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Abstract

A connected graph Γ of diameter diam(Γ) ≥ ℓ is ℓ-distance-balanced if
|Wxy(Γ)| = |Wyx(Γ)| for every x, y ∈ V (Γ) with dΓ(x, y) = ℓ, where Wxy(Γ)
is the set of vertices of Γ that are closer to x than to y. Γ is said to be
highly distance-balanced if it is ℓ-distance-balanced for every ℓ ∈ [diam(Γ)].
It is proved that every cubic Cayley graph whose generating set is one of
{a, an−1, bar} and {ak, an−k, bat} is highly distance-balanced. This partially
solves a problem posed by Miklavič and Šparl.
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1 Introduction

If Γ = (V (Γ), E(Γ)) is a connected graph and x, y ∈ V (Γ), then the distance dΓ(x, y)
between x and y is the number of edges on a shortest (x, y)-path. The diameter
diam(Γ) of Γ is the maximum distance between its vertices. The set Wxy(Γ) contains
the vertices that are closer to x than to y, that is, Wxy(Γ) = {w ∈ V (Γ) : dΓ(w, x) <
dΓ(w, y)}. Vertices x and y are balanced if |Wxy(Γ)| = |Wyx(Γ)|. For an integer
ℓ ∈ [diam(Γ)] = {1, 2, . . . , diam(Γ)} we say that Γ is ℓ-distance-balanced if each pair
of vertices x, y ∈ V (Γ) with dΓ(x, y) = ℓ is balanced. Γ is said to be highly distance-
balanced if it is ℓ-distance-balanced for every ℓ ∈ [diam(Γ)]. 1-distance-balanced
graphs are simply called distance-balanced graphs.

Distance-balanced graphs were first considered by Handa [12] back in 1999, while
the term “distance-balanced” was proposed a decade later by Jerebic et al. in [14].
The latter paper was the trigger for intensive research of distance-balanced graphs,
see [1, 4–7, 9, 13, 17–19, 22, 26]. Moreover, distance-balanced graphs have motivated
the introduction of the hitherto much-researched Mostar index [2, 8] and distance-
unbalancedness of graphs [16, 24, 25]. In this context, distance-balanced graphs are
the graphs with the Mostar index equal to 0. Distance-balanced graphs also coincide
with “transmission regular graphs,” see the survey [3] on the latter class of graphs.

In [10], Frelih generalized distance-balanced graphs to ℓ-distance-balanced graphs.
Since then many researchers studied ℓ-distance-balancedness of graphs from differ-
ent aspects, see [11,15,20,21,23]. We emphasize that in [23] some general results on
ℓ-distance balanced graphs are obtained and ℓ-distance-balancedness of cubic graphs
and graphs of diameter at most 3 are studied.

The main object of our interest in this paper is Cayley graphs, so let’s recapitulate
the definitions. Let G be a finite group and let S ⊆ G be a generating subset with
S = S−1 and not containing the identity. Then the Cayley graph Cay(G;S) has the
vertex set G, and g ∈ G is adjacent to h ∈ G whenever g−1h ∈ S.

Kutnar et al. [17] proved that every vertex-transitive graph is strongly distance-
balanced. We do not give the definition of strongly distance-balancedness here, it
suffices to state that, as the name suggests, every strongly distance-balanced graphs
is distance-balanced. Since Cayley graphs are vertex-transitive, every Cayley graphs
is hence distance-balanced. Moreover, Miklavič and Šparl [23] proved that every
Cayley graph of an abelian group is highly distance-balanced.

Given the above results, the question naturally arises as to what the situ-
ation is with distance-balancedness of Cayley graphs of non-abelian groups. In
particular, Miklavič and Šparl posed the problem below, for which we recall that
Dn = Cn ⋊ C2 = 〈a, b | an = b2 = 1, bab = a−1〉 is the dihedral group of or-
der 2n, where Cn = 〈a〉 is a normal cyclic subgroup of Dn of order n. Note that
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Dn = {1, a, . . . , an−1, b, ba, . . . , ban−1}.

Problem 1. [23, Problem 6.7] For each Cayley graph Γ of a dihedral group deter-
mine all ℓ ≥ 1 such that Γ is ℓ-distance-balanced. If this is too difficult in general,
consider this problem for cubic Cayley graphs of dihedral groups.

Our two main results which partially answer Problem 1 read as follows.

Theorem 2. If S1 = {a, an−1, bar}, where 0 ≤ r ≤ n−1, then Cay(Dn;S1) is highly
distance-balanced.

Theorem 3. If S2 = {ak, an−k, bat}, where 1 ≤ k < n/2, (k, n) = 1, and 0 ≤ t ≤
n− 1, then Cay(Dn;S2) is highly distance-balanced.

The Cayley graphs Cay(D6;S1) where S1 = {a, a5, ba2}, and Cay(D7;S2) where
S2 = {a3, a4, ba5}, are shown in Fig. 1. Theorems 2 and 3 are proved in Section 2,
while in the concluding section we list some open problems.

1 a a2 a3 a4 a5

b ba ba2 ba3 ba4 ba5

1 a3 a6 a2 a5 a a4

b ba3 ba6 ba2 ba5 ba ba4

Figure 1: Cay(D6;S1) where S1 = {a, a5, ba2} (above); Cay(D7;S2) where S2 =
{a3, a4, ba5} (below).
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2 Proof of Theorems 2 and 3

For a non-negative integer k, we will use the notations [k] = {1, . . . , k} and [k]0 =
{0, . . . , k − 1}. Before proving Theorem 2, there are three technical lemmas.

Lemma 4. In Dn, if i ∈ [n]0, then (ai)−1 = an−i, (bai)−1 = bai, and baib = a−i.

Proof. Because an = b2 = 1, we have (ai)−1 = a−i = an−i and b−1 = b.
Since bab = a−1, we have aba = b and baba = 1. Hence (bai)(bai) = bai−1abaai−1 =

bai−1bai−1 = · · · = baba = 1. So (bai)−1 = bai.
And since (bai)−1 = bai, we get baibai = 1 and baib = a−i.

Lemma 5. If S1 = {a, an−1, bar}, r ∈ [n]0, and if i ∈ [n]0, then in Cay(Dn;S1),

(1) ai is adjacent to ai−1, ai+1, and bar−i; and

(2) bai is adjacent to bai−1, bai+1, and ar−i.

Proof. Because (i) (ai−1)−1ai = a ∈ S1, (ii) (ai+1)−1ai = a−1 = an−1 ∈ S1, and (iii)
(bar−i)−1ai = bar−iai = bar ∈ S1, we get that ai is adjacent to (i) ai−1, (ii) ai+1, and
(iii) bar−i.

By Lemma 4 we have baib = a−i. Then because (i) (bai−1)−1(bai) = bai−1bai =
a−(i−1)ai = a ∈ S1, (ii) (bai+1)−1(bai) = bai+1bai = a−(i+1)ai = a−1 = an−1 ∈ S1, and
(iii) (ar−i)−1(bai) = (bar−ib)(bai) = bar ∈ S1, we can conclude that bai is adjacent
to (i) bai−1, (ii) bai+1, and (iii) ar−i.

Lemma 6. If S2 = {ak, an−k, b(ak)r}, 1 ≤ k < n/2, (k, n) = 1, r ∈ [n]0, and if
i ∈ [n]0, then in Cay(Dn;S2),

(1) aik is adjacent to a(i−1)k, a(i+1)k, and ba(r−i)k; and

(2) baik is adjacent to ba(i−1)k, ba(i+1)k, and a(r−i)k.

Proof. Because (i) (a(i−1)k)−1aik = ak ∈ S2, (ii) (a(i+1)k)−1aik = a−k = an−k ∈ S2,
and (iii) (ba(r−i)k)−1aik = (ba(r−i)k)aik = bark ∈ S2, we get that aik is adjacent to (i)
a(i−1)k, (ii) a(i+1)k, and (iii) ba(r−i)k.

Since baib = a−i (Lemma 4), the computations (i) (ba(i−1)k)−1(baik) = ba(i−1)kbaik =
a−(i−1)kaik = ak ∈ S2, (ii) (ba(i+1)k)−1(baik) = ba(i+1)kbaik = a−(i+1)kaik = a−k =
an−k ∈ S2, and (iii) (a(r−i)k)−1(baik) = (ba(r−i)kb)(baik) = bark ∈ S2 imply that baik

is adjacent to (i) ba(i−1)k , (ii) ba(i+1)k, and (iii) a(r−i)k.

Now it is time to prove Theorem 2.
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Proof of Theorem 2. Set Γ = Cay(Dn;S1). Because Cayley graphs are vertex-
transitive, it suffices to prove that |W1as(Γ)| = |Was1(Γ)| for s ∈ [n − 1] and
|W1(bas)(Γ)| = |W(bas)1(Γ)| for s ∈ [n]0.

Let V1 = {1, a, . . . , an−1} and V2 = {b, ba, . . . , ban−1}. Let Γ1 = Γ[V1] and
Γ2 = Γ[V2] be the subgraphs of Γ respectively induced by V1 and V2. Then Γ1 and
Γ2 are isomorphic to cycles. In the light of the foregoing, the proof will be complete
after proving the following two claims.

Claim 1: |W1as(Γ)| = |Was1(Γ)|, s ∈ [n− 1].
Let s ∈ [n− 1] and note that 1(bar) ∈ E(Γ) and (as)(bar−s) ∈ E(Γ). Set

W1as(Γ1) = {ai ∈ V1 : dΓ1
(1, ai) < dΓ1

(as, ai)} ,

Was1(Γ1) = {ai ∈ V1 : dΓ1
(1, ai) > dΓ1

(as, ai)} ,

W(bar)(bar−s)(Γ2) = {bai ∈ V2 : dΓ2
(bar, bai) < dΓ2

(bar−s, bai)} ,

W(bar−s)(bar)(Γ2) = {bai ∈ V2 : dΓ2
(bar, bai) > dΓ2

(bar−s, bai)} .

Since Γ1 and Γ2 are cycles, then |W1as(Γ1)| = |Was1(Γ1)| and |W(bar)(bar−s)(Γ2)| =
|W(bar−s)(bar)(Γ2)|. Moreover, the structure of Γ yields

W1as(Γ) = W1as(Γ1) ∪W(bar)(bar−s)(Γ2) ,

Was1(Γ) = Was1(Γ1) ∪W(bar−s)(bar)(Γ2) .

We can conclude that |W1as(Γ)| = |Was1(Γ)| for s ∈ [n− 1].

Claim 2: |W1(bas)(Γ)| = |W(bas)1(Γ)|, s ∈ [n]0.
The proof of Claim 2 is divided into four cases according to the value of s.

Case 1: s = r.
In this case, W1(bar)(Γ) = V1 and W(bar)1(Γ) = V2, therefore |W1(bar)(Γ)| = |W(bar)1(Γ)|
as required.

Case 2: s = r − 1.
Assume first that n is even. then dΓ(1, a

i) = dΓ(ba
r−1, ai) when 1 ≤ i ≤ n/2, and

dΓ(1, ba
i) = dΓ(ba

r−1, bai) when r ≤ i ≤ r + n/2− 1. Consequently,

W1(bar−1)(Γ) = V1 − {a, a2, . . . , an/2} ,

W(bar−1)1(Γ) = V2 − {bar, bar+1, . . . , bar+n/2−1} .

We can conclude that |W1(bar−1)(Γ)| = |W(bar−1)1(Γ)|.
Assume second that n is odd. Then dΓ(1, a

i) = dΓ(ba
r−1, ai) when 1 ≤ i ≤

(n− 1)/2, and dΓ(1, ba
i) = dΓ(ba

r−1, bai) when r ≤ i ≤ r + (n− 1)/2− 1. Hence

W1(bar−1)(Γ) = V1 − {a, a2, . . . , a(n−1)/2} ,

W(bar−1)1(Γ) = V2 − {bar, bar+1, . . . , bar+(n−1)/2−1} ,
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and we have the required conclusion |W1(bar−1)(Γ)| = |W(bar−1)1(Γ)|.

Case 3: s = r + 1.
Assume first that n is even. Then dΓ(1, a

n−i) = dΓ(ba
r+1, an−i) when 1 ≤ i ≤ n/2,

and dΓ(1, ba
r−i) = dΓ(ba

r+1, bar−i) when 0 ≤ i ≤ n/2− 1. Hence,

W1(bar+1)(Γ) = V1 − {an−1, an−2, . . . , an/2} ,

W(bar+1)1(Γ) = V2 − {bar, bar−1, . . . , bar−n/2+1} ,

and thus |W1(bar+1)(Γ)| = |W(bar+1)1(Γ)|.
Assume second that n is odd. Now we get dΓ(1, a

n−i) = dΓ(ba
r+1, an−i) when

1 ≤ i ≤ (n − 1)/2, and dΓ(1, ba
r−i) = dΓ(ba

r+1, bar−i) when 0 ≤ i ≤ (n − 1)/2 − 1.
Consequently,

W1(bar+1)(Γ) = V1 − {an−1, an−2, . . . , a(n+1)/2} ,

W(bar+1)1(Γ) = V2 − {bar, bar−1, . . . , bar−(n−1)/2+1} ,

which yields the required conclusion |W1(bar+1)(Γ)| = |W(bar+1)1(Γ)|.

Case 4. s 6∈ {r, r − 1, r + 1}.
Our aim is to prove the following two claims.

Claim A: If i ∈ [n]0, then ai ∈ W1(bas)(Γ) if and only if bas+i ∈ W(bas)1(Γ).

Claim B: If i ∈ [n]0, then ai ∈ W(bas)1(Γ) if and only if bas+i ∈ W1(bas)(Γ).

Proving Claims A and B, we will get a bijection between W1(bas)(Γ) and W(bas)1(Γ),
which will in turn yield the desired conclusion |W1(bas)| = |W(bas)1|.

Note that

W1(bas)(Γ) = {ai | dΓ1
(1, ai) < dΓ1

(ar−s, ai) + 1} ∪

{bai | dΓ2
(bar, bai) + 1 < dΓ2

(bas, bai)},

W(bas)1(Γ) = {ai | dΓ1
(1, ai) > dΓ1

(ar−s, ai) + 1} ∪

{bai | dΓ2
(bar, bai) + 1 > dΓ2

(bas, bai)}.

The proof of Claims A and B is divided into the following four cases according to
the value of s and i.

Case 4.1: s ∈ [r − 1]0, i ∈ [r − s+ 1]0.
If ai ∈ W1(bas)(Γ), then dΓ(1, a

i) < dΓ(ba
s, ai). We prove that bas+i ∈ W(bas)1(Γ).

The path 1, a, a2, . . . , ai is a shortest (1, ai)-path, while

bas, ar−s, ar−s−1, . . . , ai or bas, ar−s, ar−s+1, . . . , ai
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is a shortest (bas, ai)-path. Here and later “or” refers that one of the two possibilities
holds according to the value of r and s.

Further, the path bas, bas+1, . . . , bas+i is a shortest (bas, bas+i)-path, while the
path

1, bar, bar−1, . . . , bas+i or 1, bar, bar+1, . . . , bas+i

is a shortest (1, bas+i)-path. It follows that

dΓ(ba
s, bas+i) = dΓ(1, a

i) and dΓ(1, ba
s+i) = dΓ(ba

s, ai).

So dΓ(ba
s, bas+i) < dΓ(1, ba

s+i) and bas+i ∈ W(bas)1(Γ).
The above discussion also implies that if bas+i ∈ W(bas)1(Γ), then ai ∈ W1(bas)(Γ).

That is, ai ∈ W1(bas)(Γ) if and only if bas+i ∈ W(bas)1(Γ), which demonstrates Claim
A in this case.

If ai ∈ W(bas)1(Γ), then dΓ(ba
s, ai) < dΓ(1, a

i). We prove that bas+i ∈ W1(bas)(Γ).
The path bas, ar−s, ar−s−1, . . . , ai is a shortest (bas, ai)-path, and

1, a, a2, . . . , ai or 1, an−1, an−2, . . . , ai

is a shortest (1, ai)-path. Further, 1, bar, bar−1, . . . , (bas+i) is a shortest (1, bas+i)-
path, and

bas, bas+1, . . . , bas+i or bas, bas−1, . . . , bas+i

is a shortest (bas, bas+i)-path. Hence,

dΓ(1, ba
s+i) = dΓ(ba

s, ai) and dΓ(ba
s, bas+i) = dΓ(1, a

i).

So dΓ(1, ba
s+i) < dΓ(ba

s, bas+i) and bas+i ∈ W1(bas)(Γ).
The above discussion also yields that if bas+i ∈ W1(bas)(Γ), then ai ∈ W(bas)1(Γ).

That is, ai ∈ W(bas)1(Γ) if and only if bas+i ∈ W1(bas)(Γ). This proves Claim B in
this case.

Case 4.2: s ∈ [r − 1]0, r − s < i ≤ n− 1.
If ai ∈ W1(bas)(Γ), then dΓ(1, a

i) < dΓ(ba
s, ai). We prove that bas+i ∈ W(bas)1(Γ).

The path 1, an−1, . . . , ai is a shortest (1, ai)-path, and

bas, ar−s, ar−s+1, . . . , ai or bas, ar−s, ar−s−1, . . . , ai

is a shortest (bas, ai)-path. In addition, the path bas, bas−1, . . . , bas+i−n is a shortest
(bas, bas+i)-path while

1, bar, bar−1, . . . , bas+i or 1, bar, bar+1, . . . , bas+i
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is a shortest (1, bas+i)-path. Consequently,

dΓ(ba
s, bas+i) = dΓ(1, a

i) and dΓ(1, ba
s+i) = dΓ(ba

s, ai).

So dΓ(ba
s, bas+i) < dΓ(1, ba

s+i) and bas+i ∈ W(bas)1(Γ).
Again we also see that if bas+i ∈ W(bas)1(Γ), then ai ∈ W1(bas)(Γ) and we can

conclude that ai ∈ W1(bas)(Γ) if and only if bas+i ∈ W(bas)1(Γ). This establishes
Claim A in this case.

If ai ∈ W(bas)1(Γ), then dΓ(ba
s, ai) < dΓ(1, a

i). We prove that bas+i ∈ W1(bas)(Γ).
The path bas, ar−s, ar−s+1, . . . , ai is a shortest (bas, ai)-path, and

1, a, a2, . . . , ai or 1, an−1, an−2, . . . , ai

is a shortest 1, ai-path. Further, 1, bar, bar+1, . . . , bas+i is a shortest (1, bas+i)-path,
and

bas, bas+1, . . . , bas+i or bas, bas−1, . . . , bas+i

is a shortest (bas, bas+i)-path. This means that

dΓ(1, ba
s+i) = dΓ(ba

s, ai) and dΓ(ba
s, bas+i) = dΓ(1, a

i).

Hence, dΓ(1, bas+i) < dΓ(ba
s, bas+i) and bas+i ∈ W1(bas)(Γ).

Using the above discussion we also infer that if bas+i ∈ W1(bas)(Γ), then ai ∈
W(bas)1(Γ). So ai ∈ W(bas)1(Γ) if and only if bas+i ∈ W1(bas)(Γ) and Claim B is
verified in this case.

Case 4.3: r + 2 ≤ s ≤ n− 1, i ∈ [r − s+ n + 1]0.
If ai ∈ W1(bas)(Γ), then dΓ(1, a

i) < dΓ(ba
s, ai). We prove that bas+i ∈ W(bas)1(Γ).

The path 1, a, a2, . . . , ai is a shortest (1, ai)-path, and

bas, ar−s, ar−s−1, . . . , ai or bas, ar−s, ar−s+1, . . . , ai

is a shortest (bas, ai)-path. Furthermore, the path bas, bas+1, . . . , bas+i is a shortest
(bas, bas+i)-path, and

1, bar, bar−1, . . . , bas+i or 1, bar, bar+1, . . . , bas+i

is a shortest (1, bas+i)-path. From this we deduce that

dΓ(ba
s, bas+i) = dΓ(1, a

i) and dΓ(1, ba
s+i) = dΓ(ba

s, ai).

So dΓ(ba
s, bas+i) < dΓ(1, ba

s+i) and bas+i ∈ W(bas)1(Γ). We further get that if
bas+i ∈ W(bas)1(Γ), then ai ∈ W1(bas)(Γ). Hence ai ∈ W1(bas)(Γ) if and only if
bas+i ∈ W(bas)1(Γ) which establishes Claim A.
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If ai ∈ W(bas)1(Γ), then dΓ(ba
s, ai) < dΓ(1, a

i). We prove that bas+i ∈ W1(bas)(Γ).
The path bas, ar−s+n, ar−s+n−1, . . . , ai is a shortest (bas, ai)-path, and

1, a, a2, . . . , ai or 1, an−1, an−2, . . . , ai

is a shortest (1, ai)-path. Moreover, the path 1, bar, bar−1, . . . , bas+i is a shortest
(1, bas+i)-path, and

bas, bas+1, . . . , bas+i or bas, bas−1, . . . , bas+i

is a shortest (bas, bas+i)-path. Hence

dΓ(1, ba
s+i) = dΓ(ba

s, ai) and dΓ(ba
s, bas+i) = dΓ(1, a

i)

which in turn implies that dΓ(1, ba
s+i) < dΓ(ba

s, bas+i) and bas+i ∈ W1(bas)(Γ). We
also get that if bas+i ∈ W1(bas)(Γ) then ai ∈ W(bas)1(Γ). That is, ai ∈ W(bas)1(Γ) if
and only if bas+i ∈ W1(bas)(Γ). Claim B follows in this case.

Case 4.4: r + 2 ≤ s ≤ n− 1, r − s+ n < i ≤ n− 1.
If ai ∈ W1(bas)(Γ), then dΓ(1, a

i) < dΓ(ba
s, ai). We prove that bas+i ∈ W(bas)1(Γ).

The path 1, an−1, . . . , ai is a shortest (1, ai)-path, and

bas, ar−s, ar−s+1, . . . , ai or bas, ar−s, ar−s−1, . . . , ai

is a shortest (bas, ai)-path. Next, bas, bas−1, . . . , bas+i−n is a shortest (bas, bas+i)-
path, and

1, bar, bar−1, . . . , bas+i or 1, bar, bar+1, . . . , bas+i

is a shortest (1, bas+i)-path. Hence,

dΓ(ba
s, bas+i) = dΓ(1, a

i) and dΓ(1, ba
s+i) = dΓ(ba

s, ai).

So dΓ(ba
s, bas+i) < dΓ(1, ba

s+i) and bas+i ∈ W(bas)1(Γ). We also get that if bas+i ∈
W(bas)1(Γ), then ai ∈ W1(bas)(Γ). That is to say, ai ∈ W1(bas)(Γ) if and only if
bas+i ∈ W(bas)1(Γ). Claim A follows.

If ai ∈ W(bas)1(Γ), then dΓ(ba
s, ai) < dΓ(1, a

i). We prove that bas+i ∈ W1(bas)(Γ).
The path bas, ar−s, ar−s+1, . . . , ai is a shortest (bas, ai)-path, and

1, a, a2, . . . , ai or 1, an−1, an−2, . . . , ai

is a shortest (1, ai)-path. Next, 1, bar, bar+1, . . . , bas+i is a shortest (1, bas+i)-path,
and

bas, bas+1, . . . , bas+i or bas, bas−1, . . . , bas+i
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is a shortest (bas, bas+i)-path. So,

dΓ(1, ba
s+i) = dΓ(ba

s, ai) and dΓ(ba
s, bas+i) = dΓ(1, a

i).

Hence, dΓ(1, bas+i) < dΓ(ba
s, bas+i) and bas+i ∈ W1(bas)(Γ). Moreover, we also get

that if bas+i ∈ W1(bas)(Γ), then ai ∈ W(bas)1(Γ). That is, ai ∈ W(bas)1(Γ) if and only
if bas+i ∈ W1(bas)(Γ). Claim B follows also in this case.

It remains to prove Theorem 3.

Proof of Theorem 3. Let Γ1 = Cay(Dn;S1), where S1 = {a, an−1, bar}, and let Γ2 =
Cay(Dn;S2), where S2 = {ak, an−k, bat}. We will prove that Γ1 is isomorphic to Γ2.

Let r be an integer such that t = kr(mod )n. Note that r exists because we have
assumed that (k, n) = 1. Then bat = bakr.

Let θ : V (Γ1) → V (Γ2) be a bijection defined by θ(ai) = aik and θ(bai) = baik,
i ∈ [n]0. Let φ : E(Γ1) → E(Γ2) be a bijection defined by φ(aiai+1) = aika(i+1)k,
φ((bai)(bai+1)) = (baik)(ba(i+1)k), and φ(ai(bar−i)) = aik(ba(r−i)k), i ∈ [n]0.

For i ∈ [n]0 we have

φ(aiai+1) = aika(i+1)k = θ(ai)θ(ai+1) ,

φ((bai)(bai+1)) = (baik)(ba(i+1)k) = θ(bai)θ(bai+1) ,

φ(ai(bar−i)) = aik(ba(r−i)k) = θ(ai)θ(bar−i) .

This proves that Γ1 and Γ2 are isomorphic, hence Theorem 2 implies the result.

3 Concluding remarks

Distance-balancedness of cubic Cayley graphs of dihedral groups remains to be con-
sidered for the other two types. More precisely:

Problem 7. Study the ℓ-distance-balancedness of Cay(Dn; {a
n/2, bak1 , bak2}) and of

Cay(Dn; {ba
k1, bak2 , bak3}).

Of course, we also have:

Problem 8. Study the ℓ-distance-balancedness of non cubic Cayley graphs of dihe-
dral groups.

With respect to Problem 8 we point to the following example. The Cayley graph
Cay(D9; {a

3, a6, b, ba2, ba3}) is of diameter 3 and is neither 2-distance-balanced nor
3-distance-balanced, see [23, Fig. 2].

More generally, we also pose:
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Problem 9. Study the ℓ-distance-balancedness of cubic Cayley graphs of groups
except dihedral groups.

With respect to the last problem, consider the next examples. The Cayley graph
Cay(A4;S), where S = {(1 2 3), (1 3 2), (1 2)(3 4)}, is a cubic graph of diameter 3.
Surprisingly, it is 1-distance-balanced, 3-distance-balanced, but it is not 2-distance-
balanced. As another example consider Cay(S4; {(1 2), (2 4), (1 2)(3 4)}), which is
a cubic graph of diameter 4. However, this Cayley graph is 1-distance-balanced,
2-distance-balanced, but it is neither 3-distance-balanced nor 4-distance-balanced,
see [23, Fig. 1].
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