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Abstract

This work focuses on showing some arguments addressed to dismantle the extended idea
about that social networks completely lacks of privacy properties. We consider the so-called
active attacks to the privacy of social networks and the counterpart (k, ℓ)-anonymity measure,
which is used to quantify the privacy satisfied by a social network against active attacks. To
this end, we make use of the graph theoretical concept of k-metric antidimensional graphs
for which the case k = 1 represents those graphs achieving the worst scenario in privacy
whilst considering the (k, ℓ)-anonymity measure.

As a product of our investigation, we present a large number of computational results
stating that social networks might not be as insecure as one often thinks. In particular, we
develop a large number of experiments on random graphs which show that the number of
1-metric antidimensional graphs is indeed ridiculously small with respect to the total number
of graphs that can be considered. Moreover, we search on several real networks in order to
check if they are 1-metric antidimensional, and obtain that none of them are such. Along
the way, we show some theoretical studies on the mathematical properties of the k-metric
antidimensional graphs for any suitable k ≥ 1. In addition, we also describe some operations
on graphs that are 1-metric antidimensional so that they get embedded into another larger
graphs that are not such, in order to obscure their privacy properties against active attacks.
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1 Introduction

Nowadays, it is a widely accepted fact that social networks usually provide very low privacy
features. The data collected in social media platforms is frequently used in ways that their users
are unaware of. Third-parties (like advertisers, for instance) use them and, many times, do not
care about who has access to them, and moreover, do not know whether they are also shared
with malicious entities. Social networks are targets for cyberattacks, and so, some platforms are
often compromised, which leads to some information, like private messages, photos, financial
data, etc. could be exposed. One reason for this might be that they indeed lack of a clear
transparency. That is, many social media analyzers often do not clearly explain or expose their
practices with respect to data-sharing, or make this in a confusing manner that users avoid
considering or even reading, and so, they give their consent to such companies to manage their
data.

All these facts have created the “myth” that social networks present very low or even none
privacy properties. However, there might be some arguments that could contribute to decrease
these extended myths. In this work, we are precisely focused on presenting a few of these
arguments, although we do not exactly state that social networks are secure with respect to
the privacy they offer. Instead, we claim that they might be not that weak as it is usually
understood. A reason for this is that we are considering only one kind of action among all that
ones that malicious entities can perform in order to retrieve sensitive information.

In fact, there are many different styles of processing a social network so that hidden private
information can be exposed. Entities dedicated to such malicious actions (frequently called
attackers) might develop numerous attacks to a data set to retrieve some information from it.
Among such actions, it is probably the most well-known that one called an active attack. Given
a social network, an active attack to its privacy is (roughly speaking) an action that an entity
can perform on such a graph to control a set of nodes of it, in order to detect or identify some
elements of the graph. While the objectives of such an attacker may vary widely, the successful
execution of malicious actions would inevitably compromise the privacy of users. Consequently,
the existence of privacy-preserving methods and privacy measures for social networks is critically
necessary.

The k-antiresolving sets and the k-metric antidimension of graphs were introduced in [21]
as the theoretical basis of the privacy measure (k, ℓ)-anonymity for social networks under active
attacks to their privacy. There was specifically stated that a given social network G satisfies
(k, ℓ)-anonymity if k is the smallest integer such that the k-metric antidimension of G is at most
ℓ. This can be understood as follows. A given user of the social network G has probability 1/k
to be identified in such a social network under the assumption that there are ℓ attacker nodes
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in G. The number of attacker nodes ℓ in a social network is usually statistically assumed, since
it is significantly smaller than the number of users of the network.

The privacy measure (k, ℓ)-anonymity was indeed the first one of its type, and the first
attempt into trying to quantify the privacy features that a social network achieves. Some
improved variation of this measure was later on published in [13]. Formal definitions of the
terms above are as follows. Let k ∈ N and let G = (V (G), E(G)) be a connected graph.

• The metric representation of a vertex x ∈ V (G) with respect to an ordered set S =
{v1, . . . , vt} ⊂ V (G) is the vector r(x|S) = (dG(x, v1), . . . , dG(x, vt)), where dG(x, y) stands
for the standard shortest-path distance between the two vertices x, y.

• A set S ⊂ V (G) is a k-antiresolving set (k-ARS for short) for G, if k is the largest integer
such that for all u /∈ S there exists a set Su ⊆ V \ (S ∪ {u}) with |Su| ≥ k − 1 and where
r(u|S) = r(x|S) for every x ∈ Su.

• The k-metric antidimension of G, denoted adimk(G), is the cardinality of a smallest k-ARS
for G.

The concepts above can be also understood in the following way. Given a vertex set S ⊂ V (G)
of a graph G, we define the following equivalence relation RS , where two vertices x, y ∈ V (G)\S
are related by RS if it follows that r(x|S) = r(y|S). In this sense, given a set S ⊂ V (G), we
write ZS = {Z1, . . . , Zr}, for some r ≥ 1, as the set of equivalence classes defined by RS . With
such terminology in mind, we observe that an arbitrary set S ⊆ V (G) is a k-ARS of G with
k = min{|Zi| : Zi ∈ ZS}.

Having the concepts above in mind, it is known that a given social network G achieves (k, ℓ)-
anonymity against active attacks to its privacy if k is the smallest integer such that adimk(G) ≤ ℓ.
It might be then noticed that, in order to quantify the privacy achieved by a given social network
G, it is necessary to know how to compute the k-metric antidimension of G. However, such a
task might not be so efficiently made, since computing such a parameter for graphs is an NP-
hard problem as independently proved in [3, 22]. In order to contribute to these computations,
some bounds, approximations or heuristics are of interest. For instance, an ILP model was
developed in [7] that was used to compute the value of adimk(G) for some random graphs, as
well as, other (not polynomial) algorithms were implemented in [5] for similar computations.
Bounds or closed formulas for this parameter are also known from [7, 11, 21].

It is natural to think that there is not a k-antiresolving set for every positive integer k in a
graph G. In this sense, by Adim(G) we represent the largest integer k for which G contains a
k-ARS. We shall also say that a graph G is k-metric antidimensional if Adim(G) = k.

It was first noted in [21] that any graph G of maximum degree ∆ satisfies that,

1 ≤ Adim(G) ≤ ∆(G). (1)

The equality for both bounds for Adim(G) occurs in several situations, and the case of the lower
bound is of high interest based on the following argument. If G is 1-metric antidimensional,
i.e., Adim(G) = 1, then this means that G does not contain any k-ARS for every k ≥ 2, or
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equivalently, G only contains 1-antiresolving sets. This is traduced into the fact that for any
set of vertices S ⊂ V (G), there is at least one vertex v /∈ S for which there are zero (0) vertices
not in S having the same metric representation as v, with respect to S. In other words, such
a vertex is uniquely identified by the vertices in S, and so, if an attacker controls any set of
vertices of such a graph G (even of cardinality one), then the privacy of at least one vertex will
be compromised.

In concordance with these facts, it seems that characterizing graphs G that are 1-metric
antidimensional is worthwhile and even required, so that sensible data will not be made public
throughout 1-metric antidimensional social networks. Some first contributions in this direction
were already given in [20], where all the trees and unicyclic graphs that are 1-metric antidimen-
sional were fully characterized and polynomial algorithms to detect them were designed.

On the other hand, based on the extended idea that social networks are rather weak with
respect to their privacy, one might consider that the amount of such graphs (1-metric antidi-
mensional) is very wide, and that, it should be also a reason that contributes to the extended
myth regarding the wide weakness of social networks against active attacks to their privacy. The
truth is that there is an infinite number of 1-metric antidimensional graphs, which is already
known for trees and unicyclic graphs from [20]. However, as we show in our exposition, the
quantity of them is indeed significantly low with respect to the total quantity of social networks
that exists.

In addition, even so that there exist an infinite number of graphs that are 1-metric antidi-
mensional, one can always develop some operations for them, in order to be embedded into some
larger graphs that are k-metric antidimensional for some k ≥ 2. With such an embedding, we
pretend to obscure the privacy features of 1-metric antidimensional graphs into another larger
graphs that are safer with respect to active attacks to their privacy. Along the way, in this
work, we also describe several necessary and/or sufficient conditions for a graph to be 1-metric
antidimensional.

2 Methodology

The methods we use in our investigation are focused into three issues. First of all, in order
to support the claims about breaking some myths on the privacy of social networks, we need
a tool that will allow us to check whether a given social network is 1-metric antidimensional
or not. Fortunately, checking this fact is known to be polynomial, as shown in [3] for a more
general setting. This means that our methods are efficient enough so that a large number of
computations can be performed.

On a second hand, we are also interested into figuring out some structural properties of the
graphs that 1-metric antidimensional. To this end, we first consider some properties of graphs
that are k-metric antidimensional for some k ≥ 2, so that we further on focus on those graphs
not satisfying these properties, and also separately, study mathematical properties of 1-metric
antidimensional graphs.

Finally, we center our attention into showing some operations that can be performed on a 1-
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metric antidimensional graph so that it gets embedded into another graph that is not a 1-metric
antidimensional graph. This also contributes to our claim that social networks indeed do not
lack too much of privacy properties. That is, for each 1-metric antidimensional graph G one can
construct another graph G′ which is not a 1-metric antidimensional graph, and such that G is a
subgraph of G′ and the properties of G are obscured in the graph G′. In fact, an infinite number
of such supergraphs of G can be constructed for each graph 1-metric antidimensional graph G.

2.1 The recognition algorithm

Testing whether a given graph G is 1-metric antidimensional can be done by using the ADIM-1
algorithm provided in Figure 1. This algorithm works as follows. At line 1, the all-pairs distances
are computed. Then, the input graph is analyzed starting from each vertex v. In detail, the
set S is initially set as S = {v}. This set is intended as a potential k-ARS for G, for some
k ≥ 1. The while-loop at lines 5–11 is responsible for computing for which k the set S is a
k-ARS. If k > 1 (see line 7), G is not 1-metric antidimensional and hence the algorithm stops
returning “False” (i.e., Adim(G) > 1) and k. In such a case, k is intended as a lower bound for
the k-metric antidimensionality of G. Otherwise, when k = 1, the algorithm adds all the sets in
ZS having cardinality 1 to S (see line 10), and repeats until S = V (G). If the algorithm does
not stop after checking all the vertices in V (G), then it returns “True” (i.e., Adim(G) = 1).

Algorithm: ADIM-1
Input: An arbitrary graph G
Output: True if and only if Adim(G) = 1

1 Compute the distance matrix of G in O
(
n3

)
time using the Floyd-Warshall

algorithm [4, p. 629] ;
2 S ← ∅ ; ▷ we assume S is a k-ARS for some k ≥ 1

3 foreach vi ∈ V (G) do
4 S = {vi} ;
5 while

(
V \ S ̸= ∅

)
do

6 compute k = min{|Zi| : Zi ∈ ZS} ;
7 if k > 1 then
8 return (False, k) ; ▷ k is a lower bound for the k-metric antidimension of G

9 else
10 let Zi1 , . . . , Ziℓ be all equivalence classes in ZS such that∣∣Zi1

∣∣ = · · · = ∣∣Ziℓ
∣∣ = 1 ;

11 S ← S ∪
(
∪ℓt=1Z

it
)
;

12 return True ;

Figure 1: Algorithm checking whether Adim(G) = 1.
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Algorithm ADIM-1 might indeed be seen as a special case of [3, Algorithm II], when look-
ing for 1-antidimensional graphs, and we refer the reader to this work for its correctness and
computational time, which is O(n4).

2.2 Other required terminology

For an integer n ≥ 1, we shall write [n] to represent the set of integers {1, . . . , n}. Let G be a
connected graph. The order of G will be denoted by n(G). For a given vertex x ∈ V (G), its
degree is denoted by degG(x). The minimum and maximum degree of G are δ(G) and ∆(G),
respectively. The distance dG(u, v) between vertices u and v in G is the usual shortest-path
distance. The eccentricity ϵG(u) of u is the maximum distance between u and any other vertex
of G. The diameter diam(G) of G is the maximum of the eccentricities of the vertices of G.
Also, the center of G is the set of vertices x such that ϵG(x) = min{ϵG(v) : v ∈ V (G)}. If
x ∈ V (G), then Li(x) denotes the set of vertices of G at distance i from x. Also, as usual, κ(G)
denotes the (vertex ) connectivity of a graph G. If G is a graph that satisfies κ(G) ≥ 2, then G
is called a biconnected graph. From [20], graphs G satisfying that κ(G) = 1 and Adim(G) = 1
are known (some trees and unicyclic graphs). However, not much more is known about 1-metric
antidimensional graphs G with larger connectivity, i.e., with κ(G) ≥ 2.

The Cartesian product G□H has the vertex set V (G)×V (H), and vertices (g, h) and (g′, h′)
are adjacent if g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). The strong product G⊠H is
obtained from G□H by adding to it the edges (g, h)(g′, h′), where gg′ ∈ E(G) and hh′ ∈ E(H).
The lexicographic product G ◦H also has the vertex set V (G) × V (H), and vertices (g, h) and
(g′, h′) are adjacent if g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G).

2.3 Plan of the exposition

Once we have described our methodology in this section, we are then able to present the results
of our investigation. In Section 3, we present several computational results that support our
claim on burning the myth concerning the low privacy of social networks. In particular, we
develop a large number of experiments on random graphs which show that the number of 1-
metric antidimensional graphs is indeed ridiculously small with respect to the total number of
graphs that can be considered. In addition, we develop in Subsection 3.3 some search on several
real networks in order to check if they are 1-metric antidimensional, and obtain that none of them
are such. Further on, Sections 4 and 5 contain some theoretical studies on the mathematical
properties of the k-ARS of graphs for any suitable k ≥ 1. Next, Section 6 is focused on developing
some operations on graphs that are 1-metric antidimensional so that they get embedded into
another larger graphs that are not such, in order to obscure their privacy properties against
active attacks. Such operations consist on constructing new graphs throughout making use of
three of the four classical well–known product graphs, i.e., the lexicographic, the strong and the
Cartesian products. We close our exposition with some concluding remarks and possible open
problems that can be dealt with as a continuation to busting some more myths on the privacy
of social networks.
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3 Experimental evaluation

In this section, we present the results of an extensive experimental evaluation, whose main objec-
tive is to explore the class of 1-metric antidimensional graphs and to explode the widely extended
myth on the weakness of social networks concerning their privacy. Initially, we performed an
exhaustive search of these graphs among all graphs with order at most 11. Then, we tested both
graphs generated according to well-known random models (i.e., Barabási-Albert, Erdös-Rényi,
Erdös-Rényi-Gilbert) and real-world graphs taken from publicly available repositories. All the
experiments have been carried out using the ADIM-1 algorithm described in Subsection 2.1.
This algorithm and all the testing scripts have been implemented under SageMath, the Sage
Mathematics Software System (version 10.5).

3.1 Exhaustive search

Table 1 presents the results obtained by performing an exhaustive search on all graphs G with
order between 3 and 11.

n total distinct connected found ratio connectivity max density

3 4 2 0 – – –
4 11 6 1 0.166666 1: 1 0.50
5 34 21 0 – – –
6 156 112 1 0.008928 1: 1 0.33
7 1,044 853 2 0.002344 1: 2 0.33
8 12,346 11,117 13 0.001169 1: 13 0.35
9 274,668 261,080 110 0.000421 1: 110 0.38
10 12,005,168 11,716,571 1,894 0.000161 1: 1,884; 2: 10 0.40
11 1,018,997,864 1,006,700,565 52,842 0.000052 1: 52,505; 2: 337 0.42

Table 1: Exhaustive search for graphs with order in the range [3, 11]

The first column indicates the order of the graphs, the second column displays the total
number of distinct (non-isomorphic) graphs for that order, while the third column shows the
count of connected graphs among these distinct ones. The subsequent columns detail the fol-
lowing findings: found represents the number of 1-metric antidimensional graphs identified, the
ratio column gives the proportion of found graphs to connected graphs, and the connectivity
column specifies the number of found graphs with a given connectivity. Notably, there are no
biconnected 1-metric antidimensional graphs for orders less than 10. For order 10, 10 bicon-
nected graphs were found out of 1894 graphs, and for order 11, 237 biconnected graphs were
found out of 52842 graphs (these counts are included in the found column and further specified
in the connectivity column). In the performed exhaustive search, no 1-metric antidimensional
graphs that are 3-connected were found. The last column shows the max-density among the
found graphs; given a graph G, by density, we mean the ratio between the number of edges of
G and maximum number of possible edges, i.e., n(G)(n(G)− 1)/2.
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Notice that there are no graphs of order 3 and 5 that are 1-metric antidimensional. The
graphs of order 4 and 6 are the paths P4 and P6, respectively. The two graphs having order 7
are both formed by P6 plus an additional vertex which is adjacent either to the third vertex of
the path, or to the second and third vertices of the path. The 10 found graphs of order 10 that
are both 1-metric antidimensional and biconnected are shown in Figure 2.

Figure 2: The ten biconnected graphs G having Adim(G) = 1.

Table 2 illustrates, for each order n from 6 to 10, the densities at which 1-metric antidimen-
sional graphs were identified. Specifically, for each such density, the table reports the count of
1-metric antidimensional graphs found and the count of all other graphs (i.e., those that are
k-metric antidimensional, where k > 1).

3.2 Testing randomly generated graphs

As already said, we tested graphs generated according to the well-known Barabási-Albert and
Erdös-Rényi random models.

Barabási-Albert model. We started by using the Barabási–Albert model [1]. This model
allows the generation of random scale-free networks using a preferential attachment mechanism.
Preferential attachment means that the more connected a node is, the more likely it is to
receive new links. In particular, BarabasiAlbert(n,m) mechanism creates a graph with n vertices
incrementally: at each step, add one new node, then sample m neighbors among the existing
vertices from the network, with a probability that is proportional to the number of links that
the existing nodes already have.
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n density found others

6 0.33 1 5

7 0.28 1 10
0.33 1 32

8 0.25 2 21
0.28 3 86
0.32 6 230
0.25 2 484

9 0.22 2 45
0.25 4 236
0.37 11 786
0.30 25 2,050
0.33 37 4,458
0.36 24 8,380
0.38 7 13,848

10 0.20 6 100
0.22 14 643
0.24 24 2,654
0.26 56 8,492
0.28 146 22,804
0.31 298 53,565
0.33 462 112,156
0.35 459 211,407
0.37 288 361,054
0.40 117 560,989
0.42 24 795,606

Table 2: Details about some results of the exhaustive search.

We tested graphs with the order in the range [11,100]. For each fixed order n, we set m = 2
and generated 2 millions random graphs. Note that m = 1 generates only trees, and m = 2 is
recommended to model social networks. Among the 180 millions of generated graphs, we found
only 83 1-metric antidimensional graphs (of which, only 68 were distinct). Concerning size and
connectivity, details about the found graphs are reported in Table 3.

n found connectivity

11 18 1: 11; 2: 7
12 19 1: 8; 2: 11
13 21 1: 13; 2: 8
14 9 1: 4; 2: 5
15 1 1: 1

Table 3: Details about the 1-metric antidimensional graphs found with the Barabási–Albert model.
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Erdös-Rényi model. We refer to the well-known model introduced by Paul Erdös and Alfréd
Rényi in 1959 for generating random graphs [6]. In this model, all graphs on a fixed vertex set
with a fixed number of edges are equally likely. In particular, in the G(n,m) model, a graph is
chosen uniformly at random from the collection of all graphs which have n nodes and m edges.

Regarding the experiments conducted with this model, the substantial required execution
time led us to initially generate graphs with an order n in the small range of [11, 16]. For each
fixed value of n, we then varied the number of edges m across a wide range, specifically from 2n
up to n(n− 1)/2. Subsequently, for every pair of (n,m) values, we generated 1,000,000 random
instances. Results about this preliminary test are reported in Table 4.

property value

generated 190,000,000
connected 189,120,028

distinct found 3,765

n found connectivity

11 198 1: 193, 2: 5
12 675 1: 668, 2: 7
13 1,006 1: 996, 2: 10
14 901 1: 892, 2: 9
15 598 1: 595, 2: 3
16 387 1: 387

Table 4: Results about graphs generated with the G(n,m) model.

Next, we repeated the same type of experiments but for values of n equal to 20, 30, 40 and
50. For such values, the number of found graphs (along with connectivity) is distributed as
follows: 20: (1: 254), 30: (1: 444), 40: (1: 199), and 50: (1: 166). It is worth noticing that
starting from n = 16, only graphs with connectivity 1 were found. As a last observation, for
each order n tested, Table 5 presents the density of the found 1-metric antidimensional graph
having the maximum number of edges.

n largest m n(n− 1)/2 density

11 25 55 0.45
12 31 66 0.47
13 34 78 0.43
14 40 91 0.44
15 45 105 0.43
16 48 120 0.40
20 82 190 0.43
30 95 435 0.22
40 133 780 0.17
50 163 1225 0.13

Table 5: Additional results about the G(n,m) model. For each n, the density of the found 1-metric
antidimensional graph having the maximum number of edges is reported.

Erdös-Rényi-Gilbert model. We refer to the well-known model introduced by Gilbert for
generating random graphs. It is also called the Erdös–Rényi–Gilbert model (see [8]) or the
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G(n, p) model. According to such notation, a graph of order n is constructed by connecting
nodes randomly. Each edge is included in the graph with probability p, independently from
every other edge. Using the G(n, p) model, we performed two kinds of experiments.

In the first type of experiment, we generated graphs with the order n ranging from 11 to
100. While varying n, we initially fixed the probability p at 0.25. Then, for each order n, we
generated 2 millions random graphs. After this first phase, we repeated the same approach three
times, varying the probability within the set of values {0.20, 0.15, 0.10}. In summary, for each
probability value, we generated a total of 180 millions of random graphs. General results about
these experiments are reported in Table 6, while more detailed findings can be found in Table 7.

property p = 0.25 p = 0.20 p = 0.15 p = 0.10

generated 180,000,000 180,000,000 180,000,000 180,000,000
connected 174,497,428 167,659,141 152,927,782 118,197,366

total found 32,328 58,121 59,666 23,900
distinct found 19,077 35,286 41,866 21,004

Table 6: General results about graphs generated with the G(n, p) model.

Concerning Table 7, it is interesting to note that for n > 55, no 1-metric antidimensional
graphs were found regardless of the used probability. Moreover, the connectivity is still limited
to 2, with a minimal number of cases found up to n = 17. Due to the limited number of graphs
found as n increases, we repeated the same experiment for the specific value of n = 30 and
p = 0.25, extending to 50 millions the number of generated graphs. With this kind of input, we
found only one graph that is 1-metric antidimensional (and the connectivity of this graph is still
1).

In the second kind of experiments, we varied n in the range [11, 50], but this time we used
a specific value of p for each value of n. As it is established that a graph in G(n, p) is almost

surely connected when p > (1+ε) lnn
n , we choose p = 1.001 lnn

n . The number of graphs found for
each value of n resulting from this experiment are reported as charts in Figure 3.

3.3 Testing real world networks

We report some results of tests performed on real networks, using some publicly available
datasets. The first dataset is named Gemsec Facebook [17]. This dataset, obtained from the
Stanford Network Analysis Project (SNAP) at https://snap.stanford.edu/, comprises data
collected from Facebook pages. Specifically, it includes 8 graphs, each representing the network
of verified Facebook pages within a different category. In these graphs, nodes represent the
pages, and edges indicate mutual likes between them. To enhance anonymity, the nodes have
been reindexed.

The second dataset refers to some Ego networks from Facebook, that is, networks given by
the connections among nodes sharing a common neighbor (the ego node). They are also provided
by SNAP (https://snap.stanford.edu/data/ego-Facebook.html). The network “facebook
combined” combines the data of ten Ego networks.
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p = 0.25 p = 0.20 p = 0.15 p = 0.10
n found connectivity found connectivity found connectivity found connectivity

11 2,571 1: 2,494; 2: 7 1378 1: 1378 546 1: 546 157 1: 157
12 4,158 1: 4,157, 2: 1 3502 1: 3501, 2: 1 1741 1: 1741 359 1: 359
13 4,917 1: 4,914, 2: 3 6285 1: 6284, 2: 1 3645 1: 3645 612 1: 612
14 3,279 1: 3,277, 2: 2 6942 1: 6942 5155 1: 5155 849 1: 849
15 1,967 1: 1,967 5656 1: 5656 5621 1: 5620, 2: 1 1095 1: 1095
16 1,123 1: 1,123 4103 1: 4103 5328 1: 5328 1207 1: 1207
17 534 1: 534 2720 1: 2719, 2: 1 4584 1: 4584 1289 1: 1289
18 308 1: 308 1741 1: 1741 3843 1: 3843 1400 1: 1400
19 150 1: 150 1171 1: 1171 3023 1: 3023 1393 1: 1393
20 73 1: 73 730 1: 730 2318 1: 2318 1345 1: 1345
21 38 1: 38 413 1: 413 1709 1: 1709 1327 1: 1327
22 13 1: 13 247 1: 247 1264 1: 1264 1331 1: 1331
23 8 1: 8 154 1: 154 908 1: 908 1167 1: 1167
24 4 1: 4 100 1: 100 652 1: 652 1060 1: 1060
25 3 1: 3 59 1: 59 470 1: 470 988 1: 988
26 1 1: 1 32 1: 32 324 1: 324 886 1: 886
27 0 – 25 1: 25 231 1: 231 765 1: 765
28 0 – 11 1: 11 165 1: 165 668 1: 668
29 0 – 5 1: 5 100 1: 100 554 1: 554
30 0 – 7 1: 7 67 1: 67 501 1: 501
31 0 – 3 1: 3 50 1: 50 360 1: 360
32 0 – 0 – 27 1: 27 325 1: 325
33 0 – 1 1: 1 34 1: 34 248 1: 248
34 0 – 0 – 18 1: 18 199 1: 199
35 0 – 0 – 8 1: 8 169 1: 169
36 0 – 0 – 11 1: 11 145 1: 145
37 0 – 0 – 8 1: 8 114 1: 114
38 0 – 0 – 7 1: 7 94 1: 94
39 0 – 1 1: 1 2 1: 2 87 1: 87
40 0 – 0 – 3 1: 3 66 1: 66
41 0 – 0 – 1 1: 1 49 1: 49
42 0 – 0 – 1 1: 1 43 1: 43
43 0 – 0 – 0 – 38 1: 38
44 0 – 0 – 0 – 33 1: 33
45 0 – 0 – 1 1: 1 18 1: 18
46 0 – 0 – 0 – 15 1: 15
47 0 – 0 – 0 – 19 1: 19
48 0 – 0 – 0 – 6 1: 6
49 0 – 0 – 0 – 11 1: 11
50 0 – 0 – 1 1: 1 3 1: 3
51 0 – 0 – 0 – 2 1: 2
52 0 – 0 – 0 – 2 1: 2
54 0 – 0 – 0 – 3 1: 3
55 0 – 0 – 0 – 2 1: 2

Table 7: Detailed results about graphs generated with the G(n, p) model.

12



0

5000

10000

15000

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

50

100

500

1000

5000

10000

20 30 40 50

Figure 3: Results about the second kind of experiments with the G(n, p) model, where n ∈ [11, 50] and
p = 1.001 lnn

n . Notice that the second chart reports the same data but as a line chart with log scale on
the vertical axis.

The last three datasets came from the Network Repository Project, an initiative that collects
hundreds of network datasets (https://networkrepository.com/). The first of them refers to
Facebook networks and the second to email networks. As a further dataset, we decided to test
the 1-metric antidimensionality for non-social networks: we chose some power networks from
https://networkrepository.com/power.php.

Table 8 presents details about some networks of the used datasets. Notice that most of
them are 1-connected graphs. Each graph in the table has been tested to verify if it is 1-metric
antidimensional. As a final result, none of them was found to be 1-metric antidimensional.

4 Mathematical properties of k-ARS for larger values of k

In order to find some mathematical properties of k-ARS in a graph, in this section, we connect
the existence of k-ARS with some classical areas of graph theory, including vertex connectivity
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category network n m density ∆ δ

Gemsec FB [17] government 7057 89455 0.00359 697 1
athletes 13866 86858 0.00090 468 1
politician 5908 41729 0.00239 323 1

public figure 11565 67114 0.00100 326 1
company 14113 52310 0.00053 215 1
artist 50515 819306 0.00064 1469 1
tvshow 3892 17262 0.00228 126 1
new sites 27917 206259 0.00053 678 1

Ego FB [15] facebook combined 4039 88234 0.01082 1045 1
107 1034 26749 0.05009 253 1
348 224 3192 0.12780 99 1
686 168 1656 0.11805 77 1

Social FB [16] socfb-Auburn71 18448 973918 0.00572 5160 1
socfb-CMU 6621 249959 0.01141 840 1

socfb-Amherst41 2235 90954 0.03643 467 1

Email [16] email-enron-only 143 623 0.06136 42 1
email-univ 1133 5451 0.00850 71 1

email-enron-large 33696 180811 0.00032 1383 1
email-EU 32430 54397 0.00010 623 1

Power Network [16] power-US-Grid 4941 6594 0.00054 19 1
power-bcspwr10 5300 13571 0.00100 15 3
power-bcspwr09 1723 4117 0.00278 16 3

Table 8: Data about real network datasets

and modular decompositions. In addition, the results of this section shall be further used, while
we deal with increasing the privacy properties of graphs that are 1-metric antidimensional.

4.1 Vertex connectivity

As we next show, the (vertex) connectivity of graphs can be used to bound the value Adim(G)
for a given graph G. The next concept can also be used for a similar purpose. If x is a vertex
of a connected graph G, then we set

#ϵG(x) = |{y : dG(x, y) = ϵG(x)}|

and
#ϵ(G) = max

x∈V (G)
#ϵG(x) .

Note that if diam(G) = 2, then #ϵG(x) = n(G)− degG(x)− 1 which in turn implies that

#ϵ(G) = n(G)− δ(G)− 1 . (2)
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Lemma 4.1. If G is a connected graph, then

Adim(G) ≥ min{κ(G),#ϵ(G)} .

Moreover, if k = min{κ(G),#ϵ(G)}, then adimk(G) = 1.

Proof. Let x ∈ V (G) be a vertex with #ϵG(x) = #ϵ(G). Since each Li(x), i ∈ [ϵG(x) − 1], is
a cut set, we have |Li(x)| ≥ κ(G) for every i ∈ [ϵG(x) − 1]. Since #ϵG(x) = #ϵ(G) we also
have |LϵG(x)(x)| = #ϵ(G). It follows that {x} is a min{κ(G),#ϵ(G)}-ARS which implies both
assertions of the lemma.

Lemma 4.1 implies that if G is a graph with Adim(G) = 1 and κ(G) ≥ 2, then for every
vertex x there exists a unique vertex y such that dG(x, y) = ϵG(x). That is, the following holds.

Corollary 4.2. If G is a graph with Adim(G) = 1 and κ(G) ≥ 2, then #ϵ(G) = 1.

The next consequence of Lemma 4.1 also deserves special attention.

Corollary 4.3. If G is a κ(G)-regular graph with diam(G) = 2 and κ(G) ≤ n(G)−1
2 , then

Adim(G) = κ(G).

Proof. Combining Lemma 4.1, Eq. (2), and the assumption κ(G) ≤ n(G)−1
2 , we get

Adim(G) ≥ min{κ(G),#ϵ(G)}
= min{κ(G), n(G)− δ(G)− 1}
= min{κ(G), n(G)− κ(G)− 1}
= κ(G) .

On the other hand, by (1) we have Adim(G) ≤ ∆(G) = κ(G), and we are done.

For example, if P denotes the Petersen graph P , then Corollary 4.3 yields Adim(P ) = 3.

4.2 Modular decompositions

The modular decomposition is a decomposition of a graph into subsets of vertices called modules.
Given a graph G, a set M ⊆ V (G) is a module of G if the vertices of M cannot be distinguished
by any vertex in V (G) \M , that is N(u) \M = N(v) \M for each u, v ∈ M . For example, ∅,
V (G) and all the singletons {v} for each v ∈ V (G) are modules, they are called trivial modules.
A graph is prime if all its modules are trivial.

Given two modules of G, either they are disjoint or one is included in the other. This
property leads to a recursive decomposition of a graph, called modular decomposition, that refers
to the process whereby an entire graph is decomposed; at any stage of the process, the current
subgraph being decomposed will be a module of the original graph. Each of these subgraphs
is decomposed recursively. This process continues until all the subgraphs being decomposed
contain only a single vertex. The modular decomposition of a graph can be computed in linear
time (there are various algorithms, e.g. see [9]).
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Proposition 4.4. If M is a (largest) module of G, then Adim(G) ≥ |M |. In particular, if
Adim(G) = 1, then G is prime.

Proof. By definition of module, V (G)\M is an |M |-ARS of G, hence Adim(G) ≥ |M |. If follows
that if G contains a non-trivial module M ⊆ V (G), then Adim(G) ≥ |M | > 1.

As already observed, given any graph G, it is possible to compute its modular decomposition
in linear time. Concerning the result, if we get some non-trivial module, then Adim(G) ≥ |M |,
where M is any largest non-trivial module. Conversely, if G is prime, we have no information
about Adim(G). For instance, the path graph P4 is prime and Adim(P4) = 1, whereas P5 is
prime as well, but Adim(P5) = 2.

4.3 Diameter two graphs

As we next show, for a graph to be 1-metric antidimensional it is necessary to have a “large”
diameter.

Theorem 4.5. If diam(G) = 2, then Adim(G) ≥ 2.

Proof. Assume first that δ(G) = 1 and let x ∈ V (G) be a vertex with degG(x) = 1. Let y
be the unique neighbor of x. Since diam(G) = 2, each additional vertex of G is adjacent to
y. Therefore, {y} is an (n(G) − 1)-ARS. Using again the assumption diam(G) = 2 we have
n(G)− 1 ≥ 2, so that Adim(G) ≥ 2. In the rest, we may thus assume that δ(G) ≥ 2.

Let x ∈ V (G) be an arbitrary vertex. Then by the above assumption, |L1(x)| ≥ 2. If also
|L2(x)| ≥ 2, then {x} is an ARS yielding the required conclusion. Hence assume that |L2(x)| = 1,
and let y be the unique vertex of L2(x). If x and y have the same neighbors, then L1(x) is a
2-ARS. Hence, assume further that there exists a vertex z ∈ L1(x) such that yz /∈ E(G). Since
δ(G) ≥ 2, we have |L1(y)| ≥ 2. In addition, as neither x nor z is adjacent to y we also have
|L2(y)| ≥ 2. We can conclude that in this subcase {y} is a 2-ARS and we are done.

5 Graphs G with Adim(G) = 1

In this section, we provide some results concerning 1-metric antidimensional graphs in the con-
text of some well-known graph classes. Before doing this, we start by assessing the complexity
of recognizing whether a given graph G is 1-metric antidimensional.

5.1 Recalling the case of trees

The first studies on the existence of 1-metric antidimensional graphs were presented in [20],
where the class of 1-metric antidimensional trees and unicyclic graphs were characterized and
polynomial algorithms to decide if a given tree or a unicyclic graph is such were designed. To
describe the case of trees, we need the following terminology and notations from [20].
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If T is a tree and u ∈ V (T ), by Tv we denote the tree T rooted at v. Accordingly, for each
vertex v ∈ V (T ), we write pu(v), Cu(v), and Du(v) to denote the parent, the children, and the
descendants of v in Tu, respectively. We assume pu(u) = ∅ for the sake of consistency.

Definition 5.1 (u-branches and ϵ-equivalence in trees). Let T be a tree and u ∈ V (T ). Given
a neighbor v of u, a u-branch of Tu at v is the subtree Tu,v induced by {u, v} ∪Du(v). We say
that two u-branches Tu,v′ and Tu,v′′ are ϵ-equivalent if ϵTu,v′ (u) = ϵTu,v′′ (u).

Observe that two ϵ-equivalent branches Tu,v′ and Tu,v′′ satisfy that for every vertex in
Tu,v′ there exists another in Tu,v′′ with the same distance to u. This directly relates to the
k-antiresolving set concept and leads to the definition of balancing factor below.

Definition 5.2 (Balancing factor). Given a vertex u of a tree T , we define the balancing factor
ξT (u) as the maximum cardinality of a set of ϵ-equivalent u-branches in Tu.

Note that if no two u-branches in Tu are ϵ-equivalent, then, by definition, ξT (u) = 1. With
the concepts above in mind, the following results were shown in [20].

Lemma 5.3. [20] Any k-antiresolving set S in a tree T with k ≥ 2 induces a connected graph.

Theorem 5.4. [20] A tree T is 1-metric antidimensional if and only if ξT (v) = 1 for every
v ∈ V (T ).

The most interesting fact of the characterization above is that it can be translated into a
polynomial algorithm that checks whether a given tree is 1-metric antidimensional. A natural
generalization of this study was the one in which an extra edge is added to a tree, given the
step to consider unicyclic graphs. For those, the problem can still be solved in polynomial
time, which was also made in [20], together with a structural characterization of those 1-metric
antidimensinal unicyclic graphs. Such characterization relies on the one from Theorem 5.4. It
is hence of interest to continue with some other characterizations of 1-metric antidimensional
graphs among other generalizations of trees.

5.2 Geodetic graphs

In this section, we provide a characterization of the class of geodetic graphs which are 1-metric
antidimensional. Recall that a graph is geodetic if each pair of distinct vertices is connected by a
unique shortest path. Notice that every tree, every complete graph, and every odd-length cycle
is geodetic. Moreover, if every biconnected component of a graph is geodetic, then the graph
itself is geodetic. In particular, every block graph (a graph in which the biconnected components
are complete) is geodetic. Similarly, because a cycle graph is geodetic when it has odd length,
every cactus graph in which the cycles have odd length is also geodetic. These cactus graphs
are exactly the connected graphs in which all cycles have odd length. More strongly, a planar
graph is geodetic if and only if all of its biconnected components are either odd-length cycles or
geodetic subdivisions of a four-vertex clique [19].
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Let G be a geodetic graph, and let u ∈ V (G). Given any v ∈ V (G), v ̸= u, by definition
there exists a unique shortest u, v-path in G. The set of all these shortest u, v-paths forms a tree
rooted at u denoted as Tu(G). The following statement provides the announced characterization
of the geodetic graphs that are 1-metric antidimensional. Note that Theorem 5.4 is its direct
consequence.

Theorem 5.5. If G is a geodetic graph, then Adim(G) = 1 if and only if Adim(Tu(G)) = 1 for
every u ∈ V (G).

Proof. (⇐) By contradiction, assume G contains a k-antiresolving set S, where k > 1.
Consider first the case S = {v}, for some v ∈ V (G). For the sake of simplicity, denote Tv(G)

as T . Since Adim(T ) = 1, by Theorem 5.4 we get ξT (v) = 1. But this implies there exists a
vertex x (which is a leaf in T ) such that dT (v, x) > dT (v, y) for every y ∈ V (T ) \ {v, x}. Thus,
there does not exist a vertex having the same metric representation as x with respect to S,
which is a contradiction.

Now, we consider the case |S| ≥ 2. Let w be a vertex in S having at least one neighbor not
in S. Let w1, . . . , wr be those vertices in N(w) \ S and again, for the sake of simplicity, denote
Tw(G) as T . Since Adim(T ) = 1, by Theorem 5.4 we get ξT (w) = 1. Then, there exists a leaf
vertex z ̸∈ S belonging to some w-branch Tw,wi with i ∈ [r] such that dT (z, w) > dT (z

′, w) for
every leaf z′ ̸= z belonging to any wj-branch Tw,wj with j ∈ [r]. Note that such a leaf vertex
z ̸∈ S exists because S is connected as stated by Lemma 5.3. It follows that any vertex y whose
metric representation with respect to S is equal to that of z does not belong to a w-branch
Tw,wj with j ∈ [r]. Consequently, it results that y belongs to a w-branch Tw,w′ where w′ ∈ S.
Given that both y and z have the same metric representation with respect to S, we obtain the
following:

dT (z, w
′) = dT (y, w

′),

dT (z, w)− 1 = dT (y, w) + 1,

dT (z, w) ̸= dT (y, w).

It turns out that y and z do not have the same metric representation with respect to S, a
contradiction. As a consequence, it follows that Adim(T ) = 1.

(⇒) Assume Adim(G) = 1 and, by contradiction, Tu(G) contains a k-antiresolving set for
some u ∈ V (G) and some k > 1. For the sake of simplicity, denote Tu(G) as T . According
to Theorem 5.4, there exists a vertex v such that ξT (v) ≥ 2. Then, the set V (T ) \ (V (Tv,v′) ∪
V (Tv,v′′)), where Tv,v′ and Tv,v′′ are two ξ-equivalent v-branches, is a k-antiresolving set for some
k ≥ 2, which is a contradiction.

In [20], an O(n2) algorithm to decide whether a tree is 1-metric antidimensional is provided.
By Theorem 5.5, the same algorithm can be used to determine in O(n3)-time whether a geodetic
graph G is 1-metric antidimensional.

We may recall that examples of unicyclic geodetic graphs that are 1-metric antidimensional
are already known from [20], in which the length of the unique cycles of such graphs is odd and
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of arbitrarily large order. In addition, all those geodetic graphs with nine and ten vertices are
drawn in Figure 4 and 5, respectively. Notice that some of them are neither trees nor unicyclic
graphs.

Figure 4: The six geodetic graphs G of order 9 having Adim(G) = 1.

5.3 Block graphs

Theorem 5.5 provides a characterization of all geodetic graphs G such that Adim(G) = 1.
Unfortunately, this characterization does not provide “structural” properties of such graphs.
Here we consider a subclass of geodetic graphs, namely block graphs, and for these, we provide
some structural properties that follow from the results given above. For this sake, recall that
two vertices u, v are called twins if any vertex x ̸= u, v is either adjacent to both of them or to
none of them.

Lemma 5.6. If G is a block graph such that Adim(G) = 1, then the following properties hold.

(i) diam(G) is odd.

(ii) Each module of G is trivial (in particular, G does not contain twins).

(iii) Each block of G contains at most one not cut-vertex.

(iv) Each pendant block of G is isomorphic to K2.

Proof. (i) If diam(G) is even, the center of G consists of just one vertex v ∈ V (G). As a conse-
quence, the balancing factor ξ(v) in the tree Tv(G) is at least two. According to Theorems 5.4
and 5.5, we get Adim(G) ≥ 2.

(ii) If G contains a non-trivial module, then G is not prime and hence Proposition 4.4 implies
Adim(G) ≥ 2. G cannot contain twins because a set of twins forms a non-trivial module.

(iii) Assume that a block of G contains two or more not cut-vertices. These vertices are
twins of G, and hence Adim(G) ≥ 2.

(iv) Consider now a pendant block of G. This block must be a K2 graph, for otherwise, it
contains two or more not cut-vertices.
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Figure 5: The fifteen geodetic graphs G of order 10 having Adim(G) = 1.

Notice that the opposite of Lemma 5.6 is not true in general. That is, there are block graphs
G satisfying all four items of the lemma, but Adim(G) > 1. To see this, we use the following
result, where we also show an infinite family of block graphs that are 1-metric antidimensional.
Let Bt be the block graph obtained from a path P2t = v1v2 . . . v2t (t ≥ 2) by adding other t− 1
isolated vertices u1, . . . , ut−1 and the edges uiv2i, uiv2i+1 for every i ∈ [t− 1].

Remark 5.7. Let t ≥ 2 be an integer. Then Adim(Bt) = 1 if and only if t ≡ 1 (mod 2).

Proof. Assume first t ≡ 0 (mod 2). Consider the vertex x = ut/2. According to the construction
of the graph Bt, such a vertex is a central vertex of Bt, and for every i ∈ [ϵ(x)], there are at
least two vertices at distance i from x. Thus, the set {x} is indeed a 2-ARS of Bt, and so,
Adim(Bt) ≥ 2.

On the other hand, assume t ≡ 1 (mod 2). To see that Adim(Bt) = 1, we shall run Algorithm
ADIM-1 on V (Bt). Since t ≡ 1 (mod 2), the center of Bt is not unique, and moreover, for each
vertex of z ∈ V (Bt), there is a unique vertex of degree one (either v1 or v2t, say v1 unless z = v1,
in which case the vertex in question is taken as v2t) such that dBt(z, v1) = ϵ(z). Thus, if z is the
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first vertex that Algorithm ADIM-1 selects, then in the first step of the algorithm, the vertex
v1 (resp. v2t if z = v1) is added to the set S of Algorithm ADIM-1. Due to the structure of the
graph Bt, in the next step of the algorithm, all the vertices of V (Bt) will be added to the set S.
Thus, the algorithm will end, and it will return Adim(Bt) = 1.

As a consequence of the remark above, we observe that those block graphs Bt, with t ≡ 0
(mod 2), satisfy the conditions of Lemma 5.6, but they are not 1-metric antidimensional.

6 Increasing the privacy properties of graphs

Since a 1-metric antidimensional graph might not be used to publish sensible information as
a social network, it is desirable to perform some changes in such a graph so that its privacy
properties increase. Some investigations in this regard were made in [14]. There was first
described a privacy-preserving anonymization approach that resists active attacks when the
privacy measure (k, ℓ)-anonymity is considered. Such an anonymization method was based only
on some edge addition operations, and preserving the original number of vertices in the social
network in question.

In this section, we are also interested in how to embed a given graphG such that Adim(G) = 1
into a larger graph that can hide the property of being 1-metric antidimensional. To this end,
we consider some product graphs in order to ensure the anonymity of the vertices of G.

6.1 Strong product

The distance function of the strong product is as follows. If (g, h) and (g′, h′) are vertices of a
strong product G⊠H, then

dG⊠H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)} . (3)

For the proof of (3) see [10, Proposition 5.4].
The following result ensures that the strong product is more friendly for our purposes than

the Cartesian product (see Subsection 6.3), as it allows us to simultaneously embed two graphs
G and H, for which we have Adim(G) = Adim(H) = 1 such that (some) anonymity for both
V (G) and V (H) is possible.

Theorem 6.1. If G and H are connected graphs of order at least 2, then Adim(G⊠H) ≥ 2. If
in addition each of G and H is of order at least 3, then Adim(G⊠H) ≥ 3. Moreover, in each
of the cases, there exists a corresponding k-ARS of cardinality 1.

Proof. By the commutativity of G ⊠H we may, without loss of generality, assume throughout
the proof that diam(G) ≥ diam(H).

Let (g, h) be an arbitrary vertex of G ⊠ H. Consider an arbitrary vertex g′ ∈ V (G) with
dG(g, g

′) = s ≥ 1. Let h′ be an arbitrary neighbor of h in H; it exists since n(H) ≥ 2. By (3),

dG⊠H((g, h), (g′, h)) = dG⊠H((g, h), (g′, h′)) ,
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which in turn implies that |Ls((g, h))| ≥ 2. As diam(G) ≥ diam(H) this implies (having (3) in
mind) that {(g, h)} forms a 2-ARS of G⊠H.

Assume now that n(G) ≥ 3 and n(H) ≥ 3. In the first subcase, let H = Kn, n ≥ 3. Let
h ∈ V (H). Then, if g′ is an arbitrary vertex of G different from g, then in view of (3) we have
dG⊠H((g, h), (g′, h)) = dG⊠H((g, h), (g′, h′)) for every h′ ̸= h. Since n(H) ≥ 3 this implies that
{(g, h)} forms a 3-ARS of G⊠H.

In the second subcase, assume that H is not a complete graph. Then H contains three
vertices h, h′, h′′, such that hh′ ∈ E(H), hh′′ ∈ E(H), and h′h′′ /∈ E(H). Consider now an
arbitrary vertex g′ of G different from g. Using (3) again, we infer that

dG⊠H((g, h), (g′, h)) = dG⊠H((g, h), (g′, h′)) = dG⊠H((g, h), (g′, h′′)) .

Setting s = dG⊠H((g, h), (g′, h)) this implies that |Ls((g, h))| ≥ 3. Therefore, also in this subcase
{(g, h)} forms a 3-ARS of G⊠H.

6.2 Lexicographic product

The next result asserts that Adim(G) for a graph G that represents a lexicographic product is
in general quite large, which makes them good candidates to be used for obscuring the privacy
of social networks against active attacks.

Proposition 6.2. If G is a connected graph of order at least 2 and M is the largest module of
G different from V (G), then Adim(G ◦H) ≥ |M | · n(H).

Proof. By our assumption, 1 ≤ |M | ≤ n(G)− 1. We claim that

S = V (G ◦H) \ (M × V (H))

is an (|M | · n(H))-ARS set. Indeed, let (g, h) and (g′, h′) be two vertices of M × V (H). Since
M is a module of G, we infer that dG◦H((g, h), (g′′, h′′)) = dG◦H((g′, h′), (g′′, h′′)) holds for every
vertex (g′′, h′′) ∈ V (G ◦H) \ (M × V (H)).

6.3 Cartesian product

To deal with the Cartesian product, let us first call up the two standard results we need below.
First, if (g, h) and (g′, h′) are vertices of a Cartesian product G□H, then

dG□H((g, h), (g′, h′)) = dG(g, g
′) + dH(h, h′) , (4)

see [10, Proposition 5.1]. Second, if G and H are graphs on at least two vertices, then

κ(G□H) = min{κ(G)n(H), κ(H)n(G), δ(G) + δ(H)} . (5)

Equation (5) was first stated/announced in 1978 by Liouville [12], and proved only 30 years later
by Špacapan in [18]. Its proof can also be found in [10, Theorem 25.1], where the interesting
history behind the formula is also explained.
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Consider Hamming graphs Kn□Kn, n ≥ 4. From (5) we deduce that κ(Kn□Kn) = 2n− 2,
and as Kn□Kn is (2n− 2)-regular and of diameter 2, Corollary 4.3 implies that

Adim(Kn□Kn) = 2n− 2, n ≥ 4 ,

a result earlier proved in [7, Proposition 3.1(iii)].

Assume that Adim(H) = 1. If one wants to hide the low privacy of this graph in a larger
one, then we have the following mild sufficient condition on a graph G which ensures that
Adim(G□H) ≥ 2.

Proposition 6.3. If G is a connected graph with #ϵ(G) ≥ 2 and H is a connected graph with
n(H) ≥ 2, then Adim(G□H) ≥ 2.

Proof. Since #ϵ(G) ≥ 2, there exists a vertex g ∈ V (G) with #ϵG(g) ≥ 2. Let g′ and g′′ be
vertices of G with dG(g, g

′) = dG(g, g
′′) = ϵG(g). Let now h be an arbitrary vertex of H. We

claim that #ϵG□H((g, h)) ≥ 2.
Let h′ be a vertex of H with dH(h, h′) = ϵH(h). Then using (4) we infer that

dG□H((g, h), (g′, h′)) = dG□H((g, h), (g′′, h′)) = ϵG□H((g, h)) .

Hence #ϵG□H((g, h)) ≥ 2. Lemma 4.1 completes the argument.

Let IG[u, v] be the interval between u and v in G, that is, the set of all vertices of G that lie
on some shortest u, v-path. By definition, {u, v} ⊆ IG[u, v]. The geodetic number g(G) of G is
the cardinality of a smallest set S ⊆ V (G) such that ∪{u,v}∈(S2)IG[u, v] = V (G).

Theorem 6.4. If G and H are graphs with g(G) = g(H) = 2, then Adim(G□H) ≥ 2.

Proof. Since g(G) = g(H) = 2, there exist vertices g, g′ ∈ V (G) such that IG[g, g
′] = V (G),

and vertices h, h′ ∈ V (H) such that IH [h, h′] = V (H). We claim that S = {(g, h), (g′, h′)} is a
2-antiresolving set of G□H.

Let (g′′, h′′) be an arbitrary vertex from V (G□H) \ S. Since g(G) = 2, there exists a
shortest (g, g′)-path PG in G containing g′′. Similarly, because g(H) = 2, there exists a shortest
(h, h′)-path PH in H containing h′′.

Assume first that g′′ ∩ {g, g′} = ∅ and h′′ ∩ {h, h′} = ∅. Let g′′′ be the neighbor of g′′ on
the g, g′′-subpath of PG and let h′′′ be the neighbor of h′′ on the h′′, h′-subpath of PH . Then we
have

dG□H((g′′′, h′′′), (g, h)) = dG(g
′′′, g) + dH(h′′′, h)

= (dG(g
′′, g)− 1) + (dH(h′′, h) + 1)

= dG(g
′′, g) + dH(h′′, h)

= dG□H((g′′, h′′), (g, h)) .

It follows that (g′′′, h′′′) and (g′′, h′′) belong to the same equivalence class of ZS .
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Assume second that g′′ = g. Then h′′ ̸= h. Let g′′′ be the neighbor of g = g′′ on PG,
and let h′′′ be the neighbor of h′′ on the h, h′′-subpath of PH . (It is possible that h′′′ = h.)
Then a calculation parallel to the above reveals that (g′′′, h′′′) and (g′′, h′′) belong to the same
equivalence class of ZS .

The remaining three cases are g′′ = g′, h′′ = h′, and h′′ = h. In each of these cases, we can
proceed as in the above paragraph to conclude that the vertex (g′′, h′′) belongs to an equivalence
class of ZS of cardinality at least two. We can conclude that S is a 2-antiresolving set of
G□H.

In view of Lemma 4.1 together with the fact that the Cartesian product of any two graphs
of order at least 2 is 2-connected, and in view of the results above, it could reasonably be
assumed that Adim(G□H) ≥ 2 holds for any connected graphs G and H of order at least
two. Surprisingly, we have checked by computer experiments that Adim(T ∗□P2n) = 1 for every
n ∈ [75], where T ∗ is the unique 1-antidimensional tree of order 7 (as mentioned at the beginning
of Section 5. This example leads to a more general statement that is next proved.

Proposition 6.5. If n ≥ 1, then Adim(T ∗□P2n) = 1.

Proof. Let n ≥ 1 and set G = T ∗□P2n. Let V (P2n) = [2n], let the consecutive vertices on P6

in T ∗ be v1, . . . , v6, and let w be the vertex of T ∗ attached to the v3.
To prove the assertion of the proposition, we shall run Algorithm ADIM-1 on V (G). Let

x ∈ V (G) be the first vertex selected by Algorithm ADIM-1. In view of (4) we infer that
#ϵG(x) = 1, where the unique vertex realizing the eccentricity distance from x is from the
set {(v1, 1), (v6, 1), (v1, 2n), (v6, 2n)}. Therefore, at the next step of the algorithm, we either
have {(v1, 1), (v6, 2n)} ⊆ S or {(v6, 1), (v1, 2n)} ⊆ S. In either case, Algorithm ADIM-1 after-
wards adds the vertices (w, i), i ∈ [2n], to S, as well as, the other two vertices from the set
{(v1, 1), (v6, 1), (v1, 2n), (v6, 2n)}, which have not yet been added. From here it follows that, at
the end of the algorithm, S = V (G) holds. We can conclude that Adim(G) = 1.

With Proposition 6.5 in mind, we cannot guarantee anonymity properties of Cartesian prod-
uct graphs in general.

Now, notice that the grid graphs Pr □Pt are covered by Theorem 6.4, which means that
Adim(Pr □Pt) ≥ 2. Moreover, it is known from [2] that this equality indeed holds for the case
r, t are even. However, when publishing some sensible information in a social network, we must
be aware that some subgraphs of a grid graph can be 1-metric antidimensional, as we next show.

Proposition 6.6. Let G be a subgraph of P2n□P2n, n ≥ 1, obtained by removing only one edge
e. Then Adim(G) = 1 if and only if the end vertices of e are of degree at most 3.

Proof. Let V (P2n) = [2n]. The case P2□P2 is trivial since it is a cycle C4 and removing any
edge yields a path P4, which is 1-metric antidimensional. Hence, from now on, we consider
n ≥ 2. We may assume (WLOG) that the edge removed is of the form e = (i, j)(i, j + 1) where
i ∈ [2n] and j ∈ [2n− 1].
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If one of the end vertices of e has degree 4, then it can be readily observed that S =
{(1, 1), (2n, 2n)} is a 2-ARS of G. Thus, Adim(G) ≥ 2 in this case.

Hence, by the symmetry of the Cartesian product, it only remains to consider the case
when e = (1, j)(1, j + 1). To prove that Adim(G) = 1, we shall run Algorithm ADIM-1 on
V (G). Let (i′, j′) be the first vertex selected by Algorithm ADIM-1. Note that #ϵG((i

′, j′)) = 1,
and moreover the unique vertex realizing the eccentricity distance from (i′, j′) is from the set
{(1, 1), (1, 2n), (2n, 1), (2n, 2n)}. Thus, in the first step of the algorithm, such eccentric vertex
is added to the set S from the algorithm. We now have two different situations.

Case 1: i′, j′ ∈ [n] or i′, j′ /∈ [n].
Hence, the eccentric vertex of (i′, j′) added to S (in the first step) is either (1, 1) or (2n, 2n).
This, in turn, implies that in the second step the other of these two vertices is also added
to S. Namely, at this point, it holds that S = {(i′, j′), (1, 1), (2n, 2n)}. Note it is possible
(i′, j′) ∈ {(1, 1), (2n, 2n)}. Now, in the next step, Algorithm ADIM-1 will add to S the vertex
(1, j + 1). Notice that it has already happened that (1, j + 1) = (i′, j′), in which case, we would
have arrived at a same configuration in the previous step.

Now, if j+1 ≥ n+1, then the unique eccentric vertex of (1, j+1) is (2n, 1), which needs to
be added to S in the next step. Consequently, (1, 2n) will eventually also be added to S. After
these additions, all the corner vertices (1, 1), (1, 2n), (2n, 1), (2n, 2n) are in S, which leads the
algorithm to add all the remaining vertices of G to S in the next (and final) step.

Case 2: i′ ∈ [n] and j′ /∈ [n]; or i′ /∈ [n] and j′ ∈ [n].
In this situation, we proceed similarly to Case 1. The main difference is that in the first step of
the algorithm, one of the two vertices (1, 2n) or (2n, 1) is added to S, and afterwards, the other
one also. Also, a next step will lead to add the vertex (1, j) to S, which will further somehow
lead to adding the other two corner vertices (1, 1), (2n, 2n) as well.

In both cases, Algorithm ADIM-1 ends with the set S = V (G). Therefore, it will return the
answer Adim(G) = 1, which is the desired conclusion.

7 Concluding remarks

We conclude our exposition by pointing out a few open questions that might be of interest as a
continuation of this research line.

• According to the experimental results from Section 3, we have noted that usually all the
1-metric antidimensional graphs have connectivity at most 2. In this sense, it is true that
if G is a graph with κ(G) ≥ 3, then Adim(G) ≥ 2?

The question above can also be stated in the following way: Find 1-metric antidimensional
graphs G with κ(G) ≥ 3.

• Again according to the experimental results from Section 3, all the 1-metric antidimen-
sional graphs G of order n that we have found satisfy that |E(G)| ≤ n(n−1)

4 . This suggests
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the property that dense graphs are not 1-metric antidimensional. Hence, is it true that if
G satisfies that |E(G)| ≥ n(G)(n(G)−1)

4 , then Adim(G) ≥ 2?

• In Subsection 5.2 we have seen that it can be determined in O(n3)-time whether a given
geodetic graph G is 1-metric antidimensional. A structural characterization of 1-metric
antidimensional graphs remains a challenging open problem.

• Subsection 6.3 shows the existence of Cartesian product graphs that are 1-metric antidi-
mensional. In this sense, it is worth of considering the properties that two graphs G and
H must satisfy so that G□H is 1-metric antidimensional.

• Are there any other transformations that can be developed on 1-metric antidimensional
graphs in order to obscure their privacy properties against active attacks?
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