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Ismael G. Yerod,§

September 17, 2024

a Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

b Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
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Abstract

Two relationships between the injective chromatic number and, respec-
tively, chromatic number and chromatic index, are proved. They are applied
to determine the injective chromatic number of Sierpiński graphs and to give
a short proof that Sierpiński graphs are Class 1. Sierpiński-like graphs are
also considered, including generalized Sierpiński graphs over cycles and rooted
products. It is proved that the injective chromatic number of a rooted prod-
uct of two graphs lies in a set of six possible values. Sierpiński graphs and
Kneser graphs K(n, r) are considered with respect of being perfect injectively
colorable, where a graph is perfect injectively colorable if it has an injective
coloring in which every color class forms an open packing of largest cardi-
nality. In particular, all Sierpiński graphs and Kneser graphs K(n, r) with
n ≥ 3r − 1 are perfect injectively colorable graph, while K(7, 3) is not.
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1 Introduction

Throughout the paper, we consider G as a finite simple graph with vertex set V (G)
and edge set E(G). The (open) neighborhood of a vertex v is denoted by NG(v), and
NG[v] = NG(v)∪{v} is its closed neighborhood (we omit the index G if the graph G
is clear from the context). The minimum and maximum degrees of G are denoted by
δ(G) and ∆(G), respectively. For terminology and notation not explicitly defined
here, we refer to [34].

Recall that a (vertex ) coloring of G is a labeling of the vertices of G so that
any two adjacent vertices have distinct labels. The chromatic number of G, denoted
χ(G), is the smallest number of labels in a coloring of G. For some additional
information on coloring problems, we refer the reader to [19].

A function f : V (G) → {1, . . . , k} is an injective k-coloring if no vertex v is
adjacent to two vertices u and w with f(u) = f(w). For an injective k-coloring
f , the set of color classes

{
{v ∈ V (G) | f(v) = i} : 1 ≤ i ≤ k

}
is also called

an injective k-coloring of G (or simply an injective coloring if k is clear from the
context). The minimum k for which a graph G admits an injective k-coloring is the
injective chromatic number of G, and is denoted by χi(G). An injective k-coloring
for which k = χi(G) is called a χi(G)-coloring. The study of injective coloring was
initiated in [14], and then intensively pursued, see, for example, [5, 8, 25, 29]. In
particular, the injective colorings of some products and graphs operations have been
studied in [3, 30, 33].

A set B ⊆ V (G) is an open packing in G if N(u) ∩ N(v) = ∅ for all distinct
vertices u, v ∈ B, and the maximum cardinality of an open packing in G is the open
packing number, ρo(G), of G. An open packing of cardinality ρo(G) is an ρo(G)-set.
The concept was introduced in [15], and was studied in several papers mainly due to
its relation with total domination. It was noticed in [4] that an injective coloring of
a graph G is equivalent to a partition of V (G) into open packings, i.e., the vertices
colored with a same color in the injective coloring form an open packing in G. In
connection with this, the following concept was introduced in [4], and further on,
partially investigated for hypercubes in [3]. A graph G is perfect injectively colorable

if it admits an injective coloring in which every color class forms an open packing
of maximum cardinality. Note that such an injective coloring is necessarily a χi(G)-
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coloring.
Section 2 is devoted to two auxiliary lemmas based on establishing some help-

ful relationships between injective coloring and, respectively, vertex coloring and
edge coloring. They will be efficiently used in Section 3 in order to prove for each
Sierpiński graph Sn

p that (i) χi(S
n
p ) = p = ∆(Sn

p ) with p ≥ 3 and n ≥ 1, and that
(ii) Sn

p belongs to Class 1 with n, p ≥ 2. (Recall that a simple graph G is Class 1 if
χ′(G) = ∆(G), in which χ′ stands for the edge-chromatic number.) Note that the
assertion (ii) was already proved by Hinz and Parisse in 2012 ([17]). However, our
proof is much shorter based on the present, different approach.

Injective coloring of the rooted product graphG◦vH , as a Sierpiński-type product
graph, is discussed in Section 4. It is readily seen that χi(G ◦v H) can be bounded
from below and above by max{χi(G), χi(H)} and χi(G) + χi(H), respectively. We
prove that χi(G◦vH) only assumes 6 values from this interval. And, as an immediate
result, this leads to a closed formula for this parameter in the case of corona product
graphs given in [30].

We also investigate the perfect injectively colorability of Sierpiński graphs and
Kneser graphs. It is proved that each Sierpiński graph Sn

p with p ≥ 3 and n ≥ 1
is perfect injectively colorable, while this is not the case for generalized Sierpiński
graphs by giving a special counterexample. Finally, we prove that all Kneser graphs
K(n, r) with n ≥ 3r − 1 are perfect injectively colorable. Moreover, this is a best
possible result as the Kneser graph K(7, 3) does not satisfy this property.

2 Two lemmas on injective colorings versus (edge)

colorings

In this section we prove two relationships between the injective chromatic number
and, respectively, chromatic number and chromatic index. Their proofs are not
difficult, but we will later demonstrate that the results can be very useful.

For the first result, consider the following concept. Let G be a graph. A collection
C = {C1, . . . , Ck} of cliques inG is an edge clique cover ofG if every edge ofG belongs
to some Ci ∈ C. For more information on edge clique covers see the survey [31] and
recent papers [7, 28]. We say that an edge clique cover C is sparse if every vertex of
G belongs to at most two cliques in C. Note that not every graph has a sparse edge
clique cover. For instance, among the triangle-free graphs G only the graphs with
∆(G) ≤ 2 admit sparse edge clique covers.

Let G be the class of graphs that admit a sparse edge clique cover. If G ∈ G and
C = {C1, . . . , Ck} is a sparse edge clique cover of G, then we introduce the graph
GC constructed from G as follows. First, considering the vertex sets of the cliques
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Ci to be pairwise disjoint in GC, we set V (GC) =
⋃k

i=1 V (Ci). Note that by this

convention, |V (GC)| =
∑k

i=1 |V (Ci)|. Second, two vertices in GC are adjacent if they
are either in the same clique from C or they correspond to the same vertex from two
cliques of C. See Fig. 1 for an example of this construction.

G GC

Figure 1: A graph G, its sparse edge clique cover C (consisting of the circled cliques),
and the derived graph GC

Our first result now reads as follows.

Lemma 2.1. If G ∈ G with a sparse edge clique cover C = {C1, . . . , Ck}, then

χi(G
C) ≤ χ(G).

Proof. Let c : V (G) → [k] be a proper coloring of G, where k = χ(G). Let the
coloring c∗ : V (GC) → [k] be defined by c∗(x) = c(x) if x ∈ V (G) belongs to only
one clique of C, and c∗(xi) = c(x) = c∗(xj), when x belongs to Ci and Cj. See Fig. 2
for an example of such a derived coloring.

G

1
2

3

1

4

3

2

1

GC

1
2

3

2

3

1

4

1

4

3

2 2

1

Figure 2: An optimal coloring of G and an optimal injective coloring of GC

We claim that c∗ is injective, so we need to show that no two vertices in the
neighborhood of any vertex x in GC receive the same color. Assume that x is a
vertex of G that lies in only one clique, say Ci, of C. Then, its neighbors are all in
Ci, and since c is a proper coloring, they have pairwise different colors (according to
c∗ and c). Secondly, assume that x = xi, that is, x belongs to two cliques of G from C,
one of which being Ci, and let the other be Cj. In this case, NGC(xi) = V (Ci)∪{xj}.
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Then, the neighbors of xi in Ci have pairwise different colors (by c and c∗), which
are all different from c(x) = c∗(xi) = c∗(xj). In both cases, all neighbors of x get
pairwise different colors by c∗.

Our second result detects a new family of Class 1 graphs based on their injective
chromatic number. (Recall that by Vizing’s theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1
holds for any graph G, where the graphs achieving the lower bound are said to
belong to Class 1.)

Lemma 2.2. If χi(G) = ∆(G), then G belongs to Class 1.

Proof. Let ∆ = ∆(G), and let c : V (G) → {0, 1, . . . ,∆− 1} be an injective coloring
of G. Define an edge coloring c′ = E(G) → {0, 1, . . . ,∆−1} arising from c as follows.
For each edge uv ∈ E(G), let c′(uv) = c(u)+c(v) (mod ∆). To see that c′ is a proper
edge coloring of G, let uv and uw be two incident edges in G. Since c(v) 6= c(w), we
infer that c′(uv) = c(u) + c(v) 6= c(u) + c(w) = c′(uw), where summations are taken
with respect to modulo ∆. Thus, χ′(G) ≤ ∆, which by Vizing’s theorem implies
that G is in Class 1.

3 Sierpiński graphs

This section is devoted to obtain the injective chromatic number of Sierpiński graphs,
and to give some consequences of these computations. In particular, we give a short
proof of the fact that all Sierpiński graphs belong to Class 1, a result which was first
proved in [17] with a lengthy argument.

When the Switching Tower of Hanoi game was introduced in [21], it was natural
to introduce Sierpiński graphs. This family of graphs has subsequently attracted
a great deal of interest for various reasons, see a very comprehensive 2017 survey
paper [16], where, in addition to an overview of the results on the Sierpiński graphs,
a classification of Sierpiński-type graphs is proposed. For some later related papers
we refer to [1, 10, 26].

For p ≥ 1 and n ≥ 1, the Sierpiński graph Sn
p has the vertex set V (Sn

p ) = [p]n,
and two vertices (u1, . . . , un) and (v1, . . . , vn) are adjacent if there exists an index
d ∈ [n] such that (i) ui = vi for i ∈ [d − 1], (ii) ud 6= vd, and (iii) vi = ud and

ui = vd for i ∈ {d+ 1, . . . , n}. The family of Sierpiński triangle graphs Ŝn
p was first

introduced by Jakovac in [18]. These graphs can be defined in various ways, but for

our purposes we do it for p ≥ 3 as follows. If p ≥ 3 and n ≥ 1, then Ŝn
p is the graph

obtained from Sn
p as follows. For any edge uv which does not lie in a complete graph

of order p, remove the edge uv and identify the vertices u and v. See Fig. 3 where
the graphs S3

3 and Ŝ3
3 are drawn.
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Ŝ3
3 S3

3

Figure 3: The graph Ŝ3
3 and its sparse edge clique cover (left), and the graph S3

3

(right)

Theorem 3.1. If p ≥ 3 and n ≥ 1, then χi(S
n
p ) = p. Moreover, Sn

p is perfect

injectively colorable.

Proof. As ∆(Sn
p ) = p, we have χi(S

n
p ) ≥ p.

Let C be the edge clique cover of Ŝn
p consisting of all the cliques of order p of

Ŝn
p which are obtained from the cliques of order p of Sn

p after contacting the edges
of Sn

p which lie in no such clique. See Fig. 3 where the described clique-edge cover

of Ŝ3
3 is shown. By the way this cover is constructed, we infer that C is a sparse

clique-edge cover. Hence we can consider (Ŝn
p )

C and again by the construction we

see that (Ŝn
p )

C ∼= Sn
p , see Fig. 3 again. Applying Lemma 2.1 we then get

χi(S
n
p ) = χi((Ŝ

n
p )

C) ≤ χ(Ŝn
p ) = p ,

where the last equality is a result due to Jakovac proved in [18]. This proves the
first assertion of the theorem.

To prove the second assertion, note that the vertex set of Sn
p partitions into pn−1

cliques of cardinality p. Combining this with χi(S
n
p ) = p, we infer that each color

class of any χi(S
n
p )-coloring has a non-empty intersection with each such clique of

Sn
p . Since each color class is an open packing, we infer ρo(Sn

p ) ≥ pn−1. On the
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other hand, note that if P is an open packing of a graph, then no two vertices of P
can lie in a triangle in G. Therefore, when p ≥ 3, we have ρo(Sn

p ) ≤ pn−1. Hence,
ρo(Sn

p ) = pn−1, and moreover, every color class of any χi(S
n
p )-coloring has ρo(Sn

p )
vertices. This proves the second assertion.

We next give a short proof of the following result which was proved first by Hinz
and Parisse [17] by a lengthy argument.

Corollary 3.2. If p ≥ 2 and n ≥ 2, then Sn
p is a Class 1 graph.

Proof. The case p = 2 is clear since Sn
2
∼= P2n . So, assume in the rest that p ≥ 3.

By Theorem 3.1 we have χi(S
n
p ) = p = ∆(Sn

p ), which by Lemma 2.2 immediately
gives the conclusion.

Gravier, Kovše, and Parreau [13] defined generalized Sierpiński graphs Sn
p as

follows. Let G be an arbitrary graph. Then the generalized Sierpiński graph Sn
G is

the graph with the vertex set V (G)n, where two vertices (u1, . . . , un) and (v1, . . . , vn)
are adjacent if there exists an i ∈ [n] such that uj = vj for j < i, uivi ∈ E(G), and
uj = vi and vj = ui for j > i. See [22] where the packing coloring of generalized
Sierpiński graphs was investigated.

Clearly, χi(S
n
G) ≤ |V (G)| follows from Theorem 3.1 and the fact that Sn

G is a
spanning subgraph of Sn

p , where p = |V (G)|. The next result shows that this bound
need not be sharp. In other words, Theorem 3.1 does not have a counterpart in
generalized Sierpiński graphs.

Proposition 3.3. If n ≥ 2, then χi(S
n
C4
) = 3 and Sn

C4
is not perfect injectively

colorable.

Proof. Let n ≥ 2. Then ∆(Sn
C4
) = 3, which implies that χi(S

n
C4
) ≥ 3. To see that

χi(S
n
C4
) ≤ 3 consider the labeling of S2

C4
as presented in the left-hand side of Fig. 4.

The labeling of S2
C4

from Fig. 4 is easily checked to be injective. Now we itera-
tively proceed as indicated in the figure, that is, we four times use the labeling of S2

C4

to get a labeling of S3
C4
. Based on the distribution of the color 3, it is straightforward

to check that also the labeling of S3
C4

is injective. The process can be repeated to
get the desired conclusion.

Finally, notice that Sn
C4

is not perfect injectively colorable because |V (Sn
C4
)| = 4n,

which is not divisible by χi(S
n
C4
) = 3 for n ≥ 2.

Using similar approach as in the proof of Proposition 3.3 one might deduce that
if n ≥ 2 and k ≥ 5, then χi(S

n
Ck
) = 3. Moreover, one might also deduce that among

all these generalized Sierpiński graphs over cycles only Sn
C6

is perfect injectively
colorable.
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Figure 4: An injective coloring of S2
C4

(left) and its lift up to an injective coloring
of S3

C4
(right)

4 Rooted product graphs

A rooted graph is a graph in which one vertex is labeled in a special way to distinguish
it from other vertices. This vertex is called the root of the graph. Let G be a graph
with vertex set {v1, . . . , vn}. Let H be a sequence of n rooted graphs H1, . . . , Hn.
The rooted product graph G(H) is the graph obtained by identifying the root of Hi

with vi (see [12]). We here consider the particular case of rooted product graphs
where H consists of n isomorphic rooted graphs [32]. More formally, assuming that
the root of H is v, we define the rooted product graph G ◦v H = (V,E), where
V = V (G)× V (H) and

E =

(
n⋃

i=1

{(vi, h)(vi, h
′) | hh′ ∈ E(H)}

)
⋃{

(vi, v)(vj, v) | vivj ∈ E(G)
}
.

We remark that rooted product graphs can be seen as an instance of the oper-
ation called Sierpiński product introduced in [23], and denoted by G ⊗f H , where
f : V (G) → V (H) is a function. The graph G⊗fH has vertex set V (G)×V (H) and
two vertices (g, h), (g′, h′) ∈ V (G⊗f H) are adjacent if (i) g = g′ and hh′ ∈ E(H),
or (ii) gg′ ∈ E(G), h = f(g′) and h′ = f(g). In this sense, it can be readily seen
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that a rooted product graph G ◦v H represents a Sierpiński product G⊗f H , where
f is a constant function in the product, i.e., f(u) = v for any u ∈ V (G).

It is somehow natural to think that the injective chromatic number of a rooted
product graph relates to that of the factors of the product. Indeed, the following
basic bounds can be easily deduced for any graph G and any rooted graph H with
root v.

max{χi(G), χi(H)} ≤ χi(G ◦v H) ≤ χi(G) + χi(H). (1)

Both bounds above are realizable. However, not all possible values between these
bounds are reached. We next focus on these facts and show that χi(G◦vH) achieves
only six values from the interval [max{χi(G), χi(H)}, . . . , χi(G) + χi(H)].

From now on, in order to facilitate our exposition, given an integer k ∈ [n], by
Fk we represent the subgraph of G ◦v H induced by vertices in V (G) ∪ V (Hk).

To show that only six values from the interval [max{χi(G), χi(H)}, . . . , χi(G) +
χi(H)] (according to the bounds from (1)) can be realized, we exhibit a closed
formula for the injective chromatic number of rooted product graphs. To do so, we
proceed with a series of lemmas that are giving the values of the injective chromatic
number of Fk, under some conditions happening in G and in H . For the sake of
convenience, by assigning/giving a color to a vertex subset S of a graph G we mean
assigning such color to all vertices in S.

We first remark that the root v ∈ V (H) is identified with vk ∈ V (G). Hence,
for instance dG(v) = dG(vk). Throughout the remainder of this section, we consider
g as a χi(G)-coloring, and in this sense, {U1, . . . , Uχi(G)} as the vertex partition of
V (G) into open packings associated with g. We may assume that g assigns the color
i to Ui for each i ∈ [χi(G)]. Now, in order to consider an injective coloring of Fk for
each k ∈ [n], in concordance with the χi(G)-coloring g, we may also assume that
NG(v) ⊆ U1 ∪ . . . ∪ UdG(v). Moreover, by simplicity we write H = Hk in the proofs
of the following lemmas, as Hk

∼= H .
We first observe that such subgraph Fk satisfies that

χi(Fk) ≥ max
{
χi(G), χi(H), dG(v) + dH(v)

}
(2)

as both G and H are subgraphs of Fk and χi(Fk) ≥ ∆(Fk) ≥ dG(v) + dH(v). The
proof of this is based on a case-by-case analysis. The general procedure is to extend
g to Fk in such a way that the restriction of the resulting function to V (H) turns
out to be a χi(H)-coloring using the colors in [χi(G)] along with the least number
of colors not in [χi(G)].

Our first lemma regarding the injective chromatic number of the graph Fk reads
as follows.
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Lemma 4.1. If g(v) /∈ [dG(v)] and h(v) ∈ h
(
NH(v)

)
for some χi(H)-function

h = (V1, . . . , Vχi(H)), then

χi(Fk) = max
{
χi(G), χi(H), dG(v) + dH(v)

}
.

Proof. We first observe that χi(G) ≥ dG(v)+1 since g(v) /∈ [dG(v)] (i.e., v and all its
neighbors have different colors). We need to distinguish two cases depending on the
behaviors of χi(G) and χi(H). Without loss of generality, for the graph H = Hk,
assume that NH(v) ⊆ V1 ∪ . . . ∪ VdH (v) and that v ∈ V1. Also, for the graph G,
assume that v ∈ UdG(v)+1.

Case 1. χi(G) ≥ dH(v) + dG(v).
If χi(H) = dH(v), then we extend g to Fk by respectively assigning the colors
dG(v)+1, . . . , dG(v)+dH(v) to V1, . . . , VdH(v). Note that the resulting function g1 is an
injective coloring of Fk with χi(G) colors. Therefore, χi(Fk) ≤ χi(G), which is indeed
an equality since G is a subgraph of Fk. Now, if χi(H) > dH(v), then we proceed as
follows. If η = χi(G)− dG(v)− dH(v) ≥ χi(H)− dH(v) = ϕ, then we extend g1 to a
new function g2, by respectively giving the colors dG(v)+dH(v)+1, . . . , dG(v)+χi(H)
to VdH (v)+1, . . . , Vχi(H). It is readily seen that g2 is an injective coloring of Fk with
χi(G) colors. This similarly results in the equality χi(Fk) = χi(G). Hence, assume
η < ϕ and consider two cases depending on η.

Subcase 1.1. η = 0.
If ϕ ≤ dG(v), then we assign ϕ colors from [dG(v)] to Vi for i = dH(v)+1, . . . , χi(H).
This gives us an injective coloring of Fk using χi(G) colors, and hence χi(Fk) =
χi(G). If ϕ > dG(v), then we assign the colors from [dG(v)] to Vi with i = dH(v) +
1, . . . , dH(v) + dG(v). In addition, we need χi(H) − dG(v) − dH(v) new colors for
the rest of open packings in H . This results in an injective coloring of Fk with
χi(H)− dG(v)− dH(v) + χi(G) = χi(H) colors, and therefore χi(Fk) = χi(H).

Subcase 1.2. η > 0.
Let g2 be an extension of g1 that respectively assigns the values dG(v) + dH(v) +
1, . . . , χi(G) to VdH (v)+1, . . . , Vχi(G)−dG(v). In view of this, Vχi(G)−dG(v)+1, . . . , Vχi(H)

are open packings of H which have not been injectively colored by g2. We need to
consider two possibilities.

Subcase 1.2.1. χi(G) ≥ χi(H).
It follows that ζ = χi(H)− χi(G) + dG(v) ≤ dG(v). In such a situation, g2 can be
extended to Fk by assigning the colors 1, . . . , ζ to the rest of open packings in H .
Note that the resulting function is an injective coloring of Fk with χi(G) colors, and
hence χi(Fk) = χi(G).

Subcase 1.2.2. χi(G) < χi(H).
This shows that ζ > dG(v). In such a situation, we first assign the color i to
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Vχi(G)−dG(v)+i for each i ∈ [dG(v)]. We next assign χi(H)− χi(G) new colors to the
rest of open packings in H . This results in an injective coloring of Fk with χi(H)
colors, and hence χi(Fk) = χi(H).

Case 2. χi(G) < dH(v) + dG(v).
We extend g to g1 by respectively assigning the colors dG(v) + 1, . . . , χi(G) to
V1, . . . , Vχi(G)−dG(v), as well as, we assign dH(v) − χi(G) + dG(v) new colors to
Vχi(G)−dG(v)+1, . . . , VdH (v). If χi(H) = dH(v), then g1 turns out to be an injective
coloring of Fk with dG(v) + dH(v) colors. Therefore, χi(Fk) = dH(v) + dG(v). Sup-
pose now that χi(H) > dH(v). We distinguish two more possibilities.

Subcase 2.1. χi(H) ≤ dG(v) + dH(v).
In such situation, the function g1 can be extended to Fk by respectively assigning
the colors 1, . . . , χi(H) − dH(v) to VdH (v)+1, . . . , Vχi(H). This gives us an injective
coloring of Fk with dH(v) + dG(v) colors. So, χi(Fk) = dH(v) + dG(v).

Subcase 2.2. χi(H) > dG(v) + dH(v).
Now, in order to extend g1 to Fk, we respectively assign the colors 1, . . . , dG(v) to
VdH (v)+1, . . . , VdH (v)+dG(v), as well as, χi(H) − dG(v) − dH(v) new colors to the rest
of open packings in H . This leads to an injective coloring of Fk with χi(H) colors,
and hence χi(Fk) = χi(H).

One might think that in order to complete our proof, some other cases like for
instance χi(H) ≤ dH(v) + dG(v) or χi(H) > dH(v) + dG(v) need to be consid-
ered. However, they are indeed implicitly checked in the two cases above (with the
corresponding subcases).

In conclusion, we have proved that χi(Fk) ∈ {χi(G), χi(H), dG(v)+dH(v)}. This
leads to χi(Fk) = max{χi(G), χi(H), dG(v) + dH(v)} due to (2).

From this point on, three similar lemmas to the one above shall be proved. These
lemmas are considering the remaining cases regarding the inclusion or not of g(v)
and h(v) in [dG(v)] and h

(
NH(v)

)
(for some/each χi(H)-function h), respectively.

Some of the arguments are similar to the ones in the proof of Lemma 4.1.

Lemma 4.2. If g(v) /∈ [dG(v)] and h(v) /∈ h
(
NH(v)

)
for each χi(H)-function h,

then

χi(Fk) ∈
{
χi(G), χi(H), dG(v) + dH(v), dG(v) + dH(v) + 1

}
.

Proof. The assumptions imply that χi(G) ≥ dG(v) + 1 and χi(H) ≥ dH(v) + 1. We
need to distinguish two cases depending on χi(G), dG(v) and dH(v). For the sake of
simplicity, we assume NH(v) ⊆ V1 ∪ . . . ∪ VdH (v), v ∈ VdH (v)+1 and v ∈ UdG(v)+1.
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Case 1. χi(G) ≥ dG(v) + dH(v) + 1.
If χi(H) = dH(v) + 1, then the extension g1 of g that respectively assigns the colors
dG(v) + 1, dG(v) + 2, . . . , dG(v) + dH(v) + 1 to VdH (v)+1, V1, . . . , VdH(v) defines an
injective coloring of Fk using χi(G) colors. This leads to χi(Fk) = χi(G). Suppose
now that χi(H) > dH(v) + 1. If

µ = χi(G)− dG(v)− dH(v)− 1 ≥ χi(H)− dH(v)− 1 = ξ,

then an extension g2 of g1 assigning the color i to Vi−dG(v), for each i = dG(v) +
dH(v) + 2, . . . , dG(v) + χi(H), defines an injective coloring of F with χi(G) colors.
Hence, χi(Fk) = χi(G). Letting µ < ξ, we need to consider two more possibilities.

Subcase 1.1. µ = 0.
First note that the ξ open packings VdH (v)+2, . . . , Vχi(H) of H have not been col-
ored under g1. If ξ ≤ dG(v), then we respectively assign the colors 1, . . . , ξ to
VdH (v)+2, . . . , Vχi(H). Note that the resulting function is an injective coloring with
χi(G) colors. So, χi(Fk) = χi(G). If ξ > dG(v), then we first respectively assign
the colors 1, . . . , dG(v) to VdH (v)+2, . . . , VdH(v)+dG(v)+1. Next, we assign ξ−dG(v) new
colors to the rest of the open packings of H . The resulting function turns out to be
an injective coloring of Fk using

χi(G) + ξ − dG(v) = χi(G) + χi(H)− dH(v)− 1− dG(v) = χi(H)

colors. So, we deduce that χi(Fk) ≤ χi(H), which means χi(Fk) = χi(H) in view of
the inequality (2).

Subcase 1.2. µ > 0.
As an extension of g1, we first assign the color i to Vi−dG(v) when i ∈ {dG(v)+dH(v)+
2, . . . , χi(G)}. In this situation, the ξ − µ open packings Vχi(G)−dG(v)+1, . . . , Vχi(H)

have not been colored under g1. We now distinguish two possibilities.

Subcase 1.2.1. χi(G) ≥ χi(H). This implies that ξ−µ ≤ dG(v). So, by respectively
assigning the colors 1, . . . , ξ − µ to Vχi(G)−dG(v)+1, . . . , Vχi(H), we obtain an injective
coloring of Fk with χi(G) colors. Therefore, χi(Fk) = χi(G).

Subcase 1.2.2. χi(G) < χi(H).
This shows that ξ − µ > dG(v). In this situation, we respectively assign the values
1, . . . , dG(v) to Vχi(G)−dG(v)+1, . . . , Vχi(G). Also, we assign χi(H)− χi(G) new colors
to the rest of open packings in H . Note that the resulting coloring of Fk is injective,
and that it uses χi(H) colors. Hence, χi(Fk) = χi(H).

Case 2. χi(G) < dH(v) + dG(v) + 1.
Consider first that χi(H) = dH(v) + 1. In such a situation, let g1 be an exten-
sion of g that respectively assigns the colors dG(v) + 1, dG(v) + 2, . . . , χi(G) to
VdH (v)+1, V1, . . . , Vχi(G)−dG(v)−1, as well as, ϕ = χi(H) − χi(G) + dG(v) new colors
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to Vχi(G)−dG(v), . . . , Vχi(H). This defines an injective coloring of Fk with ϕ+χi(G) =
dG(v) + dH(v) + 1 colors, and hence χi(Fk) ≤ dG(v) + dH(v) + 1. This shows
that χi(F ) ∈ {dG(v) + dH(v), dG(v) + dH(v) + 1} due to (2). Suppose now that
χi(H) > dH(v) + 1. We need to consider two possibilities.

Subcase 2.1. χi(G) ≥ χi(H).
Due to the initial inequality of Case 2, we get dG(v)+dH(v)+1 > χi(H). Therefore,
dG(v) > χi(H)− dH(v) − 1 = ψ. Hence, g1 can be extended to Fk by respectively
assigning the colors 1, . . . , ψ to VdH (v)+2, . . . , Vχi(H). This gives an injective coloring
of Fk with dG(v)+dH(v)+1 colors. Consequently, χi(Fk) ∈ {dG(v)+dH(v), dG(v)+
dH(v) + 1}.

Subcase 2.2. χi(G) < χi(H).
If ψ ≤ dG(v), then we have the same conclusion as in Subcase 2.1. So, let ψ >
dG(v). Let g2 be an extension of g1 that assigns the color i to Vi+dH (v)+1 for each
i ∈ [dG(v)]. In such a situation, we give ψ − dG(v) new colors to the rest of the
open packings in H . This process leads to an injective coloring of Fk with at most
dG(v) + dH(v) + 1+ψ− dG(v) colors. Therefore, χi(Fk) ≤ χi(H). This implies that
χi(Fk) = χi(H).

Lemma 4.3. Let g(v) ∈ [dG(v)] and h(v) ∈ h
(
NH(v)

)
for some χi(H)-function

h = (V1, . . . , Vχi(H)). Then,

χi(Fk) ∈
{
χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(v) + dH(v)

}
.

Proof. With the assumptions given in the statement of the lemma, we may assume
that NH(v) ⊆ V1 ∪ . . . ∪ VdH (v), v ∈ V1 and v ∈ U1. We distinguish two cases
depending on χi(G), dG(v) and dH(v).

Case 1. χi(G) ≥ dH(v) + dG(v).
Let χi(H) = dH(v). In such a situation, assume g1 respectively assigns the colors
dG(v) + 1, . . . , dG(v)+ dH(v) to V1 \ {v}, V2, . . . , VdH(v). This results in the existence
of an injective coloring of Fk with χi(G) colors, and hence χi(Fk) = χi(G). Now
let χi(H) > dH(v). If ϑ = χi(G) − dG(v) − dH(v) ≥ χi(H) − dH(v) = ǫ, then
we consider g1 is extended to g2 by assigning i to Vi−dG(v) for each i = dG(v) +
dH(v) + 1, . . . , dG(v) + χi(H). This defines an injective coloring of Fk using χi(G)
colors. Hence, χi(Fk) = χi(G). Letting ϑ < ǫ we need to consider two more cases
depending on ϑ.

Subcase 1.1. ϑ = 0.
If ǫ ≤ dG(v) − 1, then in order to extend g1, we respectively assign the colors
2, . . . , ǫ + 1 to VdH (v)+1, . . . , Vχi(H). Note that the resulting function is an injective
coloring of Fk using χi(G) colors, and hence χi(Fk) = χi(G). Suppose now that
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ǫ ≥ dG(v). As an extension of g1, we first respectively assign the colors 2, . . . , dG(v)
to VdH (v)+1, . . . , VdH(v)+dG(v)−1. We next give ǫ− dG(v) + 1 new colors to the rest of
open packings in H . The resulting function is an injective coloring of Fk using

χi(G) + ǫ− dG(v) + 1 = χi(G) + χi(H)− dH(v)− dG(v) + 1 = χi(H) + 1 (3)

colors (since χi(G)− dG(v)− dH(v) = ϑ = 0). We infer, in this case, that χi(Fk) ∈
{χi(H), χi(H) + 1} due to (2).

Subcase 1.2. ϑ > 0.
Let g2 be an extension of g1 such that the color i is assigned to Vi−dG(v) for each
i = dG(v)+dH(v)+1, . . . , χi(G). In such a situation, ς = χi(H)−χi(G)+dG(v) ≥ 1
open packings inH have not been colored under g2. We consider two cases depending
on χi(G) and χi(H).

Subcase 1.2.1. χi(G) ≥ χi(H).
This shows that ς ≤ dG(v). Let ς ≤ dG(v) − 1. In such a situation, g2 can be
extended to g3 by assigning ς colors from {2, . . . , dG(v)} to the rest of open packings
in H . The resulting coloring is injective and uses χi(G) colors. So, χi(Fk) = χi(G).
If ς = dG(v), then g3 can be extended to Fk by assigning a new color to the last
open packing in H . Therefore, χi(Fk) ∈ {χi(G), χi(G) + 1}.

Subcase 1.2.2. χi(H) > χi(G).
We then have ς > dG(v). In this situation, let g3 be an extension of g2 that respec-
tively assigsn the colors 2, . . . , dG(v) to Vχi(G)−dG(v)+1, . . . , Vχi(G)−1. We now assign
χi(H) − χi(G) + 1 new colors to the remaining open packings in H . This leads
to the existence of an injective coloring of Fk with χi(H) + 1 colors. Therefore,
χi(Fk) ∈ {χi(H), χi(H) + 1}.

Case 2. χi(G) < dH(v) + dG(v).
Let first σ = χi(G) − dG(v) = 0. Assume now that χi(H) = dH(v). Let g1 be an
extension of g which respectively assigns the colors dG(v) + 1, dG(v) + 2, . . . , dH(v)
to V1 \{v}, V2, . . . , VdH (v). Hence, g1 is an injective coloring of Fk with dG(v)+dH(v)
colors, and so χi(Fk) = dG(v) + dH(v). Suppose now that χi(H) > dH(v). If
χi(H) < dG(v) + dH(v), then g1 can be extended by assigning χi(H)− dH(v) colors
from {2, . . . , dG(v)} to the rest of open packings in H . This gives an injective
coloring of Fk using dG(v) + dH(v) colors, and therefore χi(Fk) = dG(v) + dH(v).
Now let χi(H) ≥ dG(v) + dH(v). In such a situation, as an extension of g1, we first
respectively give 2, . . . , dG(v) colors to VdH (v)+1, . . . , VdG(v)+dH (v)−1. We next assign
χi(H) − dG(v) − dH(v) + 1 new colors to the rest of open packings in H . This
leads to an injective coloring of Fk with χi(H) + 1 colors, and therefore χi(Fk) ∈
{χi(H), χi(H) + 1}.
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Consider now that σ > 0. Note that g can be extended to a function g1 by
respectively assigning dG(v) + 1, dG(v) + 2, . . . , χi(G) to V1 \ {v}, V2, . . . , Vσ, as well
as, dH(v)− σ new colors to Vσ+1, . . . , VdH (v). If χi(H) = dH(v), then this defines an
injective coloring of Fk using χi(G) + dH(v)− σ = dG(v) + dH(v) colors. Therefore,
χi(Fk) = dG(v) + dH(v). So, let χi(H) > dH(v). Again, we need to consider two
more possibilities.

Subcase 2.1. χi(H) < dG(v) + dH(v).
In view of this, let g2 be an extension of g1 to Fk by giving χi(H)−dH(v) colors from
{2, . . . , dG(v)} to the rest of open packings in H . This process injectively colors Fk

by dG(v) + dH(v) colors. So, we again have χi(Fk) = dG(v) + dH(v).

Subcase 2.2. χi(H) ≥ dG(v) + dH(v).
Respectively assigning the colors 2, . . . , dG(v) to VdH (v)+1, . . . , VdH (v)+dG(v)−1, as well
as, χi(H)−dG(v)−dH(v)+1 new colors to the rest of open packings in H , we obtain
an extension of g1 to Fk. It is easy to see that the resulting function is an injective
coloring using χi(H) + 1 colors. Therefore, χi(Fk) ∈ {χi(H), χi(H) + 1}.

Lemma 4.4. Let g(v) ∈ [dG(v)] and h(v) /∈ h
(
NH(v)

)
for each χi(H)-function h.

Then,

χi(Fk) ∈
{
χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(v) + dH(v), dG(v) + dH(v) + 1

}
.

Proof. We first observe, by the assumption given in the statement of the lemma,
that χi(H) ≥ dH(v)+ 1. For the sake of simplicity, we let NH(v) ⊆ V1∪ . . .∪VdH (v),
v ∈ VdH (v)+1 and v ∈ U1. We again need to distinguish two possibilities depending
on χi(G), dG(v) and dH(v).

Case 1. χi(G) ≥ dH(v) + dG(v) + 1.
Assume first that χi(H) = dH(v)+1. The extension g1, of g, that respectively assigns
dG(v) + 1, . . . , dG(v) + dH(v) + 1 to V1, . . . , VdH(v)+1 \ {v} is an injective coloring of
Fk with χi(G) colors. Thus, χi(Fk) = χi(G) (note that if VdH (v)+1 \ {v} = ∅, then
the color dG(v) + dH(v) + 1 is not used in H). So, let χi(H) > dH(v) + 1. Again,
we need to consider two more cases.

Subcase 1.2. λ = χi(G)− dG(v)− dH(v)− 1 ≥ χi(H)− dH(v)− 1 = ε.
We observe that a function g2 defined, as an extension of g1, by assigning the color i
to Vi−dG(v) for every i = dG(v)+dH(v)+2, . . . , χi(H)+dG(v) is an injective coloring
of Fk with χi(G) colors. Therefore, χi(Fk) = χi(G).

Subcase 2.2. λ < ε.
Suppose first that λ = 0. There exist two possibilities depending on χi(G) and
χi(H).
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Subcase 2.2.1. χi(G) ≥ χi(H).
This implies that ε ≤ dG(v) by taking λ = 0 into account. If ε ≤ dG(v) − 1, then
an extension of g1 that assigns ε colors from {2, . . . , dG(v)} to VdH (v)+2, . . . , Vχi(H)

gives an injective coloring of Fk with χi(G) colors. Therefore, χi(Fk) = χi(G). Now
let ε = dG(v). In such a situation, we first respectively assign 2, . . . , dG(v) colors
to VdH (v)+2, . . . , Vχi(H)−1, and a new color to Vχi(H). The resulting function is an
injective coloring of Fk with χi(G)+1 colors. Therefore, χi(Fk) ∈ {χi(G), χi(G)+1}.

Subcase 2.2.1. χi(H) > χi(G).
We then have ε > dG(v) since λ = 0. Let g2 be an extension of g1 that respectively
assigns 2, . . . , dG(v) to VdH(v)+2, . . . , VdG(v)+dH (v). Notice that χi(H)− dG(v)− dH(v)
open packings in H have not received colors under g2. In such a situation, we obtain
an injective coloring of Fk with χi(H)+1 colors by assigning χi(H)−dG(v)−dH(v)
new colors to the remaining open packings. Hence, χi(Fk) ∈ {χi(H), χi(H) + 1}.

Assume now that λ > 0. Let g2 be an extension of g1 that assigns the color i to
Vi−dG(v) when i ∈ {dG(v)+dH(v)+2, . . . , χi(G)}. We note that υ = χi(H)−χi(G)+
dG(v) open packings in H have not received colors under g2. If χi(H) ≥ χi(G), then
we respectively assign the colors 2, . . . , dG(v) to Vχi(G)−dG(v)+1, . . . , Vχi(G)−1. Also, we
give χi(H)−χi(G)+1 new colors to the rest of open packings in H . This leads to an
injective coloring of Fk using χi(H)+1 colors, and hence χi(Fk) ∈ {χi(H), χi(H)+1}.

On the other hand, if χi(G) > χi(H), then υ < dG(v). In such a case, g2 can
be extended to Fk by assigning υ colors from {2, . . . , dG(v)} to the rest of open
packings in H . This defines an injective coloring of Fk with χi(G) colors, and
therefore χi(Fk) = χi(G).

Case 2. χi(G) < dH(v) + dG(v) + 1.
We need to distinguish two more possibilities depending on χi(G)− dG(v).

Subcase 2.1. χi(G) = dG(v).
If χi(H) = dH(v) + 1, then assume g1 respectively assigns the colors dG(v) +
1, . . . , dG(v) + dH(v) + 1 to V1, . . . , VdH(v)+1 \ {v} (if VdH (v)+1 \ {v} = ∅, then
the color dG(v) + dH(v) + 1 is not used in H). This gives an injective color-
ing of Fk using at most dG(v) + dH(v) + 1 colors. This shows that χi(Fk) ∈
{dG(v)+dH(v), dG(v)+dH(v)+1}. Let χi(H) > dH(v)+1. If ε < dG(v), then g1 can
be extended as an injective coloring of Fk by assigning ε colors from {2, . . . , dG(v)}
to VdH (v)+2, . . . , Vχi(H). Therefore, χi(Fk) ∈ {dG(v) + dH(v), dG(v) + dH(v) + 1}. So,
we let ε ≥ dG(v). Let g2 be an extension of g1 that respectively assigns the colors
2, . . . , dG(v) to VdH (v)+2, . . . , VdG(v)+dH (v). We now give χi(H)− dG(v) − dH(v) new
colors to the rest of open packings in H . This process ends with an injective coloring
of Fk using χi(H) + 1 colors, and hence χi(Fk) ∈ {χi(H), χi(H) + 1}.

Subcase 2.1. χi(G) > dG(v).
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Let χi(H) = dH(v) + 1. Assume g1 is an extension of g that respectively assigns
dG(v) + 1, . . . , χi(G) to V1, . . . , Vχi(G)−dG(v). We then give at most χi(H)− χi(G) +
dG(v) new colors to Vχi(G)−dG(v)+1, . . . , VdH (v)+1\{v} (trivially, VdH (v)+1\{v} does not
receive any color if VdH (v)+1 = {v}). This results in an injective coloring of Fk with at
most dG(v)+dH(v)+1 colors. Therefore, χi(Fk) ∈ {dG(v)+dH(v), dG(v)+dH(v)+1}.

Let χi(H) > dH(v) + 1. Consider now that g2 extends g1 by giving dH(v) + 1−
χi(G)+dG(v) new colors to Vχi(G)−dG(v)+1, . . . , VdH (v)+1\{v} (note that VdH (v)+1\{v}
does not receive any color if VdH (v)+1 = {v}). In such a situation, ε open packings
in H have not received colors under g2. If ε < dG(v), then we assign ε colors
from {2, . . . , dG(v)} to the rest of open packings in H . This defines an injective
coloring of Fk with at most dG(v) + dH(v) + 1 colors. Hence, χi(Fk) ∈ {dG(v) +
dH(v), dG(v) + dH(v) + 1}. So, we let ε ≥ dG(v). In this situation, we extend g2
by respectively assigning the colors 2, . . . , dG(v) to VdH(v)+2, . . . , VdG(v)+dH (v), as well
as, χi(H)− dG(v)− dH(v) new colors to the rest of open packings in H . This leads
to the existence of an injective coloring of Fk with at most χi(H) + 1 colors. Thus,
χi(Fk) ∈ {χi(H), χi(H) + 1}. This completes the proof.

Altogether, Lemmas 4.1–4.4 imply that

χi(Fk) ∈
{
χi(G), χi(H), χi(G)+1, χi(H)+1, dG(v)+dH(v), dG(v)+dH(v)+1

}
(4)

for each k ∈ [n] and any graphs G and H with v ∈ V (H).
For every k ∈ [n], by renaming the colors assigned to V (Hk) \ {vk} if necessary,

we may assume that the optimal injective coloring of Fk uses the colors from [χi(Fk)].
Recall that such an injective coloring uses the colors from [χi(G)] in G.

We observe that V (G ◦v H) =
⋃n

k=1 V (Fk) and that V (Fi) ∩ V (Fj) = V (G) for
every distinct i, j ∈ [n]. Assume in the rest that F ∈ {F1, . . . , Fn} has the property
that

χi(F ) = max
k∈[n]

{χi(Fk)}.

With these notations in mind, we prove the following simple but useful lemma.

Lemma 4.5. χi(F ) ∈
{
χi(G), χi(H), χi(G) + 1, χi(G) + 1,∆(G) + dH(v),∆(G) +

dH(v) + 1
}
.

Proof. Since F = Fk for some k ∈ [n], we have

χi(F ) ∈
{
χi(G), χi(H), χi(G) + 1, χi(H) + 1, dG(vk) + dH(v), dG(vk) + dH(v) + 1

}
.

by (4). Moreover, for each vertex vj in G of maximum degree, (4) implies that

χi(Fj) ∈
{
χi(G), χi(H), χi(G)+1, χi(H)+1,∆(G)+dH(v),∆(G)+dH(v)+1

}
=M∆.
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Suppose to the contrary that χi(F ) /∈M∆. This necessarily implies that χi(F ) ≥
χi(G) + 2 and that χi(F ) ≥ χi(H) + 2. If χi(F ) = dG(vk) + dH(v), then dG(vk) +
dH(v) = χi(F ) ≥ χi(Fj) ≥ ∆(G) + dH(v). This necessarily implies that dG(vk) =
∆(G), contradicting the supposition χi(F ) /∈ M∆. Therefore, χi(F ) = dG(vk) +
dH(v)+1. Similarly, we have dG(vk)+dH(v)+1 = χi(F ) ≥ χi(Fj) ≥ ∆(G)+dH(v).
Hence, dG(vk)+1 ∈ {∆(G),∆(G)+1}, contradicting χi(F ) /∈M∆. So, the statement
of the lemma holds.

We are now in a position to prove the main result of this section.

Theorem 4.6. For any graph G and any graph H with root v ∈ V (H),

χi(G◦vH) ∈
{
χi(G), χi(H), χi(G)+1, χi(H)+1,∆(G)+dH(v),∆(G)+dH(v)+1

}
.

Proof. Note that χi(G ◦v H) ≥ χi(F ) as F = Fk is a subgraph of G ◦v H . Let fj
be a χi(Fj)-coloring for each j ∈ [n], as constructed along the proofs of Lemmas
4.1–4.4. We now define f on V (G ◦vH), as an extension of g, by f(x) = fj(x) when
x ∈ V (Fj). Notice that f is well-defined because fi(x) = fj(x) for each x ∈ V (G)
and every distinct i, j ∈ [n].

Suppose to the contrary that there exist distinct vertices x, y, z ∈ V (G ◦v H)
such that y, z ∈ NG◦vH(x) and f(y) = f(z). Since the restrictions of f to V (G) and
V (Hj), are injective colorings for each j ∈ [n], it follows that neither “y, z ∈ V (G)”
nor “y, z ∈ V (Hj) for some j ∈ [n]” happens. So, without loss of generality, we
may assume that z ∈ V (G) and y ∈ V (Hj) for some j ∈ [n]. By the structure, this
necessarily implies that x = v = vj . This contradicts the fact that fj is an injective
coloring of Fj . So, we deduce that f is an injective coloring of G ◦v H .

Recall that for every j ∈ [n], fj assigns the colors in [χi(Fj)] so as to injectively
color Fj . Due to this fact, we observe that f assigns χi(F ) colors to V (G ◦v H),
and hence χi(G ◦v H) ≤ χi(F ). This leads to the desired inequality χi(G ◦v H) =
χi(F ) ∈ {χi(G), χi(H), χi(G) + 1, χi(H) + 1,∆(G) + dH(v),∆(G) + dH(v) + 1} by
Lemma 4.5.

It can be readily seen that the six possible values for χi(G◦vH) given in Theorem
4.6 can indeed be presented in the following way.

Corollary 4.7. For any graph G and any graph H with root v ∈ V (H),

max {χi(G), χi(H),∆(G) + dH(v)} ≤ χi(G◦vH) ≤ max {χi(G), χi(H),∆(G) + dH(v)}+1.

In what follows, we show that χi(G ◦vH) can indeed reach each of the six values
appearing in the closed formula of Theorem 4.6, depending on our choice for G and
H . Suppose first that G ∼= Kn on n ≥ 3 vertices and let H be obtained from Km,
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with m ≥ 3, by joining a new vertex v to only one vertex of Km. It is then readily
checked that χi(G ◦v H) = n = χi(G) if n ≥ m, and that χi(G ◦v H) = m = χi(H)
if m > n. Let G ∼= K1,a and H ∼= K1,b for some integers a, b ≥ 1. It is then clear
that χi(G ◦v H) = a + b = ∆(G) + dH(v), in which v is the center of H . This in
particular shows that χi(G ◦v H) = a + b = χi(G) + 1 when b = 1. Let G ∼= C4n

and H ∼= Km for some integers n ≥ 1 and m ≥ 3. Recall that χi(C4n) = 2. We
then have χi(G ◦v H) = m + 1 = χi(H) + 1. Finally, let G ∼= Kn and H ∼= Km

for some integers m,n ≥ 3, in which v is any vertex of Km. It is easy to see that
χi(G ◦v H) = n +m− 1 = ∆(G) + dH(v) + 1.

4.1 Corona products viewed as rooted products

Let G andH be graphs where V (G) = {v1, . . . , vn}. The corona product G⊙H of the
graphs G and H is obtained from the disjoint union of G and n disjoint copies of H ,
say H1, . . . , Hn, such that vi ∈ V (G) is adjacent to all vertices of Hi for each i ∈ [n].
Recall that the join of graphs G and H , written G ∨ H , is a graph obtained from
the disjoint union G and H by adding the edges {gh | g ∈ V (G) and h ∈ V (H)}.

As an immediate consequence of Theorem 4.6, we obtain the closed formula for
the injective chromatic number of corona product graphs given in [30]. To do so, we
need some routine observations. Let G and H have no isolated vertices. Moreover,
we may assume that they are connected. We observe that G ⊙H is isomorphic to
G ◦v (K1 ∨ H), in which the root v is the unique vertex of K1. Due to this and
the fact that χi(K1 ∨H) = |V (H)| + 1 = dK1∨H(v) + 1, Theorem 4.6 implies that
χi(G⊙H) belongs to the set
{
χi(G), |V (H)|+1, χi(G)+1, |V (H)|+2,∆(G)+ |V (H)|,∆(G)+ |V (H)|+1

}
. (5)

On the other hand, it is a routine matter to see that χi(K2 ⊙ H) = |V (H)| +
1 = ∆(K2) + |V (H)|. In view of this, we may assume that ∆(G) ≥ 2. Since
χi(G ⊙ H) ≥ ∆(G ⊙ H) = ∆(G) + |V (H)|, it follows that |V (H)| + 1 can be
excluded from the set in (5). By a similar fashion, |V (H)|+ 2 can also be excluded
when ∆(G) ≥ 2.

We observe, in view of Lemmas 4.1–4.4, that the equality χi(G⊙H) = χi(G)+1
may only occur in Lemma 4.4 (note that h(v) /∈ h

(
NK1∨H(v)

)
, for each χi(K1 ∨H)-

function h, since H has no isolated vertices). Suppose now that χi(G ⊙ H) =
χi(G)+1. By the proof of Lemma 4.4, it only happens when χi(K1∨H) > |V (H)|+1,
which is a contradiction.

Corollary 4.8. ([30]) For any graphs G and H with no isolated vertices,

χi(G⊙H) ∈
{
χi(G), |V (H)|+∆(G), |V (H)|+∆(G) + 1

}
.
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5 Kneser graphs

For positive integers n and r, where n ≥ 2r, the Kneser graph K(n, r) has the
r-subsets of an n-set as its vertices and two vertices are adjacent in K(n, r) if the
corresponding sets are disjoint. Kneser graphs are among the most studies classes of
graphs, since the two classical results concerning their independence and chromatic
numbers were proved roughly half a century ago [11, 24]. In two recent papers [2, 9],
the 2-packing numbers of Kneser graphs were studied, and we will use some results
from these papers for finding the open packing numbers and discussing their perfect
injectively colorability.

It is well known and easy to see that diam(K(n, r)) = 2 if and only if n ≥ 3r−1.
This immediately gives ρ2(K(n, r)) = 1 if and only if n ≥ 3r − 1. Now, we invoke
the result about perfect injectively colorable graphs with diameter 2 from [4].

Proposition 5.1. ([4, Proposition 13]) If G is a graph with diam(G) = 2, then G
is a perfect injectively colorable graph if and only if either each edge of G lies in a

triangle, or there exists a perfect matching M in G such that no edge of M lies in

a triangle.

If n ≥ 3r, then every edge of K(n, r) clearly lies in a triangle, hence by Proposi-
tion 5.1, it is a perfect injectively colorable graph. Now, if n = 3r−1, we claim that
K(n, r) has a perfect matching. Indeed, one can see this by using the recent result
from [27] that all Kneser graphs with the sole exception of the Petersen graph are
Hamiltonian, and the fact that

(
3r−1
r

)
is an even number. Thus, since K(n, r) has

no triangles, we infer by Proposition 5.1 again, that K(n, r) is a perfect injectively
colorable graph. We state the obtained remarks as follows.

Observation 5.2. If n ≥ 3r−1, then K(n, r) is a perfect injectively colorable graph.

In [9], the authors studied the Kneser graphs K(n, r) with n = 3r−2, which are
in a sense the closest to diameter-2 Kneser graphs. They obtained the exact values
of the 2-packing number for all these Kneser graphs as follows:

ρ2
(
K(3r − 2, r)

)
=





7 if r = 3,

5 if r = 4,

3 if r ≥ 5.

(6)

Let S be an open packing of K(3r−2, r), and suppose that S is not a 2-packing.
Therefore, there exist vertices u and v in S, which are adjacent in K(n, r). Without
loss of generality, let u = [r] and v = {r + 1, . . . , 2r}. Since ρ(G) ≤ ρo(G) for all
graphs G, the equality (6) implies that there exists a vertex w ∈ S \ {u, v}. Clearly,
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d(w, u) > 2 and d(w, v) > 2. In particular, w ∩ u 6= ∅. Suppose that |w ∩ u| ≥ 2.
Then |w∪ u| ≤ 2r− 2. Since n = 3r− 2, we infer that there exists a vertex x which
is adjacent to both w and u, a contradiction to d(w, u) > 2. Therefore, |w ∩ u| = 1,
and by a similar argument |w ∩ v| = 1. This yields {2r + 1, . . . , 3r − 2} ⊂ w.
Hence, if w′ is any other vertex in S, we infer that |w ∩ w′| ≥ r − 2. In the case
r > 3, this gives |w ∩ w′| ≥ 2 implying |w ∪ w′| ≤ r + 2, yet this yields that w
and w′ have a common neighbor, which is impossible. We have thus shown that
every maximum open packing is a 2-packing in K(3r − 2, r) for r > 3, and hence
ρo
(
K(3r − 2, r)

)
= ρ2

(
K(3r − 2, r)

)
in this case.

If r = 3, then ρo
(
K(3r− 2, r)

)
≥ 7 by (6). Notice that every vertex in S \ {u, v}

is of the form w = {a, b, 7}, in which a ∈ u and b ∈ v. Moreover, |w ∩ w′| = 1 for
any two vertices w,w′ ∈ S \{u, v} as d(w,w′) > 2. Hence, we can add at most three
vertices to u = {1, 2, 3} and v = {4, 5, 6} in order to get an open packing. This
contradicts that fact that ρo

(
K(3r − 2, r)

)
≥ 7. In fact, we have proved that every

maximum open packing in K(3r − 2, r) is a 2-packing. In particular, we have

ρo
(
K(3r − 2, r)

)
=





7 if r = 3,

5 if r = 4,

3 if r ≥ 5.

(7)

by the equality (6).
Note that Observation 5.2 is in a sense best possible as there exists a Kneser

graph K(n, r) with n = 3r − 2, for some positive integer r, which is not perfect
injectively colorable.

Proposition 5.3. Kneser graph K(7, 3) is not perfect injectively colorable.

Proof. Note that a maximum 2-packing P in K(7, 3) consists of seven 3-subsets of
the set [7], where each i ∈ [7] appears in exactly three of these seven subsets. Thus,
P corresponds to the Fano plane.

Suppose to the contrary that K(7, 3) admits an injective coloring such that each
color class is a maximum open packing. Hence, all color classes are of cardinality
7 by (7), and by the remark preceding the proposition, we infer that every color
class is a 2-packing of cardinality 7. Therefore, there exists a 2-distance coloring
of K(7, 3) with 5 colors such that each color class has 7 vertices. In particular, we
infer χ2(K(7, 3) = 5. This is a contradiction as the fact that one cannot partition
V
(
K(7, 3)

)
into five Fano planes goes back to Cayley [6]. Therefore, K(7, 3) is not

a perfect injectively colorable graph.

We remark that the exact value χ2(K(7, 3)) = 6 was proved in [20],
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6 Concluding remarks

Edge clique covers have been extensively investigated so far, see the survey [31]. On
the other hand, the concept of sparse edge clique covers, which turned out to be
very useful for our purpose, seems to be a new notion. We believe that such notion
deserves an independent interest.

In Section 3 we have briefly considered the generalized Sierpiński graphs over
cycles, that is, the graphs Sn

Ck
. The results presented indicate that an investigation

of the injective chromatic number of generalized Sierpiński graphs deserves attention,
in particular describing those that are perfect injectively colorable. Notice that this
task also requires the study of the open packing number of generalized Sierpiński
graphs.

In Section 4 we have considered the rooted product graphs that can be seen
as an instance of the operation called Sierpiński product (see [23]). In this sense,
it is of interest to continue investigating the injective chromatic number of other
Sierpiński products. In addition, the open packing number of such graphs is worthy
of attention.

In Section 5, we have shown that Kneser graphs K(n, r) are perfect injectively
colorable as soon as n ≥ 3r−1, and that K(7, 3) is not a perfect injectively colorable
graph. The latter graph is the only Kneser graph for which we know that it is not
perfect injectively colorable, and it would be interesting to determine for which r > 3
graphs K(3r − 2, r) are (not) perfect injectively colorable. The same question can
be posed for the odd graphs (Kneser graphs of the form K(2r + 1, r)) and Kneser
graphs in general.
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crete Math. Theor. Comput. Sci. 21 (2019), 7.
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