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aDepartment of Mathematics, Faculty of Mathematical Sciences,

Alzahra University, Tehran, Iran

mekorivand@gmail.com, m.korivand@alzahra.ac.ir

soltan@alzahra.ac.ir

bFaculty of Mathematics and Physics, University of Ljubljana, Slovenia

sandi.klavzar@fmf.uni-lj.si

cInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
dFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

December 23, 2024

Abstract

Let dim(G) and D(G) respectively denote the metric dimension and the
distinguishing number of a graph G. It is proved that D(G) ≤ dim(G) + 1
holds for every connected graph G. Among trees, exactly paths and stars
attain the bound, and among connected unicyclic graphs such graphs are t-
cycles for t ∈ {3, 4, 5}. It is shown that for any 1 ≤ n < m, there exists a graph
G with D(G) = n and dim(G) = m. Using the bound D(G) ≤ dim(G) + 1,
graphs with D(G) = n(G)− 2 are classified.
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1 Introduction

Let G = (V (G), E(G)) be a graph and S ⊆ V (G). Then S is a resolving set if for any
two vertices g1 and g2 ofG, there exists a vertex s ∈ S such that dG(g1, s) 6= dG(g2, s),
where dG is the standard shortest-path distance. A smallest size resolving set of G
is a metric basis of G, its size being the metric dimension dim(G) of G.

Resolving sets were introduced independently and simultaneously by Slater [33]
and Harary & Melter [15] in 1975-6, and are one of the most widely studied and
applied graph theory concepts. The 2023 survey [34] which presents an overview of
the essential results and applications of metric dimension contains 220 references,
while the survey [27] that focuses on variants of metric dimension cites 203 papers.
Among these variants of metric dimension (MD) we point to strong MD [30], k-
MD [12], k-metric antidimension [35], local MD [28], adjacency MD [19], non-local
MD [25], edge MD [23], fractional MD [3], and mixed MD [22]. It is also extremely
important that various applications of metric dimension have been found so far to
solve real-world problems such as privacy in social networks, error correcting codes,
locating intruders in networks, chemistry, robot navigation, pattern recognition,
image processing, and coin weighing, cf. [34].

In 1977, Babai [5] presented a concept whose goal is to break symmetry in graphs
by a vertex partition of graphs with smallest size. Two decades later, in 1996, the
concepts was reinvented by Albertson and Collins [2] which led to a widespread
attention of it. In fact, it was only a decade or so ago from now that it was noticed
that the origin of the concept was Babai’s paper; it thus went unnoticed for almost
40 years. Anyhow, a distinguishing coloring of a graph G is a vertex coloring such
that there is no color preserving non-trivial automorphism of G. The minimum
number of colors required for a distinguishing coloring of G is the distinguishing
number D(G) of G.

Distinguishing coloring of graphs have been investigated from many perspectives
and with many different techniques, the papers [1,11,17,29] form a short selection of
such efforts. Distinguishing coloring can be extended to arbitrary groups acting on
sets, see [4,6,8,26,37]. Moreover, the concept has been the inspiration for several re-
lated concepts such as distinguishing maps [36], proper distinguishing coloring [10],
distinguishing arc-coloring [20], distinguishing index [21], and distinguishing thresh-
old [32].

Metric dimension and distinguishing index have gone their research paths for
years without paying attention to each other. The starting observation of this paper
is that solving the metric dimension problem for a graph enables to break its symme-
tries. We note in passing that this is not the first occasion on which the concept of
metric dimension has been linked with automorphism-dependent parameters, such
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as in determining sets [7, 13]. We proceed as follows.
In the next section we list some definitions needed, recall a few results, and

deduce a couple of new ones to be used later on. In Section 3 we first show that
D(G) ≤ dim(G) + 1 holds for every connected graph G. After that we prove that
among trees, exactly paths and stars attain the bound, while among the connected
unicyclic graphs such graphs are t-cycles for t ∈ {3, 4, 5}. We also show that for any
1 ≤ n < m, there exists a graph G with D(G) = n and dim(G) = m.

Almost every graph has trivial automorphism group, hence D(G) = 1 for almost
all graphs. In addition, if a graph has a nontrivial automorphism group, then its
distinguishing number is usually small, typically 2. In view of the bound D(G) ≤
dim(G) + 1, it is natural to search for graphs with large distinguishing number,
we do it in Section 4. In this direction we respectively classify the graphs G with
D(G) = n(G), D(G) = n(G) − 1, and D(G) = n(G) − 2, where n(G) denotes the
order of G.

2 Preliminaries

Let G = (V (G), E(G)) be a graph. The neighborhood of a vertex u ∈ V (G), that
is, the set of its neighbors, is denoted by NG(u). The diameter diam(G) of G is the
largest distance between the vertices of G. The complement of G is denoted by G.
The join G+H of graphs G and H is obtained from the disjoint union of G and H
by making adjacent every vertex of G with every vertex of H . The kite is a graph
on five vertices obtained from a K4−e by adding a vertex and making it adjacent to
one vertex of degree 2. If k is a positive integer, then [k] denotes the set {1, . . . , k}.

If t ≥ 1, then we define

Ct = {G : G is a connected graph with D(G) = t} ,

Ct = {G : G is a disconnected graph with D(G) = t} .

Lemma 2.1. If t ≥ 1, then Ct = {G : G ∈ Ct} \ Ct.

Proof. Assume first that H ∈ Ct. As H is disconnected, H is connected. Since also
D(H) = D(H) = t we get Ct ⊆ {G : G ∈ Ct} \ Ct.

Assume second that H ∈ {G : G ∈ Ct} \ Ct. Since H ∈ Ct, we have D(H) = t.
Moreover, H must be disconnected since H /∈ Ct. Thus {G : G ∈ Ct} \ Ct ⊆ Ct.

Theorem 2.2. [9, Theorem 3] If G is a connected graph with n(G) ≥ 2, then
dim(G) = n(G)− 1 if and only if G ∼= Kn(G).

Theorem 2.3. [9, Theorem 4] If G is a connected graph with n(G) ≥ 4, then
dim(G) = n(G)− 2 if and only if G = Ks,t (s, t ≥ 1), G = Ks +Kt (s ≥ 1, t ≥ 2),
or G = Ks + (K1 ∪Kt) (s, t ≥ 1).
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Proposition 2.4. Let G be a connected graph with dim(G) = n(G) − 2 ≥ 2. If
ℓ ≥ 1, then D(G) = n(G)− ℓ if and only if G is one of the following graphs:

(a) Kℓ+1,ℓ+1

(c) Kℓ +Kt, t ≥ ℓ

(e) Kℓ−1 + (Kt ∪K1), t ≥ max{2, ℓ− 1}

(b) Kt,ℓ, t ≥ ℓ+ 1

(d) Kt +Kℓ, t ≥ ℓ ≥ 2

(f) Kt + (Kℓ−1 ∪K1), t ≥ max{2, ℓ− 1}.

Proof. Let ℓ ≥ 1. As we have assumed that dim(G) = n(G)−2 ≥ 2, we need to check
which of the graphs listed in Theorem 2.3 fulfill the condition D(G) = n(G)− ℓ.

Assume first that G = Ks,t (s, t ≥ 1). If s = t, then D(G) = t + 1. The
assumption D(G) = n − ℓ implies that t + 1 = s + t − ℓ. So, s = t = ℓ + 1. This
means that G = Kℓ+1,ℓ+1. If s 6= t, then D(G) = max{s, t}. Let max{s, t} = t.
Then t = s+ t− ℓ, and so s = ℓ. Hence, G = Kt,ℓ for t ≥ ℓ+ 1.

Let G = Ks+Kt (s ≥ 1, t ≥ 2). Then we have D(G) = max{s, t}. If max{s, t} =
t, then t = s+t−ℓ and so s = ℓ. This implies thatG = Kℓ+Kt. And if max{s, t} = s,
then t = ℓ and G is the graph as stated in (d).

Finally, suppose that G = Ks + (K1 ∪ Kt) (s, t ≥ 1). Then we have D(G) =
max{s, t}. If max{s, t} = t (max{s, t} = s), then s = ℓ − 1 (t = ℓ − 1). In such a
situation, we obtain the graphs as stated in (e) and (f).

3 The connection

In this section we first show the basic connection between the distinguishing number
and the metric dimension, that is, if G is a connected graph, then D(G) ≤ dim(G)+
1. We prove that among trees, exactly paths and stars satisfy the equality, while
among connected unicyclic graphs the only such graphs are cycles on at most five
vertices. We also demonstrate that for any 1 ≤ n < m, there exists a graph G with
D(G) = n and dim(G) = m.

Proposition 3.1. If G is a connected graph, then D(G) ≤ dim(G) + 1. Moreover,
the bound is sharp.

Proof. Let S ⊆ V (G) be a metric basis of G, so that |S| = dim(G). Let c be
a coloring of V (G) which respectively assigns colors from [dim(G)] to the vertices
from S, and assigns color dim(G) + 1 to each vertex from V (G) \ S. We claim that
c is a distinguishing coloring for G. Suppose on the contrary that there exists a
non-trivial automorphism ϕ that preserves c. Then ϕ(u) = u for each v ∈ S, hence,
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since ϕ is non-trivial, there exist vertices u, v ∈ V (G)\S, u 6= v, such that f(u) = v.
Since an automorphism is a distance preserving mapping, for every w ∈ S we have

dG(u, w) = dG(f(u), f(w)) = dG(v, w) .

But then S does not resolve u and v, a contradiction.
To see that the bound is sharp, consider paths Pn, n ≥ 2, for which we have

D(Pn) = 2 and dim(G) = 1.

The proof of Proposition 3.1 gives:

Corollary 3.2. If G is a connected graph and S = {v1, . . . , vn} is a resolving set of
G, then {{v1}, . . . , {vn}, V (G) \ S} is a distinguishing partition of V (G).

As observed in the proof of Proposition 3.1, paths attain the equality in Propo-
sition 3.1. The equality is also attained by complete graphs Kn, n ≥ 2, since
D(Kn) = n and dim(Kn) = n− 1. A sporadic example for the equality is the wheel
graph W5 for which we have D(W5) = 3 and dim(W5) = 2, see [31]. We next show
that besides paths, starts are the only trees that attain the equality. To prove it,
we recall the following definitions.

Let T be a tree. A vertex u ∈ V (T ) is a leaf if degT (u) = 1, and a branch if
degT (u) ≥ 3. The terminal degree of a branch u is the number of leaves x, such that
dT (x, u) < dT (x, v) for all branches v 6= u. A branch is external if its terminal degree
is strictly positive, otherwise it is internal. The number of leaves and of external
branches of T are respectively denoted by ℓ(T ) and ex(T ). Using these definitions,
the key result for the metric dimension of trees asserts that if T is a tree different
from a path, then

dim(T ) = ℓ(T )− ex(T ) , (1)

see [15, 24, 33]. We further say that the branch closest to a leaf is the ancestor of
the leaf. The leaf is external if its ancestor is external. Finally, the path between a
leaf and its ancestor will be called a leg.

Theorem 3.3. A tree T satisfies the equality D(T ) = dim(T ) + 1 if and only if
T ∈ {Pn, K1,n : n ≥ 2}.

Proof. If n ≥ 2, then dim(Pn) = 1, D(Pn) = 2, dim(K1,n) = n−1, and D(K1,n) = n.
It remains to prove that for any tree T /∈ {Pn, K1,n : n ≥ 2} we have D(T ) 6=
dim(T )+1. Since dim(P1) = D(P1) = 1, we may assume in the rest that |V (T )| ≥ 3.

Assume first that ex(T ) = 1 and let b be the unique external branch. In this
case, from (1) we get dim(T ) = degT (b) − 1. Set d = degT (b). Recall that T is not
a star, and let p be a arbitrary leaf of T and p′ its neighbor. Color leaves different
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from p with distinct colors from [d − 1]. Assign color 2 to p′, and color 1 to all
the remaining vertices, including p. This is a distinguishing coloring of T , hence
D(T ) ≤ d− 1 = dim(T ).

Assume second that ex(T ) = k ≥ 2, and let b1, . . . , bk be the external branches
of T . Let

t = max

{

k,max
i∈[k]

degT (bi)− 1

}

.

We claim that dim(T ) ≥ t. First, by (1) we have dim(T ) ≥ k. Assume next that,
without loss of generality, degT (b1) = maxi∈[k] deg(bi). Let degT (b1) = d1+d2, where
d1 is the number of legs containing b1. Then in each such leg except one, there exists
a member in any metric basis of T . Moreover, in view of (1), each neighbor of b1
not a leg contributes at least 1 to the metric dimension of T . This means that

dim(T ) ≥ (d1 − 1) + d2 = degT (b1)− 1 = max
i∈[k]

deg(bi)− 1 .

We have thus proved that dim(T ) ≥ t. Now, for i ∈ [k], color bi with color i.
Additionally, color the external leaves of the same ancestor bi with distinct colors
from the set [degT (bi)]. (Note that since there are at least two external branches,
there can be no more than degT (bi) − 1 external leaves corresponding to the same
ancestor bi). Finally, assign color 1 to all the remaining vertices. This coloring is a
distinguishing coloring which proves that D(T ) ≤ t and we are done.

We next determine the graphs among unicyclic graphs which attain the equality
in Proposition 3.1.

Theorem 3.4. If G is a connected unicyclic graph, then D(G) = dim(G)+ 1 if and
only if G ∈ {C3, C4, C5}.

Proof. Let G be a unicyclic graph and let t1, . . . , tm be the consecutive vertices of the
unique cycle C of G. Let further Ti, i ∈ [m], be the maximal connected subgraph of
G which contains ti and no other vertex of C. Then Ti is a tree, where it is possible
that Ti

∼= K1. In particular, if G is a cycle, then every Ti is the one vertex graph.
We now distinguish two cases.

In the first case every Ti, i ∈ [m], is isomorphic to a path. Then every automor-
phism of G restricted to C is an automorphism of C. It follows that if m ≥ 6, then
D(G) = 2 and hence D(G) < dim(G) + 1. Consider next the cases m ∈ {3, 4, 5}.
Assume that each path Ti has at least two vertices and let t′i be the neighbor of
ti in Ti. If m = 3, then assign color 1 to t1, t

′

1 and t3, and color 2 to t2, t
′

2 and
t′3. If m = 4, then assign color 1 to t1, t

′

1, t3 and t′4, and color 2 to t2, t
′

2, t
′

3 and
t4. And if m = 5, then assign color 1 to t1, t

′

1, t3, t
′

3, t
′

4 and t5, and color 2 to
t2, t

′

2, t4 and t′5. Finally, in each of the three cases assign color 1 to all the other
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vertices. In each of the cases we have a distinguishing coloring, so D(G) ≤ 2 and
thus D(G) ≤ dim(G). Note that the above argument is also applicable as soon as at
least one Ti has at least two vertices. Hence we can conclude that if m ∈ {3, 4, 5},
then D(G) = dim(G) + 1 if and only if G ∈ {C3, C4, C5}.

In the second case at least one Ti is not a path, we may assume without loss of
generality that T1 is such a tree. Let S = {s1, . . . , sk} be a metric basis of G. Since
T1 is not a path, we have S ∩ V (T1) 6= ∅, and we may assume that s1 ∈ S ∩ V (T1).
Color now the vertices si, i ∈ [k] \ {1}, with color i, and all the other vertices, that
is, vertices from (V (G) \ S) ∪ {s1}, with color 1. If a non-trivial automorphism
f preserves this coloring, then f(si) = si for i ∈ [k] \ {1} and f(s1) ∈ V (G) \ S.
Since t2 and tm are not resolved by vertices from S ∩ V (T1), there exists a vertex
in S \ V (T1), say s2. By [14, Corollary 7] we may assume that t1 /∈ S, so by now
it is colored 1. Change now the color of s1 and of t1 to 2, so that the color class
of color 2 contains the vertices s1, s2, and t1. This is now a distinguishing coloring
using k = dim(G) colors and we can conclude that D(G) ≤ dim(G).

To conclude the section we demonstrate the following result which complements
Proposition 3.1.

Proposition 3.5. For any 1 ≤ n < m, there exists a graph G with D(G) = n and
dim(G) = m.

Proof. If k ≥ 3, then let Tk be the tree obtained from K1,k by respectively subdi-
viding its edges 0, 1, . . . , k − 1 times. Then Tk is asymmetric, so that D(Tk) = 1.
On the other hand, from (1) we get dim(Tk) = k − 1. This settles the case n = 1.

Assume now that 2 ≤ n < m. Let Gn,m be the graph obtained from the disjoint
union of Tm−n+2 and Kn by adding the edges between the maximum degree vertex
of Tm−n+2 and all the vertices of Kn. Then D(Gn,m) = n and dim(Gn,m) = m.

4 Graphs G with D(G) close to n(G)

In this section we classify graphs G such that D(G) ∈ {n(G), n(G)− 1, n(G)− 2}.
First, combining Proposition 3.1 with Theorem 2.2 and having Lemma 2.1 in mind
we get:

Corollary 4.1. If G is a graph, thenD(G) = n(G) if and only if G ∈ {Kn(G), Kn(G)}.

Using the classification of graphs G with dim(G) = n(G)− 2 from Theorem 2.3
and its application in Proposition 2.4, the graphs with dim(G) = n(G)− 1 are the
following.
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Theorem 4.2. If G is a graph, then D(G) = n(G) − 1 if and only if G is one of
C4, 2K2, Kt,1, and Kt ∪K1, where t ≥ 2.

Proof. Assume first that G is a connected graph. By Proposition 3.1, dim(G) ∈
{n(G)− 2, n(G)− 1}. Moreover, by Theorem 2.2 and Corollary 4.1, it more specif-
ically holds that dim(G) 6= n(G) − 1, that is, dim(G) = n(G) − 2. To determine
such graphs, set ℓ = 1 in Proposition 2.4. Then C4 and the graphs Kt,1, t ≥ 2, are
obtained from Proposition 2.4 (a) and (b). Since ℓ = 1, G is not equal to any graph
in Proposition 2.4 (d), (e) and (f). The graphs 2K2, and Kt ∪K1, t ≥ 2, are then
deduced by Lemma 2.1.

In the rest of the section we classify the graphs with dim(G) = n(G)− 2. To do
so, we use Proposition 3.1 together with the forthcoming Theorems 4.3 and 4.12 in
which graphs of metric dimension relevant to us and of given diameter are described.
To recall Theorems 4.3, some preparation is needed.

Vertices u and v of a graph G are twins if NG(v) \ {u} = NG(u) \ {u}. Define
the relation ≡ on V (G) × V (G) by setting u ≡ v if u = v, or if u and v are twins.
Then ≡ is an equivalence relation. For a vertex v ∈ V (G) we denote its equivalence
class by v∗, that is,

v∗ = {u ∈ V (G) : u ≡ v} .

The twin graph G∗ of G is the quotient graph with respect to the relation ≡, that
is,

V (G∗) = {v∗ : v ∈ V (G)} and E(G∗) = {v∗u∗ : uv ∈ E(G)} .

A twin equivalence class v∗ of G induces an edgeless graph or a complete graph.
This subgraph is denoted by G[v∗]. We will further say that v∗ is of

• type (1), if G[v∗] ∼= K1,

• type (K), if G[v∗] ∼= K2, where r ≥ 2,

• type (N), if G[v∗] ∼= Kr, where r ≥ 2.

Furthermore, we say that v∗ ∈ G∗ is of type (1K) if v∗ is of type (1) or (K), of type
(1N) if v∗ is of type (1) or (N), of type (KN) if v∗ is of type (K) or (N), and of type
(1KN) if v∗ is of type (1), (K) or (N). For more details about twin graphs see [16,18].
Now we can recall the following result.

Theorem 4.3. [18, Theorem 1] Let G be a connected graph with diam(G) = 2.
Then dim(G) = n(G)− 3 if and only if G∗ is one of the following graphs.

G1. G∗ = K3 and has at most one vertex of type (1K);
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G2. G∗ = P3 and one of the following cases holds:

(a) The degree-2 vertex is of type (N), and one of the leaves is of type (K)
and the other is of any type;

(b) One of the leaves is of type (K), the other is of type (KN) and the degree-2
vertex is of any type;

G3. G∗ is a triangle with a pendant edge, one of the degree-2 vertices is of type (N),
the other is of type (1K), and the leaf is of type (1N). Moreover, a degree-2
vertex of type (K) yields the leaf and the degree-3 vertex are not of type (N);

G4. G∗ = C5, and each vertex is of type (1);

G5. G∗ is a C5 with a chord, adjacent degree-2 vertices are of type (1), the other
vertices are of type (1K);

G6. G∗ = K1 + P4, the degree-4 vertex is of any type, the others are of type (1K).
Furthermore, two non-adjacent vertices are not of type (K), and two adjacent
vertices are not of different types (K) and (N);

G7. G∗ is a kite with a pendant edge adjacent to a degree-3 vertex, the leaf is of
type (1), the degree-4 and degree-3 vertices are type (1K), one of the degree-2
vertices is of type (K) and the other is of type (1);

G8. G∗ is a kite, one of the degree-2 vertices is of type (K), the other is of type
(1), one of the degree-3 vertices is of type (N), and the other is of type (1K);

G9. G∗ = C4, two adjacent vertices are of type (K), the others are of type (1);

G10. G∗ = C4 +K1, two degree-3 adjacent vertices are of type (K), degree-4 vertex
is of type (1K), others are of type (1).

Observation 4.4. Let m be a positive integer, G a connected graph, and V (G∗) =
{v∗1, . . . , v

∗

n(G∗)}. If D(G) = |v∗i | for some i ∈ [n(G∗)] and Σ j∈n(G∗)
j 6=i

|v∗j | 6= m, then

D(G) 6= n(G)−m.

We say that a graph G is almost asymmetric if there is no non-trivial auto-
morphism that maps a vertex from one twin equivalence class of G to a vertex
of another twin equivalence class of. Clearly, if G is almost asymmetric, then
D(G) = max

v∗∈V (G∗)
{|v∗| : v∗ ∈ V (G∗)}. From Observation we get:

Corollary 4.5. Let m be a positive integer and G a connected, almost asymmetric
graph. If n(G)− max

v∗∈V (G∗)
{|v∗| : v∗ ∈ V (G∗)} 6= m, then D(G) 6= n(G)−m.

9



In the following six lemmas we investigate the distinguishing number of the
graphs from Theorem 4.3.

Lemma 4.6. If G∗ is a G1 graph, then D(G) = n(G)− 2 if and only if G is K1,2,2

or K1,1,t, t ≥ 2.

Proof. Assume first that v∗1 is a vertex of G∗ of type (1). Then the other two vertices
v∗2 and v∗3 of G∗ are of type (N). If |v∗2| 6= |v∗3|, then D(G) = max{|v∗2|, |v

∗

3|}. Let
max{|v∗2|, |v

∗

3|} = |v∗2|. Hence D(G) = n(G) − 2 implies that |v∗3| = 1, and we
get the graphs K1,1,t, t ≥ 2. If |v∗2| = |v∗3|, then D(G) = |v∗2| + 1. The equation
|v∗2|+ 1 = |v∗2|+ |v∗3|+ 1− 2 results in |v∗3| = 2, and we obtain K1,2,2.

Let v∗1 be of type (K). If |v∗2| 6= |v∗3|, then D(G) = max{|v∗1|, |v
∗

2|, |v
∗

3|}. Without
loss of generality, we may assume that max{|v∗1|, |v

∗

2|, |v
∗

3|} = |v∗1|. The assumption
D(G) = n(G) − 2 yields |v∗2| + |v∗3| = 2, which is impossible. If |v∗2| = |v∗3|, then
D(G) = max{|v∗1|, |v

∗

2| + 1}. If D(G) = |v∗1|, then the size of v∗2 will be equal to 1,
which is impossible. If D(G) = |v∗2| + 1, then |v∗1| + |v∗3| = 3, which is again not
impossible.

Assume that v∗1 is of type (N). If |v∗1| 6= |v∗2| 6= |v∗3| 6= |v∗1|, then D(G) =
max{|v∗1|, |v

∗

2|, |v
∗

3|}. Let max{|v∗1|, |v
∗

2|, |v
∗

3|} = |v∗1|. Hence, |v∗2|+ |v∗3| = 2, which is
impossible. If |v∗1| = |v∗2| 6= |v∗3|, then D(G) = max{|v∗1| + 1, |v∗3|}. If D(G) = |v∗3|,
then |v∗1| = 1, which contradicts the definition of type (N). If D(G) = |v∗1|+ 1, then
D(G) 6= n− 2. If |v∗1| = |v∗2| = |v∗3|, then D(G) = |v∗1|+ 1 and |v∗2|+ |v∗3| = 3, which
is impossible.

Lemma 4.7. If G∗ is a G2 graph, then D(G) 6= n(G)− 2.

Proof. Suppose on the contrary that D(G) = n(G)− 2.
Assume first that G∗ is a G2(a) graph. Let v∗1, v

∗

2 and v∗3 be the vertices of
types (K), (N), and any type, respectively. Suppose first that v∗3 is of type (1).
Thus D(G) = max{|v∗1|, |v

∗

2|}. If max{|v∗1|, |v
∗

2|} = |v∗1|, then |v∗1| = |v∗1| + |v∗2| − 1
and so |v∗2| = 1, a contradiction. If max{|v∗1|, |v

∗

2|} = |v∗2|, then using a simi-
lar argument as before, |v∗1| = 1, a contradiction. Let v∗3 be of type (N). Then
D(G) = max{|v∗1|, |v

∗

2|, |v
∗

3|}. Without loss of generality, we may assume that
max{|v∗1|, |v

∗

2|, |v
∗

3|} = |v∗1|. So, |v∗2| + |v∗3| = 2, which is a contradiction. Assume
that v∗3 is of type (K). Clearly, |v∗1| = |v∗3|. So, D(G) = max{|v∗1| + 1, |v∗2|}. If
max{|v∗1| + 1, |v∗2|} = |v∗2|, then it is impossible as before. If max{|v∗1| + 1, |v∗2|} =
|v∗1|+ 1, then |v∗2|+ |v∗3| = 3, a contradiction.

Assume second that G∗ is a G2(b) graph. Let v∗1, v
∗

2 and v∗3 be the vertices of
types (K), any type, and (NK), respectively. If v∗3 is of type (N), then |v∗1| = 1,
which is impossible. Let v∗3 be of type (K). If |v∗1| 6= |v∗3|, then we reach the same
contradiction as before. Thus |v∗1| = |v∗3| and so D(G) = max{|v∗1| + 1, |v∗2|}. One
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can check that D(G) 6= |v∗2|. So, D(G) = |v∗1|+1. This concludes that |v∗2|+ |v∗3| = 3,
a contradiction.

Lemma 4.8. If G∗ is a G3 graph, then D(G) 6= n(G)− 2.

Proof. Let v∗1, v
∗

2, v
∗

3, and v∗4 be the degree-2 vertex of type (1K), the degree-2 ver-
tex of type (N), the degree-3 vertex, and the leaf, respectively. Suppose that
D(G) = n(G) − 2. Then in all cases, G is almost asymmetric. Hence, D(G) =
max{|v∗1|, |v

∗

2|, |v
∗

3|, |v
∗

4|}. Then from D(G) = n − 2 it follows that some of |v∗i |’s
must be equal to 1 or 0, which is impossible.

Lemma 4.9. If G∗ is a G5 graph, then D(G) 6= n(G)− 2.

Proof. Suppose that D(G) = n(G) − 2. Let v∗1 and v∗2 be the degree-3 vertices, v∗3
be the degree-2 vertex that is adjacent to v∗1 and v∗2, and v∗4 and v∗5 be the adjacent
degree-2 vertices. Let |v∗1| = |v∗2| = 1. If |v∗3| = 1, then D(G) = 2. If |v∗3| 6= 1, then
D(G) = |v∗3| = n(G) − 4, a contradiction. If |v∗1| = |v∗2| 6= 1 or |v∗1| 6= |v∗2|, then
D(G) = max{|v∗1|, |v

∗

2|, |v
∗

3|}. Therefore, in all cases D(G) 6= n(G)− 2.

Lemma 4.10. If G∗ is a G6 graph, then D(G) 6= n(G)− 2.

Proof. Let v∗1 and v∗4 be the degree-2 vertices, v∗3 and v∗5 be the degree-3 vertices,
and v∗2 be the degree-4 vertex. Suppose that D(G) = n(G)−2. The only non-trivial
automorphism of G∗ is the automorphism which fixes v∗2, swaps v∗1 with v∗4 , and
swaps v∗3 with v∗5. Since the non-adjacent vertices are not of type (K), if |v∗1| = |v∗4|,
then |v∗1| = 1. Now, if |v∗3| = |v∗5| = 1, then D(G) = max{2, |v∗2|}. If D(G) = 2,
then some vertices of G∗ have size 0 which is clearly not possible. If D(G) = |v∗2|,
then |v∗2|+2 = |v∗2|, a contradiction. If |v∗3| = |v∗5| 6= 1, then D(G) = max{|v∗3|, |v

∗

2|}.
In both cases D(G) = |v∗3| and D(G) = |v∗2|, soD(G) 6= n(G) − 2. If |v∗3| 6= |v∗5|
or |v∗1| 6= |v∗4|, then G is an almost asymmetric graph and Corollary 4.5 yields the
conclusion.

Lemma 4.11. If G∗ is one of the graphs G7, G8, G9, G10, then D(G) 6= n(G)− 2.

Proof. G7 is an almost asymmetric graph. Setting m = 2 in Corollary 4.5 we can
conclude that D(G) 6= n(G)−m.

If G∗ ∈ {G8, G9}, then D(G) = max
v∗∈V (G∗)

{|v∗| : v∗ ∈ G∗}. So, D(G) 6= n(G)− 2.

Assume finally that G∗ is a G10 graph. If the two degree-3 adjacent vertices of
type (K) have different sizes, then G is an almost asymmetric graph and the result
is immediate by Corollary 4.5. If the two degree-3 adjacent vertices of type (K) have
the same size, then D(G) = n(G) − 2 implies that some vertices of G∗ have size 0
which is clearly not possible.
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Before presenting the main result of this section, we need to recall the following
theorem and deduce from it another lemma. Here, α(G∗) denotes the number of
vertices of G∗ of type (KN).

Theorem 4.12. [16, Theorem 2.14] If G is a connected graph with d = diam(G) ≥
3, then dim(G) = n(G)− d if and only if G∗ is one of the following graphs.

(a) G∗ = Pd+1 and one of the following cases holds:

(a1) α(G∗) ≤ 1;

(a2) α(G∗) = 2, the two vertices of G∗ not of type (1) are adjacent, and if one
is a leaf of type (K), then the other is also of type (K);

(a3) α(G∗) = 2, the two vertices of G∗ not of type (1) are at distance 2 and
both are of type (N); or

(a4) α(G∗) = 3 and there is a vertex of type (N) or (K) adjacent to two vertices
of type (N).

(b) G∗ = Pd+1,k (the path (u∗

0, u
∗

1, . . . , u
∗

d) with one extra vertex adjacent to u∗

k−1)
for some integer k ∈ [3, d − 1], the degree-3 vertex u∗

k−1 of G∗ is of any type,
each neighbour of u∗

k−1 is of type (1N), and every other vertex is of type (1).

(c) G∗ = P ′

d+1,k (the path (u∗

0, u
∗

1, . . . , u
∗

d) with one extra vertex adjacent to u∗

k−1

and u∗

k) for some integer k ∈ [2, d − 1], the three vertices in the cycle are of
type (1K), and every other vertex is of type (1).

Lemma 4.13. Let G be a connected graph with d = diam(G) ∈ {3, 4}. If dim(G) =
n(G)− d, then D(G) = n(G)− 2 if and only if G = P4.

Proof. The graph G∗ is one of the graphs described in Theorem 4.12.
In the case (a1), assume first that d = 3. If α(G∗) = 0, then G = P4 and

D(G) = n(G)− 2. In what follows, we will see that G = P4 is the only graph with
D(G) = n(G)−2 satisfying the assumptions of this lemma. If α(G∗) = 1, then there
are two non-isomorphic positions for placing a vertex of type (K) or (N) in P4. In
all cases, the distinguishing number is equal to n − 3. Assume next that d = 4. If
α(G∗) = 0, then G = P5 and D(G) = n(G) − 3. If α(G∗) = 1, then in all cases we
have D(G) = n(G)− 4.

In all the other cases, that is, (a2), (a3), (a4), (b), and (c), there are no graphs
with distinguishing number n(G)− 2, so we can proceed by using Corollary 4.5 for
the graph G∗ with n(G∗) ≥ 5, and techniques similar to those used in the proofs of
the previous lemmas for the graph G∗ with n(G∗) = 4.

We have now arived to the main result of this section.
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Theorem 4.14. If G be a graph with n(G) ≥ 4, then D(G) = n(G)− 2 if and only
if G is one of the following graphs:

(1) C5

(3) K1,2,2

(5) K3,3

(7) Kt,2, t ≥ 3

(9) K2 +Kt, t ≥ 2

(11) Kt +K2, t ≥ 2

(13) K1 + (Kt ∪K1), t ≥ 2

(2) P4

(4) 2K2 ∪K1

(6) 2K3

(8) Kt ∪K2, t ≥ 3

(10) Kt ∪ 2K1, t ≥ 2

(12) Kt ∪K2, t ≥ 2

(14) Kt,1 ∪K1, t ≥ 2 .

Proof. Let G be a connected graph withD(G) = n(G)−2. Proposition 3.1, Theorem
2.2, and Corollary 4.1 imply that it suffices to check the graphs which have metric
dimension equal to n(G)− 2 or to n(G)− 3.

Assume first that dim(G) = n(G) − 2 and set ℓ = 2 in Proposition 2.4. The
graphs in (a), (b), (c), (d), and (e) in Proposition 2.4 are the graphs in (5), (7), (9),
(11), and (13), respectively. Note that the graph in (f) in Proposition 2.4 appears
in (11).

Assume second that dim(G) = n(G)− 3. Since dim(G) ≤ n(G) − diam(G), we
have diam(G) ≤ 3. If diam(G) = 2, then the graphs in (1), (3) and (9) follow directly
from Theorem 4.3 and Lemmas 4.6–4.11. If diam(G) = 3, then Theorem 4.12
and Lemma 4.13 imply that G is the graph in (2). If G is disconnected, then by
Lemma 2.1, G has the form described in (4), (6), . . . , (14) as the complements
of graphs in (3), (5), . . . , (13), respectively. (Note here that C5 and P4 are self-
complementary graphs).

To conclude the paper we note that recently graphs G with dim(G) = n(G)− 4
have been described [38]. Using the above approach we believe that it is also possible
to classify the graphs G with D(G) = n(G)− 3.
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