ 1.

Proof. First, assume that G is connected and 1-γMB-critical. Since G is 1-γMB-
critical, we have γMB(G) = 1 and γMB(G − e) > 1 for every e ∈ E(G). Since
γMB(G) = 1, G contains at least one dominating vertex. Suppose first that G
contains two dominating vertices x, y. Then for any edge e ∈ E(G) \ {xy} it holds
that γMB(G − e) = 1. Since γMB(G − f) > 1 holds for any edge f ∈ E(G), this
implies that E(G) = {xy} and thus G is isomorphic to K2 or equivalently to K1,1.
Suppose now that G has exactly one dominating vertex, say u. If possible, suppose
that there exists an edge e of G that is not incident with u. Then γMB(G− e) = 1,
which leads to a contradiction. Hence every edge of G is incident with u. Thus G
is isomorphic to K1,n, n ≥ 1.

Conversely, let G be a star K1,n for n ≥ 1. Clearly, G is connected and γMB(G) =
1. Deletion of any edge of G results in a disconnected graph and hence Dominator
cannot win this game in one move. Therefore G is 1-γMB-critical. �
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Let K ′

2,n, n ≥ 1, be the complete split graph (cf. [13]) consisting of a clique of
order 2 and an independent set of order n, where every vertex in the independent
set is adjacent to both vertices of the clique. (We use this notation because K ′

2,n

can be obtained from K2,n by adding a single edge.)

Theorem 4.2 A connected graph G is 1-γ′

MB-critical if and only if G = K ′

2,n, n ≥ 1.

Proof. Assume that G is a 1-γ′

MB-critical graph. Therefore, Dominator can win
this game by selecting one vertex in his first move as a second player. Thus G
has at least two dominating vertices say u and v. Now we show that e = uv is a
dominating edge. Suppose on the contrary that there exists an edge f = xy such
that x, y /∈ {u, v}. Then γ′

MB(G − f) = 1, which is a contradiction. Therefore,
every edge of G is incident with either u or v or both. Hence the edge e = uv is
a dominating edge of G. Since u and v are dominating vertices, every vertex other
than u and v has degree two in G. It follows that G = K ′

2,n for some n ≥ 1.
Conversely, assume that G = K ′

2,n for some n ≥ 1. Then G has two dominating
vertices and hence γ′

MB(G) = 1. Moreover, G−e has at most one dominating vertex
for every e ∈ E(G). Thus in the S-game played on G− e, Dominator needs at least
two moves because Staller can choose the dominating vertex of G − e in her first
move if there is such a vertex. Therefore G is 1-γ′

MB-critical. �

Theorem 4.3 A connected graph G is 2-γMB-critical if and only if G is obtained
from a star K1,n, n ≥ 1, with center u and a K2,m, m ≥ 2, whose bipartition is
{x1, x2}, {y1, y2, . . . , ym}, by adding the edges ux1 and ux2.

Proof. Assume that G is connected and 2-γMB-critical. Since γMB(G) = 2, Domi-
nator cannot finish the game in one move and hence G has no dominating vertex.

Let u be an optimal first move of Dominator in the D-game played onG. Suppose
that there exists an edge e with both end-vertices in N(u). Then, Dominator can
win the D-game on G−e in two moves using the same strategy as that of the D-game
on G which is a contradiction with the fact that G is a 2-γMB-critical graph. Thus
N(u) is an independent set.

Further, we prove that |V (G) \ N [u]| ≥ 2. Since u is not a dominating vertex,
|V (G) \ N [u]| ≥ 1. If possible suppose that there exists exactly one vertex x ∈
V (G) \ N [u]. Since G is connected, x is adjacent to at least one vertex, say w, in
N(u). Let e = uw be an edge of G and consider a D-game on G − e. Dominator
selects u as his first move in G− e. The only undominated vertices of G are x and
w. Therefore, Dominator can finish this game in his next move by selecting either x
or w depending on the Staller’s move and this contradicts that G is 2-γMB-critical.
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· · ·

· · ·

u

u1 u2 u3 un−2 un−1 un

x1 x2

y1 y2 y3 ym−2 ym−1 ym

Figure 3: An example of connected 2-γMB-critical graph

Since Dominator has a winning strategy with two moves, there exists a, b ∈
V (G) \ {u} that are both adjacent to all vertices from V (G) \ N(u). If both a, b
are from V (G) \ N(u), then γMB(G − e) = 2 holds for any edge e between N(u)
and V (G) \ N [u] (at least one such edge must exist, since G is connected), which
contradicts the fact that G is 2-γMB-critical. Thus assume that a ∈ N(u). Since
γMB(G − ua) > 2, Dominator cannot finish the D-game played on G − ua by first
selecting u and then in his second move one vertex from {a, b} (that was not selected
by Staller in her first move). This is possible only if Staller in her first move selects
a and ab /∈ E(G). Since a dominates all vertices of V (G) \ N [u], this implies that
b ∈ N(u). Hence all vertices of G that dominate the whole G−N(u) are from N(u).
Hence in the D-game played on G Dominator’s optimal second move will be a vertex
from N(u).

Let a and b be two vertices of N(u) that dominate all vertices in V (G) \ N [u].
Suppose that there exists a vertex x ∈ V (G) \N [u] that is adjacent to y ∈ V (G) \
{a, b}. Then γMB(G− xy) = 2, a contradiction. Hence vertices in V (G) \N [u] have
degree 2 in G and are adjacent to a and b.

Finally, we show that |N(u)| ≥ 3. If possible suppose that a and b are the only
neighbours of u in G. Let e = ua. Then γMB(G − e) = 2. Indeed, Dominator
can select b as his first optimal move in a D-game played on G − e. The only
vertex undominated after this move is a. Therefore Dominator can finish the game
by selecting a vertex in V (G) \ N [u] as his next move. Hence we again get a
contradiction. Thus |N [u]| ≥ 3.

By the above properties of the graph G we can deduce that vertices in {u} ∪
(N(u) \ {a, b}) induce K1,n for some n ≥ 1, vertices in the set {a, b}∪ (V (G) \N [u])
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induce K2,m for m ≥ 2 and au, bu are the only edges between K1,n and K2,m in G.
Conversely, let G be a graph obtained from K1,n, n ≥ 1, with center u, and

from K2,m, m ≥ 2, with bipartition {x1, x2}, {y1, y2, . . . , ym}, by adding the edges
ux1 and ux2. Clearly, G is connected and Dominator can finish a D-game on G by
selecting u as his first move and then selecting either x1 or x2 with respect to the
Staller’s first move. So γMB(G) = 2.

Let e be a pendant edge incident to u. Clearly, the graph G− e has an isolated
vertex. Dominator selects this isolated vertex as his first optimal move in a D-game
on G− e. And the remaining part of G − e has no dominating vertices. Therefore
Dominator needs at least three moves to finish a D-game on G− e.

Now let e = ux1. Consider a D-game on G − e. Since u is a support vertex
Domiantor first selects u. Then Staller selects x1. If Dominator selects x2 as his next
move then x1 remains undominated. And if Dominator selects a vertex in V (G) \
N [u], then there is an undominated vertex in V (G) \ N [u]. Therefore Dominator
needs at least three moves to finish the game in G − e. A similar argument also
holds for e = ux2.

Now let e be an edge whose one end vertex is x1 and the other end vertex lies in
V (G) \N [u]. Consider a D-game on G− e. Clearly, u and x2 are support vertices.
Definitely, Staller can select one of these support vertices in her turn. Therefore
Dominator must select the pendant vertex adjacent to the support vertex selected
by Staller. Clearly, this restriction does not allow Dominator to finish the game on
G− e in two moves. Hence γMB(G− e) > 2 in this case and this is the same when
e is an edge between x2 and V (G) \N [u].

From all these cases we conclude that G is 2-γMB critical. �

For 2-γ′

MB-critical graphs we do not have a complete characterization but can
give the following necessary conditions.

Proposition 4.4 If G is connected 2-γ′

MB-critical graph, then the following proper-
ties hold.

(i) n(G) ≥ 5.

(ii) δ(G) ≥ 2.

(iii) ∆(G) ≤ n(G)− 2.

Moreover, all the bounds are sharp.

Proof. (i) Let G be a connected 2-γ′

MB-critical graph. Since γ′

MB(G) = 2, G has
at least four vertices (note that Staller has two moves and Dominator has two
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moves). Hence we need to exclude all connected graphs of order 4. Clearly, K4 and
K4 − e are connected graphs having four vertices. But it is clear that γ′

MB(K4) =
γ′

MB(K4 − e) = 1. The remaining connected graphs with four vertices are P4, C4

and K3 with a pendant edge. We can easily verify that γ′

MB(P4) = γ′

MB(C4) = 2.
Since P4 is isomorphic to C4 − e, C4 is not a critical graph. Let v1, v2, v3, v4 be the
vertices of P4 and let e be the edge v2v3. Clearly, P4 − e is the disjoint union of two
K2’s. Therefore γ

′

MB(P4− e) = 2. Hence P4 is not a critical graph. Finally, let H be
a graph with vertices x1, x2, x3 that induce a K3 and y that is adjacent to x1, and
there are no other vertices or edges in H . Then γ′

MB(H − x1x3) = 2, as H − x1x3 is
isomorphic to P4. Hence H is not 2-γ′

MB-critical. Thus there is no connected 2-γ′

MB

critical graph having four vertices.

(ii) Suppose on the contrary that δ(G) = 1. Let u ∈ V (G) such that deg(u) = 1
and let v be the only neighbor of u. Since G is connected and has at least 5 vertices
by (i), we have deg(v) ≥ 2.

Now consider an S-game on G. Assume that Staller selects v as her first optimal
move. Therefore Dominator must play u as his first reply, otherwise, Staller will win
this game by selecting u. Since γ′

MB(G) = 2, Dominator can dominate all the vertices
of G other than u and v in his next move. Hence there exist a, b ∈ V (G) \ {u, v}
that dominate all the vertices of V (G) \ {u, v} or, equivalently, the subgraph of G
induced by V (G) \ {u, v} has two dominating vertices. Let e be an arbitrary edge
incident with v but not with u. Then γ′

MB(G− e) = 2, a contradiction with G being
2-γ′

MB-critical. Thus we conclude that δ(G) ≥ 2.

(iii) Let G be connected and 2-γ′

MB-critical. Since γ′

MB(G) 6= 1, G has at most
one dominating vertex. For the purpose of contradiction assume that G contains a
dominating vertex u, i.e. deg(u) = n(G) − 1. It is known from [6, Proposition 4.2]
that γ′

MB(G) = 2 implies that for any vertex u there exists a vertex v such that
{v, v1} and {v, v2} are two u-free γ-sets. Since deg(v) < n − 1, there is a vertex w
in G which is not adjacent to v. We consider two cases for the remaining part.

Case 1: w /∈ {v1, v2}.
Since {v, v1} and {v, v2} are two u-free γ-sets of G, the vertex w must be dominated
by both v1 and v2. Let e = uw. Consider an S-game on G− e. If Staller first selects
u, then Dominator can select all the vertices from either {v, v1} or {v, v2} and win
the game in two moves.

If Staller first selects a vertex other than u, then Dominator must select u. In
this case, the only undominated vertex is w. Since w is dominated by all the vertices
from the set A = {w, v1, v2}, Dominator can select any vertex of A (depending on
Staller’s move) and win the game in two moves. This contradicts that G is 2-γ′

MB-
critical.
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Case 2: w ∈ {v1, v2}.
In this case, v1v2 must be an edge of G. Let e = uv1. Consider an S-game on G− e.
If Staller selects a vertex from the set {v1, v2}, then Dominator in his first move
selects u. Then v1 is the only still not dominated vertex. Since v1 is dominated by
both v1 and v2, Dominator can select one of them (depending on Staller’s move)
and win in two moves. Therefore γ′

MB(G− e)=2, a contradiction.
Now, if Staller selects u, then Dominator can select all the vertices from either

{v, v1} or {v, v2} in his first two moves and finishes the game. Finally, if Staller
selects one of the vertices in {v1, v2}, then Dominator selects the other one. Now
Dominator selects one vertex from {u, v} (depending on the Staller’s move) and
wins the game in his second move. This leads to a contradiction to the assumption
that G is 2-γ′

MB-critical.

To prove that all three bounds are sharp, consider the complete bipartite graphs
K2,n, n ≥ 3, which are connected and 2-γ′

MB-critical. �

To conclude the section we identify a large class of connected graphs which are
2-γ′

MB-critical.

Theorem 4.5 Let G be a bipartite graph with bipartition V1, V2, where |Vi| ≥ 3,
i ∈ [2]. If G has exactly two bipartite dominating vertices in each Vi, i ∈ [2], and
every vertex has degree two except bipartite dominating vertices, then G is 2-γ′

MB-
critical.

Proof. Let G be a graph satisfying the above properties. Let vi,1 and vi,2 be the
bipartite dominating vertices of Vi, i ∈ [2]. Clearly, {v1,1, v2,1}, and {v1,1, v2,2} are
two v1,2-free γ-sets of cardinality 2. Also {v1,2, v2,1}, and {v1,2, v2,2} are two v1,1-free
γ sets of cardinality 2. Therefore Dominator can select two vertices from one set
irrespective of Staller’s move and win the game in two moves. Thus γ′

MB(G) = 2.
Now we show that G is critical. Any edge of G either has two bipartite dominating
vertices as endpoints or has exactly one bipartite dominating vertex as an endpoint.
Let first e = v1,1v2,1. Consider an S-game on G − e. Clearly, the only bipartite
dominating vertices in G−e are v1,2 and v2,2. In her strategy Staller first selects one
of the bipartite dominating vertices, say v1,2. If the first optimal move of Dominator
is in V2, then by the Theorem 2.1, v2,2 is an optimal first move of Dominator. Now
all the vertices in V2 except v2,2 are undominated. Thus Staller selects v1,1 as her
next move. Any vertex in V1 \ {v1,1, v1,2} dominates only v2,1 and v2,2 in V2. But
V2 has at least three vertices and Dominator cannot finish the game in two moves.
Now assume that an optimal first move of Dominator is in V1. Let the first optimal
move of Dominator be v1,1 after the same first move of Staller. Now Staller selects
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v2,1. So the undominated vertices are v2,1 and all vertices in V1 except v1,1. Since
G is bipartite, Dominator needs at least two more moves to finish the game in this
case. Finally, assume that Dominator selects an unplayed vertex other than v1,1 in
V1 after the same first move of Staller. This vertex only Dominates itself and both
the vertices v2,1 and v2,2. It is clear that there are still undominated vertices in
both V1 and V2. Therefore Dominator needs at least three moves to finish the game.
Hence we can conclude that γ′

MB(G− e) > 2.
If e is an edge between any two bipartite dominating vertices, then γ′

MB(G−e) > 2
is proved by similar arguments as above.

Finally, let e = ab be an edge, where exactly one of its end vertices, say a, is a
bipartite dominating vertex. Clearly, b is the leaf of G − e. Therefore Staller first
selects the support vertex of G − e and then Dominator must select the leaf b of
G− e as his first move. We can see that there are still undominated vertices in both
V1 and V2. So Dominator needs at least two more moves to finish the game. Thus
we can conclude that γ′

MB(G− e) > 2.
Therefore G is a connected 2-γ′

MB-critical graph. �

5 MBD game critical graphs with small SMBD

numbers

In this section, we characterise MBD game critical graphs with small SMBD num-
bers. It is known that γSMB(G) = 1 if and only if G has at least two isolated vertices.
Let G be a graph with at least two isolated vertices. It is clear that G− e has again
at least two isolated vertices for any edge e of G. This indeed proves that G is not
1-γSMB-critical. Hence there do not exist a 1-γSMB-critical graphs.

Theorem 5.1 A graph G is 2-γSMB-critical if and only if G is the disjoint union of
exactly one copy of K1, at least one copy of K1,n, n ≥ 2 and possibly some copies of
K2.

Proof. Assume that G is 2-γSMB-critical. Hence γSMB(G) = 2 and γSMB(G− e) = 1
for any edge e ∈ E(G). Since γSMB(G) = 2 it follows from [3] that G is exactly
a graph that has either at least two strong support vertices or at least one strong
support vertex and exactly one isolated vertex. Suppose first that G has no isolated
vertices. Since γSMB(G − e) = 1 for every e ∈ E(G), it holds that G − e has two
isolated vertices for any edge e ∈ E(G). Since G has no isolated vertices, each
component of G is K2. Hence G = ℓK2 for some positive integer ℓ, which leads to
the contradiction as 2 6= γSMB(ℓK2) = ∞.
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Now let G be a graph with at least one isolated vertex and at least one strong
support vertex. Since γSMB(G) 6= 1, G has exactly one isolated vertex. Since for any
edge e ∈ E(G) it holds that G− e has at least two isolated vertices, every edge of
G is a pendant edge of G. Thus G is the disjoint union of exactly one copy of K1,
at least one copy of K1,n, n ≥ 2 and possibly some copies of K2.

Conversely, assume that G is the disjoint union of exactly one copy of K1, at
least one copy of K1,n, n ≥ 2, and possibly some copies of K2. Consider a D-game
on G. Clearly, Dominator must first select the isolated vertex. Then Staller selects
the centre of a K1,n (there is at least one such component), which allows her to
win in her second move by choosing an unplayed leaf adjacent to the centre. Thus
γSMB(G) = 2. Let e be an edge of G. Clearly, G−e has at least two isolated vertices.
Therefore Staller can win the game in one move on G − e. This proves that G is
2-γSMB-critical. �

A graph G is 1-γ′

SMB-critical if γ
′

SMB(G) = 1 and γ′

SMB(G− e) < γ′

SMB(G) for any
edge e ∈ E(G). This is possible only when G has at least one vertex and no edges.
Thus we conclude that a graph G is 1-γ′

SMB-critical if and only if G is a totally
disconnected graph.

Theorem 5.2 A graph G is 2-γ′

SMB critical if and only if G is the disjoint union of
at least one copy of K1,n, n ≥ 2, and possibly some copies of K2.

Proof. Assume that G is 2-γ′

SMB critical. That is, γ′

SMB(G) = 2 and γ′

SMB(G−e) = 1
for any edge e ∈ E(G). It is known from [6] that γ′

SMB(G) = 2 if and only if G has
a strong support vertex. Also, γ′

SMB(G− e) = 1 if and only if G− e has an isolated
vertex. This is possible only when every edge of G is incident with a vertex of degree
1. Thus we conclude that G has at least one K1,n, n ≥ 2, and possibly some copies
of K2.

Conversely, assume that G is the disjoint union of at least one copy ofK1,n, n ≥ 2
and possibly some copies of K2. Since G has a strong support vertex, γ′

SMB(G) = 2.
It is clear that the removal of any edge from G results in a graph having an isolated
vertex. Thus γ′

SMB(G− e) = 1 for any edge e ∈ E(G). Thus G is 2-γ′

SMB-critical. �

6 Concluding remarks

The graph G′ from the proof of Proposition 3.6 need not be connected. In fact,
we believe that for any k ≥ 1 there are no connected k-γSMB-critical graphs. This
is clearly true for k = 1, as any 1-γSMB-critical graph must contain at least two
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isolated vertices. Moreover, Theorem 5.1 implies that there do not exist connected
2-γSMB-critical graphs. For the general case we pose:

Conjecture 6.1 If G is a connected graph, then G is not γSMB-critical.

In view of Proposition 4.4 and Theorem 4.5 we pose:

Open Problem 6.2 Find a characterization of 2-γ′

MB-critical graphs.
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