
ar
X

iv
:2

50
3.

19
38

9v
1

 [
m

at
h.

C
O

]
 2

5
M

ar
 2

02
5

Three algorithmic approaches to the general

position problem

Zahra Hamed-Labbafiana,∗ Narjes Sabeghib,†

Mostafa Tavakolia,‡ Sandi Klavžarc,d,e,§

a Department of Applied Mathematics, Faculty of Mathematical Sciences
Ferdowsi University of Mashhad, Mashhad, Iran

b Department of Mathematics, Faculty of Basic Sciences
Velayat University, Iranshar, Iran

c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

d Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

e Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

Abstract

If G is a graph, then X ⊆ V (G) is a general position set if for every two
vertices v, u ∈ X and every shortest (u, v)-path P , it holds that no inner
vertex of P lies in X. In this note we propose three algorithms to compute
a largest general position set in G: an integer linear programming algorithm,
a genetic algorithm, and a simulated annealing algorithm. These approaches
are supported by examples from different areas of graph theory.

Keywords: general position set; general position number; integer linear program-
ming; genetic algorithm; simulated annealing algorithm.

AMS Subj. Class. (2020): 05C12, 05C69, 05C76, 05C85

∗Email: hamedlabbafianzahra@gmail.com
†Corresponding author, Email: n.sabeghi@velayat.ac.ir
‡Email: m tavakoli@um.ac.ir
§Email: sandi.klavzar@fmf.uni-lj.si

1

http://arxiv.org/abs/2503.19389v1

1 Introduction

The general position problem in graph theory was independently introduced (at

least) three times, which clearly demonstrates that the concept is of wider interest.

The first time it was investigated in the context of hypercubes [9], and later extended

to the general case [2, 11]. The latter article has led to extensive research of the

problem, and a recent review article [3] lists 115 references. It should be emphasized

that the study of general position sets has extended to various types, such as Steiner

position sets [8], edge general position sets [12], mutual-visibility sets [4], mobile

position sets [7], monophonic position sets [15], vertex position sets [14], and lower

general position sets [5]. Among the recent achievements in the field, we would like

to highlight [1, 6, 16–19].

Let’s now define the problem. If G = (V (G), E(G)) is a simple, connected graph,

then the set X ⊆ V (G) is a general position set for the graph G if for every two

vertices v, u ∈ X and every shortest (u, v)-path P , it holds that no inner vertex of

P lies in X . We are interested in the size of a largest general position set of G which

is called the general position number of G and denoted by gp(G).

TheGeneral Position Set problem for a given graphG and a positive integer

k ≤ |V (G)| asks whether there exists a general position set S for G such that |S| ≥ k.

Already in the seminal paper [11] it was shown that the General Position Set

problem is NP-complete for arbitrary graphs. The closely related Lower General

Position problem was proved to be NP-complete in [5], and the Monophonic

Position Set problem was demonstrated to be NP-hard in [15]. Interestingly, it

is not clear whether the Monophonic Position Set is NP-complete for general

graphs.

Since determining the general position number of a graph is difficult in general,

it is reasonable to approach it in different algorithmic ways. Korže and Vesel [10]

described a reduction from the problem of finding a general position set in a graph

to the satisfiability problem and applied the approach to the case of general position

sets of hypercubes. However, we are aware of no systematic algorithmic approach to

the General Position Problem so far. Therefore, in this note we propose three

different algorithms for approaching the problem. These approaches are integer

linear programming (ILP), genetic algorithm (GA), and simulated annealing (SA),

and are described in the next section. In Section 3 these approaches are tested on

several large graphs from different areas of graph theory.

2

2 Three approaches

In this section, we present in respective subsections the three approaches to compute

the general position number as announced in the introduction.

2.1 Integer linear programming model

Let G be a graph with V (G) = {v1, . . . , vn(G)}, where n(G) denotes the order of G.

To find a general position set of G with the maximum cardinality, for a given set

X ⊆ V (G) define binary variables xj , j ∈ [n(G)], which constitute a characteristic

vector of X , that is,

xj =

{

1; vj ∈ X ,
0; otherwise .

Then the objective function is to maximize
∑n

j=1 xj . For each two vertices vi and

vj , let IG(vi, vj) be the set of vertices different from vi and vj which lie on at least

one shortest (vi, vj)-path. Therefore, if vi, vj ∈ X , that is, if xi + xj = 2, then we

must have
∑

xℓ∈IG(vi,vj)
xℓ = 0, which can be considered as the inequality:

∑

xℓ∈I(vi,vj)

xℓ ≤ 0 .

Using the integer modeling techniques, we model this constraint as:
∑

vℓ∈I(vi,vj)

xℓ +M(xi + xj − 1) ≤M, i, j ∈ [n(G)],

where M is an upper bound for the constraint
∑

vℓ∈I(vi,vj)
xℓ 6 0. In this case we

can select M = n(G). ILP for our problem is thus:

max

n
∑

j=1

xj

s.t.
∑

vℓ∈I(vi,vj)

xℓ + n(G)(xi + xj) ≤ 2n(G), i, j ∈ [n(G)]

xi ∈ {0, 1}, i ∈ [n(G)]

2.2 Genetic Algorithm

In this subsection, we present a Genetic Algorithm (GA for short) to find largest

general position sets. GA is a population-based method and is well-suited for the

3

general position problem because it efficiently explores large search spaces while

maintaining feasible solutions through its crossover and mutation operators.

Before implementing the GA, it is necessary to define the stopping criterion, the

fitness function, and the genetic operators specific to this problem. Each instance

of solution S for a graph G is represented as a binary (characteristic) vector of size

n(G), that is, if the vertex i is included in the solution, then S(i) = 1, otherwise,

S(i) = 0. The stopping criterion is defined as the maximum number of iterations.

The objective of the algorithm is to obtain a solution that satisfies the general

position constraints while maximizing the number of selected vertices. The fitness

function for a solution S is defined as:

Fitness(S) =
∑

S −M · f,

where
∑

S represents the total number of selected vertices, and f denotes the num-

ber of violations of the general position condition. Specifically, for every pair of

vertices u and v with S(u) = 1 and S(v) = 1, if there exists a vertex w on a shortest

(u, v)-path with S(w) = 1, then f is increased. The penalty term M ·f ensures that

solutions violating the general position condition are penalized proportionally to the

number of violations, where M is a large constant balancing the trade-off between

maximizing the number of selected vertices and maintaining feasibility. The initial

population is generated randomly, ensuring diversity in the search space.

For parent selection, we use a random selection method. The offspring generation

process involves combining two parent solutions: the new solution instance is a

binary vector, where a vertex is included if it appears in at least one of the parents.

The mutation operator selects two vertices randomly and swaps their values.

The GA presented in Algorithm 1 outlines the general structure of the approach

for solving the general position problem, while the details of the various operators

have been explained above.

2.3 Simulated Annealing

Simulated Annealing (SA for short) is a single-solution point-based metaheuristic

algorithm inspired by the annealing process in metallurgy. Before implementing

SA for the general position problem, it is essential to define the stopping criterion,

the neighborhood generation mechanism, and the fitness function. The algorithm

begins with an initial solution S0, which is a vector of zeros and ones representing

the inclusion or exclusion of vertices in the solution set. The quality of a solution

4

Algorithm 1 GA for the general position problem

Require: Graph, G, maximum number of iterations Maxit, and initial population
of size np.

Ensure: a general position set and gp(G).
1: Create a feasible initial populations with size np, and evaluate them using fitness

function.
2: count = 1
3: while count ≤Maxit do
4: Select parents randomly.
5: Generate and evaluate offspring using the crossover operator.
6: Generate and evaluate mutated populations using the mutation operator.
7: Merge the initial population, offspring, and mutated populations, and sort

them based on the fitness function (new population).
8: Truncate new population and generate a new population with size np.
9: count = count+ 1

10: end while
11: Return the individual with the best fitness value as the best solution.

is measured by the fitness function, Fitness(S), which is defined in the same way as

for the GA.

The acceptance probability of a new solution is determined by the Metropolis

criterion, which depends on the current temperature and the change in the objec-

tive value. The temperature gradually decreases according to a predefined cooling

schedule, and the algorithm terminates once the maximum number of iterations or

a minimum temperature is reached. The SA is formally presented in Algorithm 2.

3 Experimental results

We have performed our experiments on three different types of graph. The first

examples come from mathematics chemistry, the second examples deal with hyper-

cubes, while the last examples come from algebraic graph theory.

From the area of chemical graph theory we have considered the so-called middle-

fullerene graphs C42, C44, C46, and C48 from [13], see Figs. 1 and 2.

The maximum general position sets of C42 and C44 as indicated in Fig. 1 with

solid dots, were obtained by solving the corresponding ILP model. In the case of

the middle-fullerene graphs C46 and C48, their examination was carried out using

5

Algorithm 2 Simulate Annealing (SA) algorithm for the general position problem

Require: Graph G, maximum number of iterations Maxit, initial Temperature T0,
and the rate of temperature reduction ρ.

Ensure: A general position set of G and gp(G).
1: Create a feasible initial solution S.
2: best solution← S
3: best fitness← SF it (SF it = Fitness(S))
4: count← 1
5: T ← T0

6: while count ≤Maxit do
7: Generate and evaluate Neigbors of S.
8: Let best neighbor be the neighbor with the best fitness value

(best neighbor F it)
9: S ← best neighbor, SF it ← best neighbor F it

10: if SF it > best fitness then
11: best solution← S
12: best fitness← SF it(Fitness(S))
13: else
14: Generate a random number r.
15: if exp(−SF it)/T > r then
16: best solution← S
17: best fitness← SF it(Fitness(S))
18: end if
19: end if
20: if k ≥ cooling time then
21: T ← T ∗ ρ
22: k ← 0
23: end if
24: k ← k + 1
25: count← count+ 1
26: end while
27: Return the best solution with the best fitness value as the best solution.

all three algorithms, the results are reported in the top two lines of Table 1, the

concrete largest general position sets obtained can be seen in Fig. 2.

Let Qn denote the n-dimensional hypercube. It is known all the way from [9]

that it is intrinsically difficult to determine gp(Qn) in general. The small values

gp(Q1) = gp(Q2) = 2, and gp(Q3) = 4 can be determined by hand, while the values

6

Figure 1: Maximum general position sets for C42 and C44

Figure 2: Maximum general position sets for C46 and C48

gp(Q4) = 5, gp(Q5) = 6, gp(Q6) = 8, and gp(Q7) = 9 were reported in [10, Table 1].

In this note we have verified these values by our three algorithms, the computational

results are presented in the middle of Table 1.

For the last set of examples we have considered three examples from alge-

braic graph theory, Cayley graphs Cay(Z9, {1, 3, 6, 8}), Cay(Z9, {1, 2, 3, 6, 7, 8}), and

Cay(Z20, {1, 3, 17, 19}). The computational results are summarized in the last three

rows of Table 1.

As can be seen from Table 1, SA was the fastest in six cases and GA in four

cases. Both algorithms generally seem to be faster than ILP, which has never been

the fastest.

7

G n(G)
gpILP

gpGA

gpSA

ILP time GA time SA time

C46 46 8 73.10
29.72

np = 50
Maxit = 5000

22.32
T0 = 10

Maxit = 500

C48 48 8 71.46
38.34

np = 50
Maxit = 5000

11.95
T0 = 10

Maxit = 500

Q3 8 4 0.03
0.05

np = 10
Maxit = 100

0.010
T0 = 10

Maxit = 10

Q4 16 5 0.38
0.22

np = 20
Maxit = 200

0.075
T0 = 10

Maxit = 10

Q5 32 6 11.52
1.84

np = 20
Maxit = 400

1.93
T0 = 10

Maxit = 50

Q6 64 8 359.01
82.11

np = 50
Maxit = 4500

144.985
T0 = 10

Maxit = 500

Q7 128 9 3617.39
2060.06
np = 50

Maxit = 8000

2574.79
T0 = 10

Maxit = 100

Cay(Z9, {1, 3, 6, 8}) 9 4 1.22
0.06

np = 10
Maxit = 50

0.015
T0 = 10

Maxit = 10

Cay(Z9, {1, 2, 3, 6, 7, 8}) 9 4 0.41
0.01

np = 10
Maxit = 50

0.017
T0 = 10

Maxit = 10

Cay(Z20, {1, 3, 17, 19}) 20 7 0.85
0.54

np = 20
Maxit = 250

0.286
T0 = 10

Maxit = 50

Table 1: The general position number of some graphs and running times of the ILP,
the GA, and the SA

8

Acknowledgments

Sandi Klavžar were supported by the Slovenian Research and Innovation Agency

(ARIS) under the grants P1-0297, N1-0355, and N1-0285.

References

[1] J. Araujo, M.C. Dourado, F. Protti, R. Sampaio, The iteration time and the

general position number in graph convexities, Appl. Math. Comput. 487 (2025)

Paper 129084.

[2] U. Chandran S.V., G.J. Parthasarathy, The geodesic irredundant sets in graphs,

Int. J. Math. Combin. 4 (2016) 135–143.

[3] U. Chandran S.V., S. Klavžar, J. Tuite, The general position problem: A survey,

arXiv:2501.19385 [math.CO].

[4] G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022)

126850.

[5] G. Di Stefano, S. Klavžar, A. Krishnakumar, J. Tuite, I.G. Yero, Lower

general position sets in graphs, Discuss. Math. Graph Theory (2024)

doi.org/10.7151/dmgt.2542.

[6] V. Iršič, S. Klavžar, G. Rus, J. Tuite, General position polynomials, Results

Math. 79 (2024) Paper 110.

[7] S. Klavžar, A. Krishnakumar, J. Tuite, I.G. Yero, Traversing a graph in general

position, Bull. Aust. Math. Soc. (2023) 1–13.

[8] S. Klavžar, D. Kuziak, I. Peterin, I.G. Yero, A Steiner general position problem

in graph theory, Comput. Appl. Math. 40 (2021) 1–15.

[9] J. Körner, On the extremal combinatorics of the Hamming space, J. Comb.

Theory Ser. A 71 (1995) 112–126.

[10] D. Korže, A. Vesel, General position sets in two families of Cartesian product

graphs, Mediterr. J. Math. 20 (2023) Paper 203.

9

arXiv:2501.19385
doi.org/10.7151/dmgt.2542

[11] P. Manuel, S. Klavžar, A general position problem in graph theory, Bull. Aust.

Math. Sci. Soc. 98 (2018) 177–187.

[12] P. Manuel, R. Prabha, S. Klavžar, The edge general position problem, Bull.

Malays. Math. Sci. Soc. 45 (2022) 2997–3009.

[13] A.I. Melker, M.A. Krupina, Geometric modeling of midi-fullerene growth from

C32 to C60, St. Petersbg. State Polytech. Univ. J.: Phys. Math. 3 (2017) 22–28.

[14] M. Thankachy, U. Chandran S.V., J. Tuite, E. Thomas, G. Di Stefano, G. Er-

skine, On the vertex position number of graphs, Discuss. Math. Graph Theory

44 (2024) 1169–1188.

[15] E.J. Thomas, U. Chandran S.V., J. Tuite, G. Di Stefano, On monophonic

position sets in graphs, Discrete Appl. Math. 354 (2024) 72–82.

[16] E.J. Thomas, U. Chandran S.V., J. Tuite, G. Di Stefano, On the general posi-

tion number of Mycielskian graphs, Discrete Appl. Math. 353 (2024) 29–43.

[17] J. Tian, S. Klavžar, Variety of general position problems in graphs, Bull.

Malays. Math. Sci. Soc. 48 (2025) Paper 5.

[18] J. Tian, K. Xu, On the general position number of the k-th power graphs,

Quaest. Math. 47 (2024) 2215–2230.

[19] J. Tuite, E. Thomas, U. Chandran S.V., On some extremal position problems

for graphs, Ars Math. Contemp. 25 (2025) #P1.09.

10

	Introduction
	Three approaches
	Integer linear programming model
	Genetic Algorithm
	Simulated Annealing

	Experimental results

