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1 Introduction
General position and mutual-visibility are two fresh areas of metric and algorithmic
graph theory. The concepts are complementary to each other, and together represent
a flourishing area of research.

Based on the motivation of robotic visibility, the graph mutual-visibility problem
was introduced by Di Stefano [8]. Given a set S of vertices in a graph G, two
vertices u and v are mutually-visible with respect to S, shortly S-visible, if there
exists a shortest u, v-path P such that V (P ) ∩ S ⊆ {u, v}. The set S is a mutual-
visibility set if any two vertices from S are S-visible. A largest mutual-visibility set
of G is a µ-set and its size is the mutual-visibility number µ(G) of G.

In [7], the total mutual-visibility number was introduced, while the variety of
mutual-visibility invariants was rounded off in [5] by adding to the list the outer
mutual-visibility number and the dual mutual-visibility number. A set S ⊆ V (G)
is an outer mutual-visibility set in G if S is a mutual-visibility set and every pair
of vertices u ∈ S, v ∈ V (G) \ S are S-visible. S is a dual mutual-visibility set if S
is a mutual-visibility set and every pair of vertices u, v ∈ V (G) \ S are S-visible.
Finally, S is a total mutual-visibility set if every pair of vertices in G are S-visible.
Largest outer/dual/total mutual-visibility sets are respectively called µo-sets, µd-
sets, µt-sets, their sizes being the outer/dual/total mutual-visibility number of G,
respectively denoted by µo(G), µd(G), µt(G).

Given a set S of vertices in a graph G, two vertices u and v are S-positionable, if
for every shortest u, v-path P we have V (P )∩S ⊆ {u, v}. (Note that if uv ∈ E(G),
then u and v are S-positionable.) Then S is a general position set, if every u, v ∈ S
are S-positionable. A largest general position set is a gp-set and its size is the general
position number gp(G) of G. These concepts were independently introduced in [4]
and in [19], where the latter paper is the origin of the terminology and notation
we now use. We should add that the concept has been previously explored in the
context of hypercubes [14].

Following the pattern of mutual-visibility, the variety of general position invari-
ants was presented in [24]. The definition of the outer/dual/total general position set
in G is analogous, we just need to replace everywhere “S-visible" by “S-positionable."
Largest corresponding sets are called gpo-sets, gpd-sets, gpt-sets and their sizes are
the outer/dual/total general position number of G, respectively denoted by gpo(G),
gpd(G), gpt(G).

The literature on general position and mutual-visibility is already too vast to list
in full. In the area of the general position problem, we highlight the following early
papers [1, 9, 13, 20, 26] and the following recent ones [2, 10, 11, 15, 17, 21, 22, 25],
and in the area of the mutual-visibility, we highlight the following papers [3, 6, 16,
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18, 21, 23].
In addition to the general topicality of the field, the research in this paper has two

specific motivations. First, in the seminal paper [19], the general position number
was determined for glued binary trees. Here we build on this result by determining
all the other seven related invariants of glued binary trees. Second, in [12, Theorem
2.1], the gp-sets of the Cartesian product of two paths were enumerated. To our
knowledge, this is so far the only (nontrivial) enumeration result in the area. Here
we add to this the enumeration results for all eight invariants studied on glued binary
trees.

We proceed as follows. In the rest of this section, we give the other necessary
definitions and call up inequality chains we need in the following. In Section 2, we
determine the general position and the mutual-visibility invariants of glued binary
trees and also determine the number of the corresponding extremal sets. At the end
of the section the results are extended to glued t-ary trees. In Section 3, we discuss
generalized glued binary trees and extend some of the obtained results to this more
general context.

If X ⊆ V (G), then the subgraph of G induced by X is denoted by G[X]. The
open neighborhood of a vertex u will be denoted by N(u) and its degree by deg(u).
For vertices u and v of G, the length of a shortest u, v-path is called distance and it
is denoted by dG(u, v). A subgraph H of G is isometric, if dH(u, v) = dG(u, v) for
every two vertices u and v of H, and H is convex, if for any vertices u, v ∈ V (H),
any shortest u.v-path in G lies completely in H.

If G is a graph and τ ∈ {µ, µo, µd, µt, gp, gpo, gpd, gpt}, then the number of τ -sets
of G will be denoted by #τ(G).

To conclude the introduction, we state the following sequences of inequalities
which follow directly from the definitions and will be needed throughout. If G is a
graph, then:

gpt(G) ≤ µt(G) ≤ min{µo(G), µd(G)} ≤ max{µo(G), µd(G)} ≤ µ(G) (1)
gpt(G) ≤ min{gpo(G), gpd(G)} ≤ max{gpo(G), gpd(G)} ≤ gp(G) ≤ µ(G) (2)
gpo(G) ≤ µo(G) (3)
gpd(G) ≤ µd(G) (4)

2 Glued t-ary trees
In this section we determine the four mutual-visibility invariants and the four general
position invariants for all glued t-ary trees, where t ≥ 2. The arguments for the
general case are parallel to the arguments for the case t = 2. From this reason, and
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not to introduce too much notation unnecessarily, we will elaborate the proofs for
the case t = 2.

A perfect t-ary tree Tr,t, of depth r ≥ 1, is a rooted tree in which all non-leaf
vertices have t children, and all leaves have depth r. In particular, T1,t

∼= K1,t. The
perfect t-ary tree Tr,t has tr+1−1

t−1
vertices and tr leaves. For t ≥ 2, and r ≥ 1, a glued

t-ary tree GT (r, t) is obtained from two copies of Tr,t by pairwise identifying their
leaves. The vertices obtained by identification are called quasi-leaves of GT (r, t),
the set of the quasi-leaves of GT (r, t) will be denoted by L(GT (r, t)). If u and v
are quasi-leaves with N(u) = N(v), then we say that u and v are twin quasi-leaves.
Note that if r ≥ 2, then a vertex u of GT (r, t) is a quasi-leaf if and only if deg(u) = 2
and u lies in a C4.

Let u be a vertex of GT (r, t). Then we will denote by Tu the tree rooted in u
and having as the leaves all the descendants of u that are quasi-leaves. We say that
vertices u and v of GT (r, t) are quasi-twins, if Tu and Tv have the same leaves.

Perfect 2-ary trees and glued 2-ary trees are respectively called perfect binary
trees and glued binary trees. We will simplify the notation by setting GT (r) =
GT (r, 2). See Fig. 1 for GT (3). We will denote the two copies of Tr,2, from which
GT (r) is constructed, by T

(1)
r and T

(2)
r , so that L(GT (r)) = V (T

(1)
r ) ∩ V (T

(2)
r ).

Moreover, we set V
(1)
r = V (T

(1)
r ) \ L(GT (r)) and V

(2)
r = V (T

(2)
r ) \ L(GT (r)). Note

that the mapping V (T
(1)
r ) → V (T

(2)
r ) which maps each vertex of V (1)

r to its quasi-
twin in V

(2)
r , and maps each quasi-leaf to itself, is an isomorphism between T

(1)
r and

T
(2)
r .

The following observation will be used implicitly or explicitly throughout this
section. Its proof follows by the construction of GT (r).

Lemma 2.1. If r ≥ 2, then GT (r)[T
(i)
r ], i ∈ [2], is an isometric subgraph of GT (r).

In addition, if u, v ∈ V (T
(i)
r ), then there exist exactly two shortest u, v-paths if u

and v are quasi-leaves, otherwise the shortest u, v-path is unique.

2.1 Mutual-visibility in glued binary trees

In this subsection we determine the mutual-visibility invariants of GT (r) and begin
with the mutual-visibility itself.

Lemma 2.2. Let S be a mutual visibility set of GT (r). If |S ∩ V
(1)
r | ≥ 2, then

corresponding to each vertex v ∈ S ∩ V
(1)
r , we can find a pair of twin quasi-leaves in

Tv that are not in S such that these pairs are pairwise disjoint for all vertices from
S ∩ V

(1)
r .
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Proof. Let S be a mutual visibility set of GT (r) such that |S ∩ V
(1)
r | ≥ 2.

If there exist two vertices u, v ∈ S ∩ V
(1)
r such that u ∈ V (Tv), then let w be the

descendant of v which is not on the shortest u, v-path. Now, S∩V (1)
r ⊆ V (Tv)\V (Tw).

Moreover, for any two vertices x, y ∈ (S ∩ V
(1)
r ) \ {v}, the rooted trees Tx and Ty

are disjoint, since otherwise, one of x and y is not S-visible to v. Also, the quasi-
leaves of Tx (as well as Ty) are not in S, as they are not S-visible to v and the
quasi-leaves of Tw are not in S as they are not S-visible to u. Therefore, any vertex
x ∈ S ∩ V

(1)
r \ {v} can be assigned a pair of twin quasi-leaves from V (Tx) and v can

be assigned a pair of twin quasi-leaves from V (Tw).
In the other case, for every x, y ∈ S ∩ V

(1)
r , the rooted trees Tx and Ty are

disjoint and the quasi-leaves of Tx cannot be present in S as they are not S-visible
to y. Then again, any vertex x ∈ S∩V

(1)
r can be assigned a pair of twin quasi-leaves

from V (Tx).
In either case, to every vertex v ∈ S ∩ V

(1)
r we can assign a pair of twin quasi-

leaves in Tv that are not in S such that these pairs are pairwise disjoint.

Theorem 2.3. If r ≥ 2, then

µ(GT (r)) = 2r + 1 and #µ(GT (r)) = 2r+1 − 2 .

Proof. Let v be an arbitrary vertex from V
(1)
r ∪ V

(2)
r , we may assume without loss

of generality that v ∈ V
(1)
r . Set S = L(GT (r)) ∪ {v}. Then any two quasi-leaves

from S are S-visible because GT (r)[T
(2)
r ] is isometric by Lemma 2.1. Moreover, an

arbitrary quasi-leaf and the vertex v are also S-visible by Lemma 2.1. Hence S is a
mutual-visibility set of GT (r) and consequently µ(GT (r)) ≥ 2r + 1.

To prove that µ(GT (r)) ≤ 2r + 1, suppose on the contrary that there exists a
mutual-visibility set S of GT (r) with cardinality at least 2r + 2.

Let |S ∩ V
(1)
r | = k1 and |S ∩ V

(2)
r | = k2. Without loss of generality, suppose

k1 ≥ k2. If k1 = k2 = 1, then S contains all the quasi-leaves, but then the (unique)
vertex of S from V

(1)
r and the (unique) vertex of S from V

(2)
r are not S-visible. It

follows that k1 ≥ 2.
Let u be an arbitrary vertex from S ∩ V

(1)
r . Recall that Tu denotes the tree

rooted in u having as the leaves all the descendants of u which are quasi-leaves.
Since k1 ≥ 2, by Lemma 2.2 we can assign to each vertex in S ∩ V

(1)
r a pair of twin

quasi-leaves which do not lie in S such that these pairs are pairwise disjoint. This
in turn implies that

|S| = k1 + k2 + |S ∩ L|
≤ k1 + k1 + (2r − 2k1)

= 2r .
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By this contradiction we can conclude that µ(GT (r)) ≤ 2r + 1.
We have thus proved the first formula of the theorem. To prove the second, we

claim that each µ-set of GT (r) is of the form L ∪ {v}, where v ∈ V
(1)
r ∪ V

(2)
r . So

let S be an arbitrary µ-set of GT (r). As already proved, |S| = 2r + 1. Setting
k = |S ∩ (V

(1)
r ∪ V

(2)
r )| we need to prove that k = 1. Set further k1 = |S ∩ V

(1)
r |,

k2 = |S ∩ V
(2)
r |, and assume without loss of generality that k1 ≥ k2.

If k1 ≥ 2, then by the above argument we get that |S| ≤ 2r, a contradiction.
There is nothing to prove if k2 = 0. Hence we are left with the case k1 = k2 = 1.
Let u ∈ S ∩ V

(1)
r and v ∈ S ∩ V

(2)
r . Consider now the set D1 of quasi-leaves in Tu

and the set D2 of quasi-leaves in Tv. If D1 ∩ D2 ̸= ∅, then |D1 ∩ D2| ≥ 2 and no
vertex from D1 ∩D2 lies in S. Hence |S| ≤ 2r, which is not possible. To complete
the argument we claim that the case D1 ∩ D2 = ∅ also cannot happen. Indeed, if
this would be the case, then a vertex from D1 would not be S-visible with a vertex
from D2.

We have thus established that µ-set of GT (r) are of the form L ∪ {v}, where
v ∈ V

(1)
r ∪ V

(2)
r . This means that

#µ(GT (r)) = |V (1)
r ∪ V (2)

r | = 2r+1 − 2 ,

hence the second formula.

Theorem 2.4. If r ≥ 2, then

µo(GT (r)) = 2r and #µo(GT (r)) = 1 .

Proof. From Theorem 2.3 we know that µ-sets of GT (r) are of the form S =

L(GT (r)) ∪ {v}, where v ∈ V
(1)
r ∪ V

(2)
r . Assume without loss of generality that

v ∈ V
(1)
r . Then no pair of vertices v, u, where u ∈ V

(2)
r is S-visible. Hence S is not

an outer mutual-visibility set. Using (1) we get

µo(GT (r)) < µ(GT (r)) = 2r + 1 .

On the other hand, using Lemma 2.1 we infer that L(GT (r)) is an outer mutual-
visibility set of GT (r), so that µo(GT (r)) ≥ 2r. We can conclude that µo(GT (r)) =
2r.

To prove that #µo(GT (r)) = 1, we claim that L(GT (r)) is the unique µo-set.
Let S be a µo-set of GT (r). Let v ∈ V

(1)
r be a vertex of depth at most r − 2. If

v ∈ S, then let x and y be the children of v. No vertex from V (Tx) is S-visible to a
vertex in V (Ty), hence they cannot be present in S. Also, x and y are not S-visible
to any of the vertices in V

(1)
r \V (Tv) and hence any vertex in V

(1)
r \V (Tv) cannot be
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present in S. Therefore, S ∩ V (T
(1)
r ) = {v} and hence, |S| = 2r if only if V (2)

r ⊂ S.
Clearly, this is not possible and hence a vertex of depth less than r − 2 cannot be
present in S.

The remaining vertices which may be present in S can be partitioned into 2r−1

sets, each of which contains a pair of twin quasi-leaves and their neighbors, so that
each set induces a convex C4. Since, µo(C4) ≤ 2, at most two vertices from each
of this set can be present in S. Now, if a vertex v of depth r − 1 is present in
S, then none of the vertices from the C4 containing this v can be in S, so that
|S| ≤ 2r − 1, which is a contradiction. Therefore, the only possibility is to choose
the twin quasi-leaves from each C4 so that, S = L(GT (r)).

Theorem 2.5. If r ≥ 2, then

µt(GT (r)) = µd(GT (r)) = 2r−1 and #µt(GT (r)) = #µd(GT (r)) = 22
r−1

.

Proof. Set L = L(GT (r)). Let L = {v1, v2, . . . , v2r}, where v2k−1 and v2k are twin
quasi-leaves for k ∈ [2r−1]. From Lemma 2.1, we infer that {v1, v3, . . . , v2r−1} is a
total mutual-visibility set of GT (r), so that µt(GT (r)) ≥ 2r−1. In view of (1), the
proof of the first formula will be completed by proving that µd(GT (r)) ≤ 2r−1.

Let S be an arbitrary µd-set of GT (r). We first claim that S ∩ V
(1)
r = ∅ and

suppose on the contrary that there exists a vertex u ∈ S ∩V
(1)
r . Assume first that u

is not the root of T (1)
r . Let u′ and u′′ be the children of u and let w be the parent of

u. Then S ∩{u′, u′′} ≠ ∅, for otherwise u′ and u′′ are not S-visible. Assume without
loss of generality that u′ ∈ S. Further, S ∩ {u′′, w} ≠ ∅, for otherwise u′′ and w are
not S-visible. But now if u′′ ∈ S, then u′ ∈ S and u′′ ∈ S are not S-visible, and if
w ∈ S, then u′ ∈ S and w ∈ S are not S-visible. Assuming that u is the root of
T

(1)
r , we arrive to a contradiction using a similar argument.

We have thus proved that S ∩ V
(1)
r = ∅. By the symmetry of GT (r), we also

have S ∩ V
(2)
r = ∅. From this it readily follows that for any k ∈ [2r−1], at most

one of the vertices v2k−1 and v2k can belong to S, that is, at most one vertex of
twin quasi-leaves can be in S. We can conclude that µd(GT (r)) = |S| ≤ 2r−1. This
proves the first formula.

To derive the second formula, the above arguments imply that each µd-set and
each µt-set contains exactly one vertex from an arbitrary pair of twin quasi-leaves.
As there are 2r−1 such pairs, the result follows.

In Fig. 1, examples of a µ-set, µo-set (unique), µt-set and µd-set are shown.
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Figure 1: GT (3) and its (a) µ-set (b) unique µo-set (c) µt-set, µd-set

2.2 General position in glued binary trees

In this subsection we determine the four general position invariants for glued binary
trees. The general position number was earlier determined in [19, Proposition 3.8]
by using the isometric path number of a graph. In the next theorem we reprove this
result using an alternate argument. We further classify the gp-sets as well as the
gpo-sets.

The next lemma follows directly from Lemma 2.2, since every general position
set is a mutual-visibility set.

Lemma 2.6. Let S be a general position set of GT (r). If |S ∩ V
(1)
r | ≥ 2, then

corresponding to each vertex v ∈ S ∩ V
(1)
r , we can find a pair of quasi-leaves in Tv

that are not in S such that these pairs are pairwise disjoint for all vertices from
S ∩ V

(1)
r .

Theorem 2.7. If r ≥ 2, then gpo(GT (r)) = gp(GT (r)) = 2r . Moreover,

#gpo(GT (r)) = 1 and #gp(GT (r)) = 2r−1 + 1 .

Proof. By Lemma 2.1, L(G(T )) is an outer general position set of G and hence
gpo(G) ≥ 2r. In view of (2), the proof of the first two formulas will be completed
by proving that gp(GT (r)) ≤ 2r.

Consider an arbitrary general position set S of GT (r). If S ⊆ V (T
(i)
r ), for some

i ∈ [2], then S is also a general position set of T (i)
r and hence it follows that |S| ≤ 2r.

Therefore, assume that S ∩V
(i)
r is non-empty and let |S ∩V

(i)
r | = ti, i ∈ [2]. Assume

without loss of generality that t1 ≥ t2. Now, by Lemma 2.6, corresponding to each
vertex in S ∩ V

(1)
r , we can find a pair of quasi-leaves that are not in S, such that

these pairs are pairwise disjoint. Therefore,

|S| ≤ 2r + t1 + t2 − 2t1 ≤ 2r + t2 − t1 ≤ 2r .

Hence, gp(GT (R)) = 2r, thus establishing the first two formulas.
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By the above argument, |S| = 2r only when t1 = t2, hence let t = t1 = t2.
Using Lemma 2.6, assign a pair of quasi-leaves from Tu to each vertex u ∈ S ∩ V

(1)
r

which are pair-wise disjoint and assign a pair of quasi-leaves from Tv to each vertex
v ∈ S ∩ V

(2)
r which are also pair-wise disjoint. Note that |S| = 2r if and only if the

quasi-leaves which are not present in S are exactly the pairs which are assigned to
the vertices of S ∩ V

(i)
r , i ∈ [2] and every pair of quasi-leaves assigned to a vertex

in S ∩ V
(1)
r should also be assigned to a vertex in S ∩ V

(2)
r . Let x ∈ S ∩ V

(1)
r and

let y ∈ S ∩ V
(2)
r be such that the quasi-leaves assigned to x and y are the same.

Without loss of generality assume that y is of depth less than or equal to that of
x. Then every quasi-leaf in Tx is an internal vertex of a shortest x, y-path. Hence,
none of them can be present in S. If x is of depth less than r − 1, then there are
more pairs of quasi-leaves in Tx than which are assigned to x and these quasi-leaves
must be assigned to some vertices in S∩V

(1)
r , as well as to some vertices in S∩V

(2)
r .

But, if a vertex z ∈ S ∩ V
(2)
r of depth less than that of y is assigned a pair of these

quasi-leaves in Tx, then y will be an internal vertex of a shortest x, z-path and if
a vertex z ∈ S ∩ V

(2)
r of depth greater than that of y is assigned a pair of these

quasi-leaves in Tx, then z will be an internal vertex of a shortest x, y-path, both of
which contradicts S is a general position set. Hence, x must be of depth r− 1. If y
is also of depth r − 1, then x and y are quasi-twins and we cannot have any more
vertices in S ∩ (V

(1)
r ∪ V

(2)
r ) and hence, t = 1.

Now, if y is of depth less than r−1 then t > 1. Since, t > 1, there is at least one
more vertex z ∈ S ∩ V

(2)
r . Also, y is an internal vertex of a shortest x, v-path for

every v ∈ V
(2)
r \V (Ty). Therefore, z ∈ V (Ty) and z should not be an internal vertex

of a shortest x, y-path. Now, let w ∈ S ∩ V
(1)
r be the vertex which is assigned the

same quasi-leaves as that of z. If w is of depth less than or equal to that of y, then
x is an internal vertex of a shortest w, y-path and if w is of depth greater than y,
then z is an internal vertex of a shortest w, y-path. In either case S is not a general
position set. Therefore t > 1 is not possible.

We have thus proved that a gp-set of GT (r) is either L(GT (r)), or has the form

(L(GT (r)) \ {u, v}) ∪N(u) ,

where u and v are twin quasi-leaves. Since, there are 2r−1 twin quasi-leaves in GT (r),
it follows that #gp(GT (r)) = 2r−1 + 1.

Note that (L(GT (r)) \ {u, v}) ∪N(u) is not an outer general position set, since
u and v are not in S-position with the remaining quasi-leaves of GT (r). Therefore,
the only gpo-set is L(GT (r)) and hence #gpo(GT (r)) = 1.

In Fig. 2, the unique gpo-set and example of a gp-set are shown.
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Figure 2: GT (3) and its (a) unique gpo-set and (b) a gp-set

Lemma 2.8. If S is a dual general position set of G then the central vertex of an
induced K1,3 cannot be in S.

Proof. Let S be a dual general position set of G and let W = {v1, v2, v3} be the
set of pendent vertices of an induced K1,3 in G. By the pigeonhole principle, there
exists a pair of vertices in W which are either both present in S or both not present
in S. Since this pair of vertices must be in dual position, the central vertex of K1,3

cannot be present in S.

Corollary 2.9. If G is a triangle-free graph with δ(G) ≥ 3, then gpd(G) = 0.

Triangle-free graph have girth at least 4. For graphs G of girth at least 6 it was
earlier proved in [24, Corollary 3.4] that gpd(G) = 0 if and only if δ(G) ≥ 2.

Theorem 2.10. If r ≥ 2, then gpt(GT (r)) = gpd(GT (r)) = 0.

Proof. In [24, Theorem 2.1] it was proved that if G is a connected graph and X ⊆
V (G), then X is a total general position set of G if and only if it consists of (some of
the) simplicial vertices of G. (Recall that a vertex is simplicial if its neighborhood
induces a complete graph.) Since the glued binary trees GT (r) do not contain
simplicial vertices, we can conclude that gpt(GT (r)) = 0.

Now, let S be an arbitrary dual general position set of GT (r). By Lemma 2.8,
none of the vertices other than the quasi-leaves and the root vertices of binary trees
can be present in S. Now, since the two children, say u and w, of a root vertex v are
not present in S, u and w are in dual position implies that v cannot be present in
S. Similarly, if v is a quasi-leaf and u and w are two parents of v from two different
copies of the binary tree, then again u and w (which are not in S) are in dual position
implies that v cannot be in S. Therefore, S is empty. Hence, gpd(GT (r)) = 0.

The results of Sections 2.1 and 2.2 are summarized in Table 1.
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µ 2r + 1 #µ 2r+1 − 2 gp 2r #gp 2r−1 + 1

µo 2r #µo 1 gpo 2r #gpo 1

µd 2r−1 #µd 22
r−1

gpd 0 #gpd −

µt 2r−1 #µt 22
r−1

gpt 0 #gpt −

Table 1: Mutual-visibility and general position invariants in glued binary trees

2.3 Extension to glued t-ary trees

The results of Sections 2.1 and 2.2 can be naturally extended to glued t-ary trees
for any t ≥ 2. The relevant proofs run in parallel with the proofs produced, so only
the result is quoted here.

Theorem 2.11. If r ≥ 2 and t ≥ 2, then

1. µ(GT (r, t)) = tr + 1 and #µ(GT (r, t)) = tr+1 − 2.

2. µo(GT (r, t)) = tr and #µo(GT (r, t)) = 1.

3. If τ ∈ {µt, µd}, then τ(GT (r, t)) = tr−1(t− 1) and #τ(GT (r, t)) = tt
r−1.

4. gpo(GT (r, t)) = tr and #gpo(GT (r, t)) = 1.

5. gp(GT (r, t)) = tr and #gp(GT (r, t)) = tr−1 + 1.

6. gpt(GT (r, t)) = gpd(GT (r, t)) = 0.

3 On generalized glued binary trees
In this paper we found the exact value of four variants each of mutual visibility
and general position for glued binary trees. Moreover, we have also enumerated the
number of τ -sets for τ ∈ {µ, µo, µd, µt, gp, gpo, gpd, gpt}.

Furthermore, we have seen that the results obtained can be directly extended to
glued t-ary trees for any t ≥ 2. Now, the concept of glued t-ary trees can be further
generalized by gluing n perfect t-ary trees, instead of two. More precisely, the nth

generalized glued binary tree GT
(n)
r of depth r is obtained from n copies of GT (r)
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by identifying their leaves. These copies will be denoted by T
(i)
r , i ∈ [n], and the

vertices obtained by the identification are again called quasi-leaves of GT
(n)
r . The set

of the quasi-leaves will be denoted by L(GT
(n)
r ). Also, GT

(i,j)
r denotes the subgraph

induced by V (T
(i)
r ) ∪ V (T

(j)
r ). Note that GT

(i,j)
r

∼= GT (r). Finally, for i ∈ [n] set
V

(i)
r = V (T

(i)
r ) \ L(GT

(n)
r ).

Below, we extend some of the previous results to this generalized situation. First,
for the total mutual-visibility, dual mutual-visibility, total general position and the
total mutual-visibility, proofs are similar to those earlier, hence we can state:

Proposition 3.1. If r ≥ 2 and n ≥ 3, then

1. µt(GT
(n)
r ) = µd(GT

(n)
r ) = 2r−1 and #µt(GT

(n)
r ) = #µd(GT

(n)
r ) = 22

r−1, and

2. gpt(GT
(n)
r ) = gpd(GT

(n)
r ) = 0.

In the case of the outer general position number and the outer mutual-visibility
number, we have the following result.

Theorem 3.2. If r ≥ 2 and n ≥ 3, then gpo(GT
(n)
r ) = µo(GT

(n)
r ) = 2r and

#gpo(GT
(n)
r ) = #µo(GT

(n)
r ) = 1.

Proof. By Lemma 2.1, L(GT
(n)
r ) is an outer general position set of GT

(n)
r . Conse-

quently, gpo(GT
(n)
r ) ≥ 2r. In view of (3), the proof of gpo(GT

(n)
r ) = µo(GT

(n)
r ) = 2r

will be completed by proving that µo(GT
(n)
r ) ≤ 2r. Then since every outer gen-

eral position set is an outer mutual-visibility set, the proof of #gpo(GT
(n)
r ) =

#µo(GT
(n)
r ) = 1 will be completed by proving that L(GT

(n)
r ) is the unique µo-set of

GT
(n)
r .
Set V = V (GT

(n)
r ) and L = L(GT

(n)
r ). We claim that if S is a µo-set of GT

(n)
r

then |S ∩ (V \ L)| = 0. If there exists x, y ∈ S ∩ V
(i)
r then x is not S-visible to the

descendants of y, which is not possible. Thus |S ∩ V
(i)
r | ≤ 1, for i ∈ [n].

Now, if x ∈ S∩V
(i)
r then none of the descendants of x including quasi-leaves can

be in S. In addition, if x ∈ S ∩ V
(i)
r and y ∈ S ∩ V

(j)
r are such that x and y have

a common pair of twin quasi-leaves as descendants then without loss of generality
assume x has depth greater than or equal to that of y in which case, there exists a
vertex z ∈ V

(j)
r such that x and z are not S-visible. Hence we can assign to each

vertex in S ∩ (V \ L) a pair of twin quasi-leaves which is not in S such that these
pairs are pairwise disjoint. Thus if |S ∩ (V \L)| = k then |S| ≤ 2r−2k+k = 2r−k.
Since |S| ≥ 2r, this implies that |S ∩ (V \ L)| = 0. We have thus proved that L is
the unique µo-set of GT

(n)
r and hence we are done.
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Figure 3: gpo-set and µo-set of GT
(3)
2

Moving on to the general position problem in generalized glued binary trees, it
is a direct observation that in any maximal general position set quasi-leaves appear
as twins, that is, if a quasi-leaf appears in a maximal general position set, then its
twin quasi-leaf will also be there in S. Now, as in the case of general position set in
glued binary trees, (L(GT

(n)
r )\{u, v})∪N(u) is a general position set of cardinality

2r + n− 2, so that gp(GT
(n)
r ) ≥ 2r + n− 2, for n, r ≥ 2.

Though we do not have a proof, we have strong reasons to believe that

gp(GT (n)
r ) = 2r + n− 2

. For the time being, we leave it as an open problem.
If n is large enough, then µ(GT

(n)
r ) can be much larger than gp(GT

(n)
r ). For

instance, we can define a mutual-visibility set as follows. In each copy of the perfect
binary tree, we have 2r−1 vertices of depth r− 1. Therefore, we can choose

(
2r−1

2

)
=

2r−2(2r−1 − 1) distinct subsets of cardinality two. If n ≥ 2r−2(2r−1 − 1), then
corresponding to each two element subset, choose two vertices of corresponding index
from different copies of perfect binary trees. Clearly, this is a mutual-visibility set.
Also, we can add one more vertex from each copy of the perfect binary tree from
which vertices are not yet taken. The resultant set remains to be a mutual-visibility
set and hence, if n ≥ 2r−2(2r−1 − 1), then

µ(GT (n)
r ) ≥ 2(2r−2(2r−1 − 1)) + n− 2r−2(2r−1 − 1) = n+ 22r−3 − 2r−2 .

Still, if n is small enough, then µ(GT
(n)
r ) may come down to 2r +n− 2, which is the

expected value of gp(GT
(n)
r ) also.
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