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Abstract

Weighted Padovan graphs Φn

k
, n ≥ 1, ⌊n

2
⌋ ≤ k ≤ ⌊ 2n−2

3
⌋, are introduced as the

graphs whose vertices are all Padovan words of length n with k 1s, two vertices being

adjacent if one can be obtained from the other by replacing exactly one 01 with a

10. By definition,
∑

k
|V (Φn

k
)| = Pn+2, where Pn is the nth Padovan number. Two

families of graphs isomorphic to weighted Padovan graphs are presented. The order,

the size, the degree, the diameter, the cube polynomial, and the automorphism group

of weighted Padovan graphs are determined. It is also proved that they are median

graphs.
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1 Introduction

The Fibonacci sequence is one of the most famous sequences in mathematics. The nth
Fibonacci number Fn is defined by Fn = Fn−1 + Fn−2, n ≥ 2, with initial values F0 = 0
and F1 = 1. Its analogous sequence, Lucas sequence, has the same recurrence relation but
begins with initial values L0 = 2 and L1 = 1. Similarly, the Pell sequence has the same
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initial values as the Fibonacci sequence, but now the recurrence reads as the sum of twice
the previous term plus the pre-previous term. Fibonacci numbers and their generalizations
have many interesting properties and many applications in science and art, see [16]. We
also refer to the book [15] for Pell and Pell-Lucas numbers and their applications.

The Fibonacci sequence and the Lucas sequence inspired the investigation of differ-
ent interesting families of graphs such as Fibonacci and Lucas cubes [7, 9, 14, 19, 21],
Pell graphs [22], generalized Pell graphs [10], metallic cubes [4], Fibonacci and Lucas
p-cubes [27], and Fibonacci-run graphs [5], to list just some of them. The state of research
on Fibonacci cubes and related topics up to 2013 is summarised in the survey paper [11],
while for the state of the art results on Fibonacci and related cubes see the 2023 book [6].

The Padovan numbers, which are named after the architect Richard Padovan, see [24],
are defined by the third order recurrence relation

Pn = Pn−2 + Pn−3, n ≥ 3,

with initial values P0 = 1, P1 = P2 = 0. In the Online Encyclopedia of Integer Sequences,
the Padovan sequence appears as [23, A000931]. The first few terms are

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, . . .

The associated generating function is

∑

n≥0

Pnx
n =

1− x2

1− x2 − x3
.

Recently, Lee and Kim [17] introduced the Padovan cubes by using only the odd terms
P1, P3, P5, . . . of the Padovan sequence. A motivation for their definition is that every posi-
tive integer can be represented uniquely as the sum of one or more odd terms of the Padovan
sequence such that the sum does not include any three consecutive odd terms. In [18] the
investigation of the Padovan cubes continued by investigating their cube polynomials.

The main impetus for the investigation in this paper is to consider all the terms of
the Padovan sequence to construct a respective family of graphs. This is done formally
in the next section by introducing the weighted Padovan graphs Φn

k . In the same section
two isomorphic families of graphs are presented. In Section 3, we determine the order, the
size and the degree of weighted Padovan graphs. In the subsequent section we investigate
their metric properties, and in particular prove that they are median graphs. In Section 5,
the cube polynomial of weighted Padovan graphs is determined, as well as its generating
function. In the last section we find all symmetries of the studied family of graphs.

2 Weighted Padovan graphs and two isomorphic families

In this section we introduce the weighted Padovan graphs and two isomorphic families of
graphs which will both be useful for proving properties of weighted Padovan graphs in the
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rest of the paper. The first of the two families has a word representation, while the second
one is defined by integer partitions.

IfA is an alphabet, then a word over A is a sequence of letters from A. When A = {0, 1},
we speak of a binary word. By a subword of a word we mean a subsequence of consecutive
letters of the word.

Definition 2.1. A binary word is Padovan, if it

• starts and ends with 0,

• contains no subword 00, and

• contains no subword 111.

By Pn we denote the set of Padovan words of length n ≥ 1.

Note that |P0| = |P1| = |P2| = 1. Moreover, as noted by Yifan Xie in [23, Sequence
A000931], if n ≥ 3, then we have

|Pn| = Pn+2 .

Since Padovan words contain no subword 00, the minimum number of 1s in a Padovan
word of length n is

⌊
n
2

⌋
. This is attained, for example, by the binary word 01 . . . 010 if

n is odd, and by 01 . . . 0110 if n is even. Similarly, since Padovan words contain no 111,
the maximum number of 1s in a Padovan word of length n is

⌊
2n−2
3

⌋
. This is attained,

for example, by 011 . . . 011010 if n mod 3 = 0, by 011 . . . 0110 if n mod 3 = 1, and by
011 . . . 01101010 if n mod 3 = 2. Thus there are

⌊
2n− 2

3

⌋

−
⌊n

2

⌋

+ 1 =

⌊
n+ 1

2

⌋

−

⌊
n+ 1

3

⌋

different possibilities for the number of 1s in a Padovan word of length n.
Our key definition now reads as follows.

Definition 2.2. The Padovan graph Φn
k of length n and weight k, n ≥ 1,

⌊
n
2

⌋
≤ k ≤

⌊
2n−2

3

⌋
, is the graph whose vertices are all Padovan words of length n with k 1s, two vertices

being adjacent if one can be obtained from the other by replacing exactly one subword 01
with a 10. The family of these graphs will be called weighted Padovan graphs.

Observation 2.3. If n ≥ 1, then

⌊ 2n−2

3 ⌋
∑

k=⌊n
2 ⌋

|V (Φn
k)| = Pn+2 .

The switching adjacency rule “01 to 10” in the definition of a Padovan graph clearly
preserves the number of 1s. In order that the graphs considered are connected, this is

3



n
⌊
n
2

⌋ ⌊
2n−2
3

⌋
{Φn

k :
⌊
n
2

⌋
≤ k ≤

⌊
2n−2
3

⌋
}

1 0 0 {K1}

2 1 0 ∅
3 1 1 {K1}
4 2 2 {K1}
5 2 2 {K1}

6 3 3 {K2}
7 3 4 {K1}
8 4 5 {P3}
9 4 5 {K1, P3}

10 5 6 {K1, P4}

Table 1: The list of Padovan graphs with n ≤ 10. Here P3 and P4 denote the path graphs
on three and four vertices, respectively.

the reason the parameter k counting the number of 1s is present. For the graphs to be
connected it is thus necessary to use parameter k.

In Table 1 the Padovan graphs Φn
k are listed for n ≤ 10 and all respective ks.

For n ≥ 11, the structure of the graphs becomes more interesting. For example, if
n = 11, possible weights k are 5 and 6, and the obtained graphs are drawn in Figure 1.
Another example is shown in Figure 2, where n = 15, thus k ∈ {7, 8, 9}.

01101101010

01101011010

01101010110 01011011010

01011010110

01010110110

Φ11
6

01010101010

Φ11
5

Figure 1: Both weighted Padovan graphs for n = 11.

Definition 2.4. If p and q are nonnegative integers, then the graph Ap,q is defined as
follows. The vertex set of Ap,q consists of all words of length p+ q over the alphabet {a, b}
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011011010101010

011010110101010

011010101101010

011010101011010

011010101010110

010110110101010

x

y

010110101010110

010101101101010

z

010101101010110

010101011011010

010101011010110

010101010110110

x=010110101101010, y=010110101011010, z=010101101011010

Φ15
8

011011011011010

011011011010110

01101010110110

011010110110110

010110110110110

Φ15
9

010101010101010

Φ15
7

Figure 2: All weighted Padovan graphs for n = 15.

which contain p letters a and q letters b. Two vertices (alias words) are adjacent if one
can be obtained from the other by changing a subword ab to ba.

A weak partition of n ≥ 0 is a sequence of integers λ = (λ1, . . . , λk) such that
∑k

i=1 λi =
n and λ1 ≥ · · · ≥ λk ≥ 0. Terms λ1, . . . , λk of λ are called parts, and k is the number
of parts of λ. Note that this is different from the usual definition of partition where only
non-zero terms are considered to be parts of the weak partition. Alternatively, if λ has
αi parts of size i, then it can be written as 〈0α0 , 1α1 , 2α2 , . . .〉. The number of all weak
partitions of n into k parts with the largest part at most j is denoted by p(j, k, n). More
on (weak) partitions can be found for example in [25].

Definition 2.5. If p and q are nonnegative integers, then the graph Πp,q is defined as
follows. The vertex set of Πp,q consists of all weak partitions of 0, . . . , pq into q parts with
the largest part of size at most p. (Recall that parts can be of size 0 as well.) Two vertices
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(alias weak partitions) are adjacent if one can be obtained from the other by adding 1 to
one of the parts.

Theorem 2.6. If n ≥ 1 and
⌊
n
2

⌋
≤ k ≤

⌊
2n−2
3

⌋
, then

Φn
k
∼= A2n−3k−2,2k−n+1

∼= Π2n−3k−2,2k−n+1 .

Proof. We define α : V (Φn
k) → V (A2n−3k−2,2k−n+1) as follows. Let u ∈ V (Φn

k). Then
α(u) is a obtained from u by replacing from left to right each 011 by b, each 01 by a, and
removing the ending 0. If ka and kb are the respective numbers of as and bs in α(u), then
the number of 1s in u is ka+2kb, that is, k = ka+2kb. Moreover, 2ka+3kb = n−1. From
these two equations we obtain that ka = 2n − 3k − 2 and kb = 2k − n + 1 which implies
that α maps vertices of Φn

k to vertices of A2n−3k−2,2k−n+1. Moreover, it is straightforward
to check that α is a bijection.

Let uv ∈ E(Φn
k ). Then we may assume without loss of generality that u = . . . 01 . . .

and v = . . . 10 . . ., where “ . . . ” means that u and v coincide in all the other positions.
By the definition of Padovan words we next infer that actually u = . . . 010110 . . . and
v = . . . 011010 . . .. This in turn implies that α(v) is obtained from α(u) by changing exactly
one subword ab to ba. So α maps edges to edges. Moreover, by the same argument as above
we also see that α maps the vertices of NΦn

k
(u) to the vertices of NA2n−3k−2,2k−n+1

(α(u)).
We may conclude that α is an isomorphism.

Let p = 2n − 3k − 2 and q = 2k − n + 1. We will show that Ap,q
∼= Πp,q. Let

β : V (Ap,q) → V (Πp,q) be as follows. For u ∈ V (Ap,q), let 1 ≤ i1 ≤ · · · ≤ iq ≤ p + q be
positions of bs in u. Then β(u) is the weak partition ((p+ 1)− i1, . . . , (p+ q)− iq). Since
u contains q bs and is of length p+ q, it clearly holds that m ≤ im ≤ p+m, thus all parts
are between 0 and p, and the sum of all parts is at most pq. Thus β is well-defined and it
is easy to see that it is a bijection.

Let uv ∈ E(Ap,q). Then we may assume without loss of generality that u = . . . ab . . .

and v = . . . ba . . ., where again “ . . . ” means that u and v coincide in all the other positions.
This means that v is obtained from u by subtracting one from the position of one b. So
β(v) is obtained from β(u) by adding 1 to one part of the weak partition. Thus β maps
edges to edges. Moreover, by the same argument as above we also see that β maps the
vertices of NAp,q (u) to the vertices of NΠp,q(β(u)), so β is an isomorphism.

3 Order, size, degree

In this section we determine the order, the size, and the degree of weighted Padovan graphs.
Before that, their fundamental decomposition is described.

The vertices of Φn
k can be partitioned into those starting with 010 and those starting

with 011. Let X and Y be the respective sets of vertices. Then Φn
k [X] ∼= Φn−2

k−1 , where
Φn
k [X] denotes the subgraph of Φn

k induced by X. Moreover, since the vertices from Y

start by 0110 we also see that Φn
k [Y ] ∼= Φn−3

k−2 . Now, a vertex u ∈ X has a neighbor in Y
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if any only if u = 010110 . . . in which case its neighbor from Y is 011010 . . .. Thus the
vertices in X that have an edge to Y (and vice versa) induce Φn−5

k−3 . The structure of Φn
k

as just described will be called the fundamental decomposition of Φn
k and shortly denoted

as
Φn
k = 01Φn−2

k−1 + 011Φn−3
k−2 .

For an example see Fig. 3, where the fundamental decomposition Φ18
10 = 01Φ16

9 + 011Φ15
8

is illustrated. To make the drawing clearer, the vertices are labeled via the isomorphism
Φ18
10

∼= A4,3. For example, this isomorphism maps the vertex 01 011 011 011 01 01 01 0 of
Φ18
10 to the vertex abbbaaa of A4,3. We thus have

A4,3
∼= Φ18

10 = 01Φ16
9 + 011Φ15

8
∼= aA3,3 + bA4,2 .

abbbaaa

abbabaa

ababbaa
abbaaba

aabbbaa

abababa abbaaab

aabbaba ababaababaabba

aabbaabaababba
abaabab

aaabbba

aababab abaaabb

aaabbab aabaabb

aaababb

aaaabbb

01Φ16
9

∼= aA3,3

babbaaa

bababaa

baabbaa

babaaba

baababa

babaaab

baabaab

baaabba

baaabab

baaaabb

bbabaaa

bbbaaaa

bbaabaa

bbaaaba

bbaaaab

011Φ15
8

∼= bA4,2

Figure 3: The fundamental decomposition of Φ18
10.
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Proposition 3.1. If n ≥ 1 and
⌊
n
2

⌋
≤ k ≤

⌊
2n−2

3

⌋
, then

|V (Φn
k)| =

(
n− k − 1

2n− 3k − 2

)

and
|E(Φn

k )| = |E(Φn−2
k−1)|+ |E(Φn−3

k−2)|+ |V (Φn−5
k−3)| .

Proof. By Theorem 2.6 we have Φn
k
∼= A2n−3k−2,2k−n+1. For the latter graph it is clear

that |V (A2n−3k−2,2k−n+1)| =
(

n−k−1
2n−3k−2

)
because its vertices are words of length (2n− 3k−

2) + (2k − n+ 1) = n− k − 1.
By the fundamental decomposition, the vertices of the graph Φn

k can be decomposed into
01Φn−2

k−1 and 011Φn−3
k−2 . The only edges between these two sets are of the form 010110x ∼

011010x, where 0x ∈ V (Φn−5
k−3). From here the claimed formula for |E(Φn

k )| follows.

Theorem 3.2. If p ≥ 1 and q ≥ 1, then |E(Ap,q)| = q
(
p+q−1
p−1

)
, and if pq = 0, then

|E(Ap,q)| = 0.

Proof. If p = 0 or q = 0, Ap,q contains at most one vertex, and has no edges.
If p = 1, then V (Ap,q) = {abq, babq−1, . . . , bqa}, and A1,q is isomorphic to a path on

q + 1 vertices and has q = q
(1+q−1

0

)
edges. Analogously, the formula holds if q = 1.

Suppose now that p ≥ 2 and q ≥ 2. It follows from Theorem 2.6 that Ap,q
∼= Φ2p+3q+1

p+2q ,
and from Proposition 3.1 that |E(Ap,q)| = |E(Ap−1,q)| + |E(Ap,q−1)| + |V (Ap−1,q−1)|. As
p, q ≥ 2, p− 1, q − 1 ≥ 1, we can use the induction hypothesis to obtain

|E(Ap,q)| = q

(
p+ q − 2

p− 2

)

+ (q − 1)

(
p+ q − 2

p− 1

)

+

(
p+ q − 2

p− 1

)

=
(p+ q − 2)!

(p− 1)!(q − 1)!
(p− 1 + q − 1 + 1)

=
(p+ q − 1)!

(p− 1)!(q − 1)!
= q

(
p+ q − 1

p− 1

)

.

Corollary 3.3. If n ≥ 1 and
⌊
n
2

⌋
≤ k ≤

⌊
2n−2

3

⌋
, then

|E(Φn
k )| =

{

0; k ∈ {n−1
2 , 2n−2

3 },

(2k − n+ 1)
(

n−k−2
2n−3k−3

)
; otherwise.

Inspired by a comment in [23, Sequence A002457] by Hans Haverman, we next give a
combinatorial interpretation of the number of edges of weighted Padovan graphs which in
turn provides an alternative proof of Theorem 3.2.

Theorem 3.4. Let p, q ≥ 1. Then the number of edges in Ap,q is the same as the number
of different words with p− 1 letters a, q − 1 letters b, and one letter c.
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Proof. Recall that two vertices in Ap,q are adjacent if one can be obtained from the other
by changing one subword ab to ba. Now every edge xaby ∼Ap,q xbay can be represented
by xcy: the shared part in the beginning, then letter c, then shared part at the end (word
representing the edge can, of course, also begin or end with c). It is easy to see that this
representation yields a bijection between E(Ap,q) and the set of all different words with
p− 1 as, q − 1 bs and one c.

Proposition 3.5. If p, q ≥ 0 and p+ q ≥ 1, then

δ(Ap,q) = min{1, pq}

and

∆(Ap,q) =

{

2min{p, q}; p 6= q,

2p− 1; p = q.

Moreover, the number of vertices of degree d in Ap,q is equal to







2

((
p− 1
d−1
2

)(
q − 1
d−1
2

))

; d is odd,

(
p− 1
d
2 − 1

)(
q − 1

d
2

)

+

(
p− 1

d
2

)(
q − 1
d
2 − 1

)

; d is even.

Proof. Let v ∈ V (Ap,q). Clearly, deg(v) is the sum of the number of appearances of the
words ab and ba in v. Thus, to count the number of vertices of degree d, it suffices to count
the number of words with p as, q bs, and exactly d subwords ab and ba. Observe that
occurrences of ab and ba in such a vertex alternate from left to right (and can overlap),
so the vertex can be written in the form aα1bβ1 · · · aαmbβm , where αi, βi ≥ 1 for all i ∈
{2, . . . ,m− 1}, α1, βm ≥ 0, α1 + · · ·+αm = p, β1 + · · ·+ βm = q and 2m− 1− (1−α1)−
(1 − βm) = d (which means that the number of nonempty blocks of as and bs is equal to
d+ 1).

In the proof below, we will repeatedly use that the number of compositions of n into
k parts, i.e. the number of integer solutions of x1 + · · · + xk = n, xi ≥ 1 for all i ∈ [k], is
equal to

(
n−1
k−1

)
.

If α1, βm ≥ 1, then d = 2m − 1, so d is odd, and m = d+1
2 . Thus, by the comment

above, there is
( p−1

d+1

2
−1

)( q−1
d+1

2
−1

)
such vertices. Similarly we count the ones starting with b

and ending with a, that is, the ones with α1 = βm = 0.
If α1 ≥ 1 and βm = 0, then d = 2m − 2, so d is even, and m = d

2 + 1. Thus there is
(p−1

d
2

)(q−1
d
2
−1

)
such words. Similarly, we count the ones starting and ending with b, that is,

the ones with α1 = 0 and βm ≥ 1.
By definition,

(
n
k

)
≥ 1 if and only if 0 ≤ k ≤ n, thus the formulas for minimum and

maximum degree of Ap,q follow from the determined number of vertices of degree d.

9



4 Metric properties

In this section we determine several metric properties of weighted Padovan graphs. We
begin with the distance function for which the partition representation Πp,q turns out to be
the most convenient one. Using Theorem 2.6 the distance in Φn

k and Ap,q can be obtained
as well.

Proposition 4.1. If p, q ≥ 0 and λ = (λ1, . . . , λq), µ = (µ1, . . . , µq) ∈ V (Πp,q), then
dΠp,q (λ, µ) =

∑q
i=1 |λi − µi|.

Proof. Recall that by definition, λ1 ≥ · · · ≥ λq and µ1 ≥ · · · ≥ µq. Clearly, d(λ, µ) =

min

q
∑

i=1

|λi − µσ(i)|, where the minimum is taken over all permutations σ of [q]. The

same σ that minimizes this sum also minimizes
∑q

i=1(λi − µσ(i))
2 =

∑q
i=1 λ

2
i +

∑q
i=1 µ

2
i −

2
∑q

i=1 λiµσ(i). The σ minimizing this expression is exactly the same as the one maxi-
mizing

∑q
i=1 λiµσ(i). By the rearrangement inequality from [8, Theorem 368], this sum is

maximized if σ(i) is such that µσ(1) ≥ · · · ≥ µσ(q), so when σ is the identity.

A graph G is a median graph if for every triple of vertices u, v, w of G there exists a
unique vertex m(u, v, w), called median, which lies on a shortest u, v-path, on a shortest
u,w-path, and on a shortest v,w-path. Recall that median graphs embed isometrically
into hypercubes, hence by the subsequent theorem weighted Padovan graphs also have this
property, that is, they are partial cubes. We refer to [6, Chapters 4 and 6] for more on
partial cubes and median graphs, and the relation of Fibonacci-like cubes to these classes
of graphs.

Theorem 4.2. If n ≥ 1 and
⌊
n
2

⌋
≤ k ≤

⌊
2n−2
3

⌋
, then Φn

k is a median graph.

Proof. Let p = 2n − 3k − 2 and q = 2k − n + 1. Then by Theorem 2.6, Φn
k
∼= Πp,q. Let

x = (λ1, . . . , λq) ∈ V (Πp,q). Then 0 ≤ λi ≤ p, i ∈ [q]. Set

αi(x) = 0 . . . 0
︸ ︷︷ ︸

p−λi

1 . . . 1
︸ ︷︷ ︸

λi

, i ∈ [q], and α(x) = α1(x) . . . αq(x) ,

where α1(x) . . . αq(x) stands for the concatenation of the binary words α1(x), . . . , αq(x).
The mapping α can thus be considered as

α : V (Πp,q) → V (Qpq) .

Let x = (λ1, . . . , λq) and y = (µ1, . . . , µq) be arbitrary vertices of Πp,q. By Proposition 4.1
we have dΠp,q (x, y) =

∑q
i=1 |λi − µi|. By the definition of α, the words αi(x) and αi(y)

differ in |λi −µi| positions. Hence α(x) and α(y) differ in
∑q

i=1 |λi −µi| positions, that is,

dΠp,q(x, y) = dQpq (α(x), α(y)) . (1)

10



Let x = (λ1, . . . , λq), y = (µ1, . . . , µq), and z = (τ1, . . . , τq) be arbitrary vertices of Πp,q.
For each i ∈ [q], let σi be the median value of the set {λi, µi, τi}. Then in view of
Proposition 4.1 and (1) we infer that m(α(x), α(y), α(z)) = α(σ1, . . . , σq) is a median of
α(x), α(y), and α(z). Moreover, m(α(x), α(y), α(z)) ∈ V (α(Πp,q)).

We have thus proved that α(Πp,q) is an isometric subgraph of Qpq such that with any
three vertices of α(Πp,q), their median in Qpq is a vertex of α(Πp,q). Applying the theorem
of Mulder [20] (cf. also [13]) asserting that a graph G is a median graph if and only if G
is a connected isometric subgraph of some Qn such that with any three vertices of G their
median in Qn is also a vertex of G, the argument is complete.

The proof of Theorem 4.2 can be used to determine the diameter of weighted Padovan
graphs.

Proposition 4.3. If n ≥ 1 and
⌊
n
2

⌋
≤ k ≤

⌊
2n−2

3

⌋
, then

diam(Φn
k) = (2n − 3k − 2)(2k − n+ 1) .

Proof. Let p = 2n − 3k − 2 and q = 2k − n + 1. Since diam(Qpq) = pq and the mapping
α : V (Πp,q) → V (Qpq) from the proof of Theorem 4.2 is an isometric embedding, we get
diam(Φn

k) ≤ pq. On the other hand, α((0, . . . , 0)) = 0pq and α((p, . . . , p)) = 1pq, so that

diam(Φn
k) ≥ dΠp,q ((0, . . . , 0), (p, . . . , p))

= dQpq(α((0, . . . , 0)), α((p, . . . , p)))

= dQpq(0
pq, 1pq) = pq = (2n− 3k − 2)(2k − n+ 1) .

5 The cube polynomial

The cube polynomial of a graph G is denoted by C (G,x), and is the generating function
C (G,x) =

∑

n≥0 cn (G) x
n, where cn (G) counts the number of induced n-cubes in G.

Clearly, c0 (G) = |V (G)| and c1 (G) = |E(G)|.
The cube polynomial was first studied in [3]. Among the many subsequent investiga-

tions we point to its applicability in mathematical chemistry [2, 28], to its investigation
on daisy cubes which as particular cases include Fibonacci cubes and Lucas cubes [12],
to the cube polynomial of tribonacci cubes [1], and to an appealing relation between the
cube polynomial and the clique polynomial [26]. For the cube polynomial of the weighted
Padovan graphs we have:

Theorem 5.1. The generating function of the cube polynomial C (Φn
k , x) is

∑

n≥0

∑

k≥0

C (Φn
k , x) y

nzk =
y

1− y2z (1 + yz (1 + xy2z))
.

Proof. Let Qm be an induced subgraph of Φn
k . By the fundamental decomposition, exactly

one of the following holds:
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1. Qm is an induced subgraph in 01Φn−2
k−1

∼= Φn−2
k−1 ,

2. Qm is an induced subgraph in 011Φn−3
k−2

∼= Φn−3
k−2 , or

3. Qm = Qm−1 �K2, where the edges of K2 correspond exactly to edges between copies
of 01Φn−2

k−1 and 011Φn−3
k−2 in Φn

k , so Qm−1 is an induced subgraph in Φn−5
k−3 .

Thus, if n ≥ 5 and k ≥ 3, then the cube polynomial of Φn
k satisfies the following recursive

relation:

C (Φn
k , x) = C

(
Φn−2
k−1 , x

)
+ C

(
Φn−3
k−2 , x

)
+ xC

(
Φn−5
k−3, x

)
.

Let the generating function of the cube polynomial be

f (x, y, z) =
∑

n≥0

∑

k≥0

C (Φn
k , x) y

nzk.

By using the recurrence relation and the values

•
∑

k≥0C
(
Φ0
k, x

)
y0zk = 0,

•
∑

k≥0C
(
Φ1
k, x

)
yzk = y,

•
∑

k≥0C
(
Φ2
k, x

)
y2zk = 0,

•
∑

k≥0C
(
Φ3
k, x

)
y3zk = y3z,

•
∑

k≥0C
(
Φ4
k, x

)
y4zk = y4z2,

•
∑

k≥0C (Φn
k , x) y

nzk =
∑

k≥3C (Φn
k , x) y

nzk + y5z2, n ≥ 5,

we get

f (x, y, z)
[
1− y2z − y3z2 − xy5z3

]

=
∑

n≥0

∑

k≥0

C (Φn
k , x) y

nzk −
∑

n≥2

∑

k≥1

C
(
Φn−2
k−1 , x

)
ynzk

−
∑

n≥3

∑

k≥2

C
(
Φn−3
k−2 , x

)
ynzk − x

∑

n≥5

∑

k≥3

C
(
Φn−5
k−3 , x

)
ynzk

= y +
∑

n≥5

∑

k≥3

(
C (Φn

k , x)− C
(
Φn−2
k−1 , x

)
− C

(
Φn−3
k−2, x

)
− xC

(
Φn−5
k−3 , x

))
ynzk

= y .

By using the generating function of the cube polynomial, we obtain the cube polynomial
itself as follows.
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Theorem 5.2. If n ≥ 1 and
⌊
n
2

⌋
≤ k ≤

⌊
2n−2
3

⌋
, then

C (Φn
k , x) =

∑

j≥0

(
n− k − j − 1

2k − n+ 1

)(
2k − n+ 1

j

)

xj .

Proof. With Theorem 5.1 in hand, we can compute as follows:

f (x, y, z) =
y

1− y2z (1 + yz (1 + xy2z))

= y
∑

n≥0

∑

k≥0

(
n

k

)

(yz)k
(
1 + xy2z

)k (
y2z

)n

=
∑

n≥0

∑

k≥0





k∑

j=0

(
n

k

)(
k

j

)

xj



 y2n+k+2j+1zn+k+j

=
∑

n≥0

∑

j≥0




∑

k≥j

(
n

k

)(
k

j

)

xj



 y2n+k+2j+1zn+k+j

=
∑

n≥0

∑

j≥0

∑

k≥−n

(
n

k − n− j

)(
k − n− j

j

)

xjyn+k+j+1zk

=
∑

n≥0

∑

j≥0

∑

k≥n+j

(
n

k − n− j

)(
k − n− j

j

)

xjyn+k+j+1zk

=
∑

n≥0

∑

k≥j

∑

n≥k−j

(
n

k − n− j

)(
k − n− j

j

)

xjyn+k+j+1zk

=
∑

j≥0

∑

k≥j

∑

n≥−2j−1

(
n− k − j − 1

2k − n+ 1

)(
2k − n+ 1

j

)

xjynzk

=
∑

n≥0

∑

k≥0




∑

j≥0

(
n− k − j − 1

2k − n+ 1

)(
2k − n+ 1

j

)

xj



 ynzk .

The following result can be deduced from Theorem 5.2 by determining the maximum
degree of C(Φn

k , x) and the corresponding coefficient. However, we provide a different proof
below since it illuminates the structure of the largest hypercubes contained in Φn

k
∼= Ap,q.

Proposition 5.3. The largest hypercube contained in Ap,q as an induced subgraph is of
size min{p, q}, and the number of such hypercubes is max{

(
p
q

)
,
(
q
p

)
}.

Proof. Let m = min{p, q}. Let (ab)mx ∈ V (Ap,q). Vertices {t1 . . . tmx : ti ∈ {ab, ba}}
clearly induce Qm in Ap,q (remove x and replace each ab with 0 and each ba with 1).

Suppose that Ap,q contains Qm+1 as an induced subgraph, and let W be a vertex
set of Qm+1 in Ap,q. Observe that if v ∈ V (Qm+1) and x, y ∈ N(v), then x, y have
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another common neighbor z 6= v. Without loss of generality assume that m = q. If
v = sabat ∈ V (Ap,q), then the vertices sbaat and saabt cannot have another common
neighbor. Thus for every vertex w ∈ W and for every b in w, at most one neighbor of w
in W is obtained by switching this b. Hence degQm+1

(w) is at most the number of bs in w
which is equal to q = m. This is a contradiction since Qm+1

∼= Ap,q[W ] is (m+1)-regular.
To count the number of Qms in Ap,q, again assume (without loss of generality) that

m = q. After q abs are positioned into a word of length p, the whole word is determined
(the remaining positions are filled with as), and we obtain a word of length p + q with p

as and q bs. This can be done in
(
p
q

)
different ways, and each of them corresponds to a

different induced hypercube Qm.

6 Automorphisms

In this section we determine the automorphism group of weighted Padovan graphs. In view
of Theorem 2.6, this task is equivalent to the one of determining Aut(Πp,q).

We first consider the trivial cases. If min{p, q} = 0, then Πp,q
∼= K1, so Aut(Πp,q) is

trivial. If min{p, q} = 1, then Πp,q is isomorphic to the path on max{p+1, q+1} vertices,
so Aut(Πp,q) = Z2. Thus we assume that min{p, q} ≥ 2 in the following.

Let G = Πp,q through the whole section. The graph G has exactly two leaves: 0 =
(0, . . . , 0) and pq = (p, . . . , p). We say that a vertex x ∈ V (G) is lonely with respect to the
leaf ℓ if it has exactly one neighbor y ∈ V (G) such that d(y, ℓ) = d(x, ℓ)− 1. For short, we
simply say that x is lonely if it is lonely with respect to 0. We say that vertices y ∈ V (G)
that are at distance d ≥ 0 from the leaf ℓ belong to layer d with respect to ℓ. When ℓ = 0,
we simply say that they are in layer d.

Lemma 6.1. If x ∈ V (G) is lonely, then all nonzero parts in the weak partition of x are
of the same size.

Proof. Suppose that x has at least two nonzero parts of different sizes, so x = (λ1, . . . , λq)
and there exist i, j ∈ [q], i 6= j, λi > λj ≥ 1. Let y be obtained from x by changing λi to
λi − 1, and let z be obtained from x by changing λj to λj − 1. Clearly xy, xz ∈ E(G), and
y, z are in the layer d(x, 0) − 1. Thus x is not lonely.

Lemma 6.2. If w ∈ V (G) and ℓ is a leaf of G, then w has at most one lonely (w.r.t. ℓ)
neighbor x such that d(x, ℓ) = d(w, ℓ) + 1.

Proof. Without loss of generality let ℓ = 0, and denote d(w, 0) = d. Let w = (λ1, . . . , λq).
For i ∈ [q], let µi be obtained from λ by changing λi to λi + 1. Clearly, the neighbors of
w in layer d + 1 are contained in the set {µi : i ∈ [q]}. Suppose that some µi ∈ N(w) is
lonely. Then λj = λi +1 for all j ∈ [q] \ {i} by Lemma 6.1. But then, since min{p, q} ≥ 2,
no other µi can be lonely since λi would be smaller than the other part(s). Hence, w has
at most one lonely neighbor in layer d+ 1.
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Lemma 6.3. Let y, z ∈ V (G), y 6= z, such that d(y, ℓ) = d(z, ℓ) = d where ℓ is a leaf of
G. Then y and z have at most one common neighbor in the layer d+ 1.

Proof. Without loss of generality assume that ℓ = 0 and suppose that y and z have at
least one common neighbor, x, such that d(x, 0) = d + 1. Since x is not lonely, not all
parts of x are of the same size by Lemma 6.1. Let y = (λ1, . . . , λq) and z = (µ1, . . . , µq).
Thus there exist i 6= j such that x is obtained from y by changing λi to λi + 1, which is
equal to obtaining x from z by changing µj to µj + 1. This means that λk = µk for all
k ∈ [q] \ {i, j}, λi + 1 = µi and λj = µj + 1.

Let x′ be another neighbor of y in layer d+1. Then x′ is obtained from y by changing
λm to λm + 1 for some m ∈ [q] \ {i}. But then as λm + 1 6= µm, x′ is not a common
neighbor of y and z.

Let G(d, ℓ) = {x ∈ V (G) : d(x, ℓ) ≤ d} where ℓ is a leaf in G.

Lemma 6.4. Let d ≥ 2 and let ϕ : G(d, 0) → V (G). Suppose that ϕ is an automorphism
between G(d, 0) and ϕ(G(d, 0)). Then there is at most one possibility of extending ϕ to
ψ : G(d+1, 0) → V (G) such that ψ|G(d,0) = ϕ and ψ is an automorphism between G(d+1, 0)
and ψ(G(d + 1, 0)).

Proof. Let x ∈ G(d+1, 0)\G(d, 0). Observe that since ϕ is an automorphism on its image,
ϕ(0) is also a leaf.

Case 1: x is not lonely.
Then there exist vertices y 6= z in layer d that are both neighbors of x. By Lemma 6.3
x is the unique common neighbor of y and z. Vertices ϕ(y) and ϕ(z) are in layer d with
respect to ϕ(0) and by Lemma 6.3 they have at most one common neighbor in layer d+1
with respect to ϕ(0), say x′. Since ϕ is an automorphism on its image, ψ(x) can only be
x′ (if it exists).

Case 2: x is lonely.
Then x has exactly one neighbor w in layer d. By Lemma 6.2 x is the only lonely neighbor
of w. The vertex ϕ(w) is in layer d with respect to ϕ(0), and by Lemma 6.2 it has at most
one lonely neighbor, say x′. Thus ψ(x) can only be x′ (if it exists).

Lemma 6.5. Let p 6= q and let ϕ : G(2, 0) → V (G) map as follows:

〈0q〉 7→ 〈0q〉,

〈1, 0q−1〉 7→ 〈1, 0q−1〉,

〈2, 0q−1〉 7→ 〈12, 0q−2〉,

〈12, 0q−2〉 7→ 〈2, 0q−1〉.

Then ϕ cannot be extended to an automorphism of G.
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Proof. Let p < q. Suppose that it is possible to extend ϕ to ψ : G(p, 0) → V (G) such
that ψ is an automorphism on its image. Then we show that ψ(〈p, 0q−1〉) = 〈1p, 0q−p〉,
ψ(〈1p, 0q−p〉) = 〈p, 0q−1〉. This is clearly true for p = 2. Consider p ≥ 3 and assume that
it is true for p− 1. Neighbors of 〈p− 1, 0q−1〉 in layer p are 〈p, 0q−1〉 (which is lonely) and
〈p − 1, 1, 0q−2〉. Neighbors of 〈1p−1, 0q−p+1〉 in layer p are 〈1p, 0q−p〉 (which is lonely) and
〈2, 1p−2, 0q−p+1〉. Since ψ should be an automorphism, lonely neighbors have to be mapped
into lonely neighbors, thus ψ(〈p, 0q−1〉) = 〈1p, 0q−p〉, ψ(〈1p, 0q−p〉) = 〈p, 0q−1〉. Note that
ψ is unique by Lemma 6.4.

Observe that G(p + 1, 0) \ G(p, 0) contains all weak partitions of p + 1 except from
〈p + 1, 0q−1〉. Thus 〈p, 0q−1〉 ∈ G(p, 0) has only one neighbor in layer p + 1: 〈p, 1, 0q−2〉.
However, ψ(〈p, 0q−1〉) = 〈1p, 0q−p〉 has two neighbors in layer p + 1: 〈1p+1, 0q−p−1〉 and
〈2, 1p−1, 0q−p〉. Thus, ψ cannot be extended into an automorphism on G(p + 1, 0).

An analogous argument settles the case when p > q.

Theorem 6.6. Let min{p, q} ≥ 2. If p 6= q, then Aut(G) = Z2, and if p = q, then
Aut(G) = Z2 × Z2.

Proof. Since G has exactly two leaves, 0 = 〈0q〉 and pq = 〈pq〉, every automorphism of G
either maps 0 7→ 0, pq 7→ pq, or 0 7→ pq, pq 7→ 0. This uniquely determines how the unique
neighbors 1 = 〈1, 0q−1〉 and pq−1 = 〈pq−1, p−1〉 of the leaves are mapped. However, since
min{p, q} ≥ 2, vertices 1 and pq− 1 each have two neighbors, which can again be mapped
either identically or into each other. For illustration, see Figure 4.

(2, 2)

(2, 1)

(2, 0) (1, 1)

(1, 0)

(0, 0)

Figure 4: The smallest weighted Padovan graph (Π2,2) with the automorphism group
isomorphic to the Klein-four group Z2 × Z2.

Let ϕ : V (G) → V (G) be an automorphism. By the above, there are only 2 · 2 = 4
possibilities of how ϕ maps N [1]. By inductively applying Lemma 6.4, ϕ|N [1] determines
the whole ϕ uniquely. Thus Aut(G) ⊆ Z2 × Z2.

However, if p 6= q and ϕ(N [1]) = N [1], then Lemma 6.5 shows that ϕ|N [1] = id|N [1].
Thus Aut(G) 6= Z2 × Z2, and by the Lagrange’s theorem, |Aut(G)| ∈ {1, 2}.
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Let τ : V (G) → V (G) be defined so that τ((λ1, . . . , λq)) = (p−λq, . . . , p−λ1). Clearly,
τ is well-defined. Let xy ∈ E(G). So x = (λ1, . . . , λq) and y is obtained from x by
changing λi to λi + 1 for some i ∈ [q]. Thus τ(x) = (p − λq, . . . , p − λi, . . . , p − λ1) and
τ(y) = (p − λq, . . . , p − λi − 1, . . . , p − λ1), so τ(x)τ(y) ∈ E(G). Similarly we obtain that
τ(N(x)) = N(τ(x)). Hence, τ is an automorphism. Thus if p 6= q, Aut(G) = Z2 = {id, τ}.

If p = q, let ρ : V (G) → V (G) be defined as ρ(λ) = λ′. Recall that the conjugate λ′

of a weak partition λ = (λ1, . . . , λq) is obtained by interchanging the rows and columns of
the Ferrers diagram of λ. In other words, the number of parts of λ′ equal to i is λi − λi+1.
Since λ has q parts which are all at most p, λ′ has at most p parts which are all at most
q. Finally, we add a sufficient number of parts of size 0 to the end of λ′ so it has exactly
p parts. Since p = q, ρ is well-defined. Let xy ∈ E(G). So x = (λ1, . . . , λq) and y is
obtained from x by changing λi to λi + 1 for some i ∈ [q]. Consider now ρ(x) and ρ(y).
The number of parts that equal j is equal in both ρ(x) and ρ(y) for all j ∈ [q] \ {i− 1, i},
while the number of parts of size i − 1 and i differ for 1 between ρ(x) and ρ(y). Thus
ρ(x)ρ(y) ∈ E(G). Similarly, we see that ρ(N(x)) = N(ρ(x)), and so ρ is an automorphism
of G. Since ρ(0) = 0 and τ(0) = pq, ρ 6= τ . Thus Aut(G) = Z2 × Z2 = {id, τ, ρ, τ ◦ ρ}.
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