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Abstract
A set of vertices X ⊆ V(G) is a d-distance dominating set if for every u ∈ V(G)\X

there exists x ∈ X such that d(u, x) ≤ d, and X is a p-packing if d(u, v) ≥ p + 1 for
every different u, v ∈ X. The d-distance p-packing domination number γp

d (G) of G is
the minimum size of a set of vertices of G which is both a d-distance dominating set
and a p-packing. It is proved that for every two fixed integers d and p with 2 ≤ d and
0 ≤ p ≤ 2d − 1, the decision problem whether γp

d (G) ≤ k holds is NP-complete for
bipartite planar graphs. A necessary and sufficient condition for the existence of a d-
distance p-packing dominating set in Cn is obtained and γp

d (Cn) determined for every
d, p, and n. For a tree T on n vertices with ℓ leaves and s support vertices it is proved
that (i) γ0

2(T ) ≥ n−ℓ−s+4
5 , (ii)

⌈
n−ℓ−s+4

5

⌉
≤ γ2

2(T ) ≤
⌊

n+3s−1
5

⌋
, and if d ≥ 2, then (iii)

γ2
d(T ) ≤ n−2

√
n+d+1
d . Inequality (i) improves an earlier bound due to Meierling and

Volkmann, and independently Raczek, Lemańska, and Cyman, while (iii) extends an
earlier result for γ2

2(T ) due to Henning. Sharpness of the bounds are discussed and
established in most cases. It is also proved that every connected graph G contains a
spanning tree T such that γ2

2(T ) ≤ γ2
2(G).
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1 Introduction
Let G = (V(G), E(G)) be a graph, and let d(u, v) denote the shortest-path distance in G
between vertices u, v ∈ V(G). Let further d and p be nonnegative integers and X ⊆ V(G).
Then X is a d-distance dominating set of G if for every vertex u ∈ V(G) \ X there exists
a vertex x ∈ X such that d(u, x) ≤ d, and X is a p-packing of G if d(u, v) ≥ p + 1
for every different vertices u, v ∈ X. (Note that the set X is a 1-packing if and only if
X is an independent set.) The d-distance p-packing domination number γp

d (G) of G is
the minimum size of a set of vertices of G which is both d-distance dominating set and
p-packing. If d < p, such a set might not exist, in which case we set γp

d (G) = ∞.
The d-distance p-packing domination number was introduced back in 1994 by Beineke

and Henning [1] under the name (p, d)-domination number and with the notation ip,d(G).
However, as this, with the exception of [9], has not been used subsequently, we have opted
for the above terminology and notation with the intention of placing this general concept
within the trends of contemporary graph domination theory. We now describe a number
of important special cases.

• γ0
1(G) is the usual domination number γ(G) of G. More generally, γ0

d(G) is studied in
the literature under the name of d-distance domination number of G, often denoted
by γd(G), see the survey [12].

• γ1
1(G) is the independent domination number i(G) of G, which is one of the core

concepts in domination theory [10]. More generally, γ1
d(G), is the d-distance inde-

pendent domination number of G, denoted by id(d,G) in [9, 12].

• γ2
2(G) is the lower packing number of G, which can be equivalently described as the

minimum cardinality of a maximal 2-packing of G, see [11], where it is denoted by
ρL(G). More generally, γd

d(G) has been investigated for the first time by Henning,
Oellermann, and Swart in [13] under the name d-independent d-domination number
and denoted by id(G). In this article, we will pay considerable attention to the d-
distance 2-packing domination number (of trees), hence we refer to the following
selected papers [2, 6, 16, 22] that deal with different aspects of 2-packings.

Note that γ0
0(G) = |V(G)| and that if p ≥ 1, and G is connected with at least two vertices,

then γp
0 (G) = ∞. In general, for every d ≥ 0 and p ≥ 2d+1, if G is a connected graph with

a radius rad(G) > d, then γp
d (G) = ∞. The folloing result also follows from the definition.

Proposition 1.1. If 0 ≤ d′ ≤ d and 0 ≤ p ≤ p′, then γp′

d′ (G) ≥ γp
d (G).
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1.1 Notation
In this brief subsection, we collect additional definitions needed.

Let G = (V(G), E(G)) be a graph and k ≥ 0 an integer. The neighborhood N(v) of a
vertex v ∈ V(G) contains the neighbors of v. The closed neighborhood N[v] of v contains
v and its neighbors. We also define

Nk[v] = {u ∈ V(G) : d(u, v) ≤ k} .

The eccentricity of a vertex v ∈ V(G) is ecc(v) = max{d(v, x) : x ∈ V(G)}. The radius
rad(G) and the diameter diam(G) of G are, respectively, the minimum and the maximum
eccentricity among vertices of G. If d ≥ 1, then a set X ⊆ V(G) is a d-perfect code if for
every u ∈ V(G) there exists a unique x ∈ V(G) such that u ∈ Nd[x], cf. [21]. We say that
a set D ⊆ V(G) is a γp

d -set of G if D is a d-distance dominating set and a p-packing with
|D| = γp

d (G).
Let T be a tree. A vertex of degree 1 in T is called a leaf and its neighbor is called

a support vertex; let S (T ) denote the set of the support vertices of T . If uv ∈ E(T ),
then T − uv has two components; the one containing u is denoted with Tu while the one
containing v is Tv. When it will be clear from the context, nx, ℓx, and sx will denote
the number of vertices, the number of leaves, and the number of support vertices in Tx,
respectively.

1.2 Our results
In Section 2 we prove that for every two fixed integers d and p with 2 ≤ d and 0 ≤ p ≤
2d − 1, the decision problem whether γp

d (G) ≤ k holds is NP-complete over the class of
bipartite planar graphs. Further, if p = 2d, then the problem is NP-complete over the class
of planar graphs. (For the remaining values of d and p, the algorithmic time complexity is
known.) The NP-hardness over the class of bipartite graphs was already established in [7]
for d = p ≥ 3, but in the case of d = p = 2 the proof contains a mistake that we correct
here. The main result of Section 3 establishes the exact value of γp

d (Cn) for every d, p,
and n. It includes a necessary and sufficient condition for the existence of a d-distance
p-packing dominating set in Cn. The exact value of γp

d (Pn) is also determined in all cases.
In the subsequent sections, we focus on trees. Let Td be the set of trees in which

leaves are pairwise at distance 2d (mod 2d + 1), that is,

Td = {T : T tree, d(x, y) ≡ 2d (mod 2d + 1) for every different leaves x, y in T } .

Meierling and Volkmann [19], and independently Raczek, Lemańska, and Cyman [20]
proved the following result, extending the earlier result for d = 1 from [18].
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Theorem 1.2. [19, 20] If d ≥ 1 and T is a tree on n vertices and with ℓ leaves, then

γ0
d(T ) ≥

n − dℓ + 2d
2d + 1

.

Moreover, equality holds if and only if T ∈ Td.

Setting

F2 = {T : T tree, d(x, y) ≡ 2 (mod 5) for every x, y ∈ S (T ), x , y} \ {K1,n : n ≥ 2} ,

we improve Theorem 1.2 for the case d = 2 as follows.

Theorem 1.3. If T is a tree on n vertices with ℓ leaves and s support vertices, then

γ0
2(T ) ≥

n − ℓ − s + 4
5

.

Moreover, equality holds if and only if T ∈ F2.

We then bound the 2-distance 2-packing domination number of trees as follows.

Theorem 1.4. If T is a tree on n ≥ 2 vertices with ℓ leaves and s support vertices, then⌈
n − ℓ − s + 4

5

⌉
≤ γ2

2(T ) ≤
⌊
n + 3s − 1

5

⌋
.

Theorems 1.3 and 1.4 are respectively proved in Sections 4 and 5.
In [9], Gimbel and Henning proved that if G is a connected graph of order n ≥ d + 1,

then γ1
d(G) ≤ n−2

√
n+d+1
d and the bound is sharp. In [11], Henning proved that γ2

2(T ) ≤
n−2
√

n+3
2 for all trees T of order n ≥ 3 and that the bound is sharp. The following theorem

generalizes Henning’s result to all d ≥ 2, as well as partially generalizes the result of [9].

Theorem 1.5. If d ≥ 2 and T is a tree of order n, then

γ2
d(T ) ≤

n − 2
√

n + d + 1
d

.

Theorem 1.5 is proved in Section 6, where it is in addition demonstrated that its bound
is best possible.

Finally, in Section 7 we prove that every connected graph G contains a spanning tree
T such that γ2

2(T ) ≤ γ2
2(G).
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2 Algorithmic time complexity
In this section, we prove the NP-completeness of the decision problem whether γp

d (G) ≤ k
holds. Our results show that the NP-hardness is true for every two fixed integers d and
p with 2 ≤ d and 0 ≤ p ≤ 2d − 1 over the class of bipartite planar graphs, and also if
p = 2d and the problem is considered for planar graphs. For the remaining values of d
and p, the algorithmic time complexity is known. If p ≥ 2d + 1, a d-distance p-packing
dominating set exists in G if and only if its radius is at most d, and then γp

d (G) = 1 holds.
The decision problem, therefore, can be solved in polynomial time if p ≥ 2d + 1. If d = 1
and p ∈ {0, 1, 2}, then the problem is known to be NP-complete as γp

d (G) corresponds
to the domination number, independent domination number, and the minimum size of a
1-perfect code in G. We also note that the NP-hardness over the class of bipartite graphs
was already established in [7] for d = p ≥ 3. However, the proof in [7] for d = p = 2
contains a mistake that we correct here by applying a reduction from the 1-in-3-SAT
problem in Case 2 when proving Theorem 2.1. We first define the problems and present
the constructions used in the proofs.

Planar 3-SAT and Planar 1-in-3-SAT problems. A formula F is an instance of these
problems if the following properties hold.

(i) F is a 3-SAT instance F = C1 ∧ · · · ∧ Cℓ over the Boolean variables x1, . . . , xk and
hence each clause Ci is a disjunction of three literals.

(ii) Given a 3-SAT formula F, we consider the graph G∗(F) associated with F. The
vertex set of G∗(F) contains one vertex c j for each clause C j (clause vertices) and
two vertices x+i and x−i for every variable xi (literal vertices). We add the edge x+i x−i
for every i ∈ [k]; an edge between c j and x+i if clause C j contains the positive literal
xi; and an edge between x−i and c j if C j contains the negative literal x̄i. If F is
an instance of the Planar 3-SAT or the Planar 1-in-3-SAT problem, then G∗(F) is
required to be a planar graph.

We say that formula F is 1-in-3-satisfiable if there is a truth assignment

ϕ : {x1, . . . , xk} → {true, false}

such that every clause is satisfied by exactly one literal. Further, formula F is satisfied by
ϕ if every clause is satisfied by at least one literal.

Construction of Gd(F). For every d ≥ 2 and an instance F of Planar 3-SAT, we
modify G∗(F) to obtain Gd(F) as follows. For every i ∈ [k], we take 2d new vertices
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y1
i , . . . , y

d
i , z

1
i , . . . , z

d
i , such that x+i y1

i . . . y
d
i and x−i z1

i . . . z
d
i are paths of length d, remove the

edge x+i x−i , and add the edges x+i z1
i and x−i y1

i . Let Xi denote the set of these 2d+ 2 vertices,
for i ∈ [k]. Further, every edge x+i c j or x−i c j between a clause and a literal vertex is subdi-
vided by d − 2 vertices to obtain the path P+i, j or P−i, j, respectively. We note that Gd(F) is a
planar bipartite graph when F is a Planar 3-SAT (or Planar 1-in-3-SAT) instance. For an
example see Fig. 1.

x+1 x−1

y1
1

y2
1

y3
1

y4
1

z1
1

z2
1

z3
1

z4
1

c1 c2

P+1,1

x+2 x−2 x+3 x−3 x+4 x−4

Figure 1: Graph G4(F) for F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Construction of Hd(F). To obtain Hd(F) we modify Gd(F) by adding the edge x+i x−i for
every i ∈ [k]. Further, the paths P+i, j and P−i, j of length d − 1 are removed and replaced,
respectively, with paths R+i, j and R−i, j of length d. Observe that Hd(F) is a planar graph
when F is a Planar 3-SAT (or Planar 1-in-3-SAT) instance. For an example see Fig. 2.

Theorem 2.1. Let d and p be fixed integers with 2 ≤ d and 0 ≤ p ≤ 2d − 1. It is NP-
complete to decide whether γp

d (G) ≤ k holds if G is a planar bipartite graph and k is part
of the input.

Proof. Let d and p be fixed integers complying with the conditions of the theorem. The
decision problem clearly belongs to NP. To prove the NP-hardness over the class of bipar-
tite planar graphs, we show a polynomial-time reduction from the Planar 3-SAT problem
if p ≤ 2d − 3 and from the Planar 1-in-3-SAT problem if p ∈ {2d − 2, 2d − 1}. Both

6



x+1 x−1

y1
1

y2
1

y3
1

y4
1

z1
1

z2
1

z3
1

z4
1

c1 c2

R+1,1

x+2 x−2 x+3 x−3 x+4 x−4

Figure 2: Graph H4(F) for F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

problems are known to be NP-complete [5]. Let F be a Planar 3-SAT instance over k
variables.

Case 1 : p ≤ 2d − 3.
Assume first that γp

d (Gd(F)) ≤ k and that D is a γp
d -set of Gd(F). For each i ∈ [k],

set D must contain at least one vertex from Xi to d-distance dominate yd
i and zd

i .
Therefore, |D| ≤ k implies |D ∩ Xi| = 1, for i ∈ [k], and D ⊆

⋃
i∈[k] Xi. Let di denote

the vertex in D∩Xi. Since both yd
i and zd

i are d-distance dominated by di, this vertex
is either x+i or x−i . Further, every clause vertex c j, for j ∈ [ℓ], must be d-distance
dominated by a literal vertex. If a clause C j in the formula F contains a positive
literal xi, then d(c j, x+i ) = d − 1 in Gd(F). If C j does not contain xi, then

d(c j, x+i ) ≥ min{(d − 1) + 2, 3(d − 1)} = d + 1. (1)

The same is true for negative literals and then, D contains a vertex that represents
a literal in C j, for every j ∈ [ℓ]. Consequently, the following truth assignment is
well-defined and satisfies F:

ϕ(xi) =
{

true; x+i ∈ D,
false; x−i ∈ D. (2)
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Assume now that F is satisfiable and consider an assignment ϕ : {x1, . . . , xk} →

{true, false} that satisfies F. Let us set

D = {x+i : ϕ(xi) = true, i ∈ [k]} ∪ {x−i : ϕ(xi) = false, i ∈ [k]}. (3)

Hence, |D| = k. Since F is satisfied by ϕ, every clause vertex c j is incident to an
x+i , c j-path P+i, j of length d − 1 such that x+i ∈ D or to an x−i , c j-path P−i, j of length
d − 1 such that x−i ∈ D. Then every clause vertex is d-distance dominated by D.
Concerning the remaining vertices in Gd(F), we note that if x+i ∈ D, it d-distance
dominates all vertices from Xi, all internal vertices from the existing paths P+i, j and
P−i, j; and the same is true for x−i . Since |D∩ {x+i , x

−
i }| = 1 for each i ∈ [k], this proves

that D is a d-distance dominating set. Further, since d(u, v) ≥ 2(d−1) ≥ p+1 holds
if u ∈ Xi, v ∈ Xi′ , and i , i′, D is a p-packing in Gd(F). Therefore, if p ≤ 2d − 3,
then γp

d (Gd(F)) ≤ |D| = k if and only if F is satisfiable.

Case 2 : p ∈ {2d − 2, 2d − 1}.
We show that the formula F is 1-in-3-satisfiable if and only if γp

d (Gd(F)) ≤ k. The
proof is mostly similar to the argument for Case 1.

If D is a γp
d -set in Gd(F) and γp

d (Gd(F)) = |D| ≤ k, then D contains exactly one
vertex, namely x+i or x−i from each Xi, and D ⊆

⋃
i∈[k] Xi holds. As (1) remains

true and each clause vertex c j is d-distance dominated, the truth assignment ϕ in
(2) satisfies F. Moreover, if u and v are two vertices representing literals from the
same clause C j, then d(u, v) = 2d − 2 < p + 1 and hence, D contains at most one of
u and v. Consequently, each clause C j is satisfied by exactly one literal in the truth
assignment ϕ. This proves the 1-in-3-satisfiability of F.

Assume now that F is 1-in-3-satisfied by ϕ and define D ⊆ V(Gd(F)) according
to (3). Then |D| = k and D is a d-distance dominating set in Gd(F). Moreover,
any two elements of D are literal vertices u ∈ Xi, v ∈ Xi′ , with i , i′. Since F is
1-in-3-satisfied by ϕ, the literals represented by u and v do not occur in a common
clause in F. We infer that d(u, v) ≥ min{2(d − 1) + 2, 4(d − 1)} = 2d ≥ p + 1 holds
when u, v ∈ D. Set D is therefore a d-distance p-packing dominating set in Gd(F)
and γp

d (Gd(F)) ≤ k. This finishes the proof for Case 2.

The polynomial-time reductions established for Cases 1 and 2 finish the proof. □

The next proposition extends Theorem 2.1 to p = 2d, but here the NP-hardness is
proved over a wider class of graphs. The question of whether the NP-completeness re-
mains true over the class of planar bipartite graphs remains open. The problem in Propo-
sition 2.2 (ii) is equivalent to the decision problem of γ2d

d < ∞ and is known to be NP-
complete for every fixed d ≥ 1 over the class of all graphs [17].
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Proposition 2.2. For each fixed integer d ≥ 2, the following problems are NP-complete
over the class of planar graphs:

(i) deciding whether γ2d
d (G) ≤ k holds where integer k is part of the input;

(ii) deciding whether G admits a d-perfect code.

Proof. (i) Let F be an instance of the Planar 1-in-3-SAT problem. We are going to prove
that γ2d

d (Hd(F)) ≤ k if and only if F is 1-in-3-satisfiable. Suppose first that γ2d
d (Hd(F)) ≤ k

and D is a γ2d
d -set in Hd(F). To d-distance dominate yd

i and zd
i , set D contains a vertex

from every Xi, for i ∈ [k]. As |D| ≤ k, we infer |D∩ Xi| = 1 and that the common vertex is
a literal vertex. To d-distance dominate a clause vertex c j, at least one vertex representing
a literal in C j belongs to D. Finally, if u and v represent two literals from the same clause,
then d(u, v) = 2d < 2d + 1 and hence, D contains at most one of them. This proves that
the following function 1-in-3-satisfies F:

ϕ(xi) =
{

true; x+i ∈ D,
false; x−i ∈ D. (4)

If a truth assignment ϕ 1-in-3-satisfies a 3-SAT instance F, we define the set

D = {x+i : ϕ(xi) = true, i ∈ [k]} ∪ {x−i : ϕ(xi) = false, i ∈ [k]}, (5)

and observe that D is a 2d-packing d-distance dominating set in Hd(F) of cardinality k.
This proves γ2d

d (Hd(F)) = k.
(ii) We prove that γ2d

d (Hd(F)) < ∞, that is Hd(F) has a d-perfect code, if and only if F
is 1-in-3-satisfiable. Suppose that D′ is a d-distance 2d-packing dominating set in Hd(F).
Since it d-distance dominates yd

i and zd
i , we have |D′ ∩ Xi| ≥ 1 for every i ∈ [k]. Further,

since the subgraph induced by Xi is of diameter 2d, no 2d-packing contains more than
one vertex from Xi. Therefore, |D′ ∩ Xi| = 1 for every i ∈ [k], and the common vertex
is either x+i or x−i . In either case, no vertex from (R+i, j ∪ R−i, j) \ {x

+
i , x

−
i } belongs to D′ as

the distance to the vertex in D′ ∩ Xi would be at most d + 1 < 2d + 1. Consequently, D′

consists only of literal vertices. To d-distance dominate a clause vertex c j, D′ contains a
vertex representing a literal in C j. On the other hand, D′ cannot contain two such vertices
because their distance is only 2d. After defining ϕ analogously to (4), we may infer that
ϕ 1-in-3-satisfies F.

To establish the other direction, we suppose that a truth assignment ϕ 1-in-3-satisfies
F and define D′ according to (5). It is easy to check that D′ is a 2d-packing and also a
d-distance dominating set in Hd(F). □

To conclude the section, we mention that the decision problem of γp
d (G) ≤ k can be

solved in linear time over the class of trees. It is true for every two nonnegative integers d
and p and follows directly from Courcelle’s theorem [3].
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3 Cycles
For integers 0 ≤ p ≤ d, every graph has a d-distance p-packing dominating set. Further,
γ

p
d (G) = 1 holds for any graph G with rad(G) ≤ d, even if p > d. On the other hand,
γ

p
d (G) = ∞ whenever p > 2d and rad(G) > d. We have also seen that deciding whether
γ2d

d (G) < ∞ holds is an NP-hard problem for every d ≥ 1.
For cycles, there are infinitely many examples with γp

d (Cn) = ∞ and d < p ≤ 2d.
For example, γ3

2(Cn) = ∞ when n ∈ {6, 7, 11}, and γ4
2(Cn) = ∞ when n ≥ 6 and n .

0 (mod 5). In this section, we prove the exact value of γp
d (Cn) for every p, d, and n. First,

assume that p > 2d and observe that γp
d (Cn) = 1 holds when n ≤ 2d + 1 and γp

d (Cn) = ∞
when n ≥ 2d+ 2. Further, for any d and p, we have γp

d (Cn) = 1 = ⌈ n
2d+1⌉ when n ≤ 2d+ 1.

The remaining cases are handled in the following theorem.

Theorem 3.1. If d, p, and n ≥ 3 are integers with 0 ≤ p ≤ 2d and n ≥ 2d + 2, then

γ
p
d (Cn) =


⌈

n
2d+1

⌉
; n

p+1 ≥
⌈

n
2d+1

⌉
,

∞; otherwise.

Proof. If D ⊆ V(Cn) and |D| = k > 1, we denote by x1, . . . , xk the distances between
the consecutive vertices of D along the cycle (i.e., the lengths of the arcs defined by D).
Clearly,

∑k
i=1 xi = n and further, D is a d-distance p-packing dominating set if and only if

p+ 1 ≤ xi ≤ 2d+ 1 for every i ∈ [k]. Therefore, if D is a γp
d (Cn)-set, then |D| · (2d+ 1) ≥ n

holds and γp
d (Cn) ≥ ⌈ n

2d+1⌉ follows.

In the next part, we assume that γp
d (Cn) < ∞ and prove that γp

d (Cn) = ⌈ n
2d+1⌉. Let D

be an arbitrary subset of V(Cn) and let |D| = k ≥ 2. For the sequence x1, . . . , xk of the
lengths of the arcs defined by D, we say that it is nearly balanced, if |xi− x j| ≤ 1 for every
1 ≤ i < j ≤ k. The set D is nearly balanced if so is the corresponding sequence x1, . . . , xk.

Claim A. If D is a d-distance p-packing dominating set in Cn, then there exists a nearly
balanced d-distance p-packing dominating set D′′ in Cn with |D′′| = |D|.

Proof. If D is not nearly balanced, then there are two arcs with xi + 2 ≤ x j. By replacing
xi with xi + 1 and x j with x j − 1, we get a new sequence and a corresponding vertex set
D′ ⊆ V(Cn). Since D was a d-distance p-packing dominating set, we have

p + 1 ≤ xi < xi + 1 ≤ x j − 1 < x j ≤ 2d + 1,

which proves that D′ is a d-distance p-packing dominating set in Cn. Repeating this
procedure if needed, we obtain a nearly balanced d-distance p-packing dominating set
D′′ with |D′′| = |D| at the end. (□)

10



If |D| = k and D is a nearly balanced d-distance p-packing dominating set, then the
lengths of the arcs are ⌊ n

k ⌋ and ⌈ n
k ⌉, and both lengths occur on some arcs. Consequently,

in this case, p + 1 ≤ ⌊n
k ⌋ ≤ ⌈

n
k ⌉ ≤ 2d + 1.

Claim B. If γp
d (Cn) < ∞, then γp

d (Cn) =
⌈

n
2d+1

⌉
.

Proof. Suppose that D is a d-distance p-packing dominating set in Cn. By Claim A, we
may assume that D is nearly balanced. Let |D| = k and a = ⌈ n

2d+1⌉. As we have already
proved, γp

d (Cn) ≥ a. It implies k ≥ a. Consider a nearly balanced set Da ⊆ V(Cn) such
that |Da| = a. Note that such a set exists and that the sequence x′1, . . . , x

′
a corresponding to

Da consists of entries ⌊ n
a⌋ and ⌈ n

a⌉. Since D is a d-distance p-packing dominating set and
k ≥ a, we infer

p + 1 ≤
⌊n
k

⌋
≤

⌊n
a

⌋
≤

⌈n
a

⌉
≤ 2d + 1, (6)

where the last inequality follows from the fact that n ≤ (2d + 1)⌈ n
2d+1⌉ = (2d + 1)a. As (6)

implies, Da is a d-distance p-packing dominating set and then γp
d (Cn) ≤ ⌈ n

2d+1⌉. We may
now conclude the equality γp

d (Cn) = ⌈ n
2d+1⌉. (□)

What remains to prove is that γp
d (Cn) < ∞ if and only if n

p+1 ≥ ⌈
n

2d+1⌉. By Claims A and
B, we know that γp

d (Cn) < ∞ holds if and only if the nearly balanced set Da with |Da| =

a = ⌈ n
2d+1⌉ is a d-distance p-packing dominating set in Cn. The sequence corresponding

to Da consists of entries ⌊ n
a⌋ and ⌈ n

a⌉. Recall that n ≤ (2d + 1)a is always true and implies
⌈ n

a⌉ ≤ 2d+1. Thus, Da is a d-distance p-packing dominating set if and only if p+1 ≤ ⌊n
a⌋.

Since p + 1 is an integer, it is equivalent to p + 1 ≤ n
a , from which we get a ≤ n

p+1 . By
substituting a = ⌈ n

2d+1⌉, we obtain the desired condition which is equivalent to γp
d (Cn) <

∞. □

Remark 3.2. Let n ≥ 2d + 2 and p < 2d. The property γp
d (Cn) < ∞ is equivalent to the

existence of an integer k for which the diophantine equation

x1 + x2 + · · · + xk = n

has a solution such that p+1 ≤ xi ≤ 2d+1 for each i ∈ [k]. This problem can be modeled
by considering the numerical semigroup S = ⟨p+1, . . . , 2d+1⟩ generated by consecutive
integers. Then γp

d (Cn) < ∞ if and only if n ∈ S . For the latter, García-Sánchez and
Rosales [8, Corollary 2] proved the necessary and sufficient condition n (mod p + 1) ≤
⌊ n

p+1⌋ (2d − p). Since the residue n (mod p+ 1) equals n− ⌊ n
p+1⌋(p+ 1), the condition can

be rewritten as n
p+1 ≥ ⌈

n
2d+1⌉.

We close this section by determining γp
d (Pn) for every path Pn. Unlike for cycles, the

solution for paths is straightforward. Note first that if p ≥ 2d + 1, then n ≥ 2d + 2 implies
γ

p
d (Pn) = ∞, while n ≤ 2d+1 implies γp

d (Pn) = 1. In the other cases we have the following
result.
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Proposition 3.3. For every three integers d, p, and n with 0 ≤ p ≤ 2d, it holds that
γ

p
d (Pn) =

⌈
n

2d+1

⌉
.

Proof. Since every vertex of the path can d-distance dominate at most 2d+ 1 vertices, we
may infer γp

d (Pn) ≥ ⌈ n
2d+1⌉. Let the vertices of Pn be denoted by the integers 1, 2, . . . , n in

natural order, and write n in the form n = (2d+1)q−r with 0 ≤ r ≤ 2d. Hence, q = ⌈ n
2d+1⌉.

Let
D = {(2d + 1)i − d : 1 ≤ i ≤ q}

if r ≤ d, and set
D = {(2d + 1)i − 2d : 1 ≤ i ≤ q}

if r > d. In both cases, |D| = q and D is a d-distance 2d-packing dominating set in Pn.
This proves γp

d (Pn) = ⌈ n
2d+1⌉ for every p ≤ 2d. □

4 Proof of Theorem 1.3
Recall that

F2 = {T : T tree, d(x, y) ≡ 2 (mod 5) for every x, y ∈ S (T ), x , y} \ {K1,n : n ≥ 2} ,

and thatT2 is the set of trees in which every two different leaves are at distance 4 ( mod 5).
Thus, if T ∈ T2, then every two different support vertices are at distance 2 (mod 5), that
is, T2 ⊆ F2. For the proof of Theorem 1.3 we need the following specific version of [19,
Lemma 2.1] which is analogous to [19, Lemma 2.3]:

Lemma 4.1. If T ∈ F2 has s support vertices, ℓ leaves, and γ0
2(T ) ≥ 2, then there exists

uv ∈ E(T ) such that Tu ∈ F2, Tv ∈ F2, γ0
2(T ) = γ0

2(Tu) + γ0
2(Tv), ℓ = ℓu + ℓv − 2 and

s = su + sv − 2, where ℓx and sx respectively denote the number of leaves and support
vertices in Tx for x ∈ {u, v}.

Proof. Let T be as in the assumptions of the lemma. Let P = v0v1 . . . vm be a diametrical
path in T and let D be a γ0

2(T )-set. Since v0 can be 2-distance dominated only by vertices
which are also 2-distance dominated by v2, we may without loss of generality assume that
v2 ∈ D. As γ0

2(T ) ≥ 2, we have diam(T ) ≥ 5, that is, m ≥ 5. As T ∈ F2 and v1, vm−1 are
support vertices in T , m − 2 = d(v1, vm−1) ≡ 2 (mod 5). Thus m ≡ 4 (mod 5) and m ≥ 9.

We prove that deg(vi) = 2 for all i ∈ {3, 4, 5, 6}. Suppose to the contrary that for some
i ∈ {3, 4, 5, 6} deg(vi) ≥ 3. So there is a leaf x in T such that d(x, vi) = d(x, P) ≥ 1. Thus
we have

d(x, vm) = d(x, vi) + d(vi, vm)
= (d(x, v0) − i) + (m − i)
= d(x, v0) + m − 2i.
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So 2i = m + d(x, v0) − d(x, vm) and as T ∈ F2 and x, v0, vm are leaves in T with different
support vertices, we get 2i ≡ 4 + 4 − 4 ≡ 4 (mod 5). But as i ∈ {3, 4, 5, 6}, 2i (mod 5) ∈
{1, 3, 0, 2}, so we have a contradiction.

Hence we know that deg(vi) = 2 for all i ∈ {3, 4, 5, 6} and so we choose D such that
v7 ∈ D. We now prove that v4v5 is the edge we are looking for. Let u = v4 and v = v5. As
m ≥ 9, ℓ = ℓu + ℓv − 2 and s = su + sv − 2. Clearly, γ0

2(Tu) = 1 and D \ {v2} is a γ0
2(Tv)-set,

so γ0
2(Tu)+ γ0

2(Tv) = γ0
2(T ). It is also easy to see that Tu ∈ F2 as diam(Tu) = 4. Let p, q be

support vertices in Tv. If they are both also support vertices in T , then we have d(p, q) ≡ 2
(mod 5). If p = v6, then d(v6, q) = d(v1, q)− d(v1, v6) ≡ 2− 5 ≡ 2 (mod 5). Thus Tv ∈ F2

as well as diam(Tv) ≥ 4. □

We are now ready to prove Theorem 1.3. It asserts that if T is a tree on n vertices with
ℓ leaves and s support vertices, then

γ0
2(T ) ≥

n − ℓ − s + 4
5

,

where the equality holds if and only if T ∈ F2.

Proof of Theorem 1.3. We prove the bound by induction on γ0
2(T ). If γ0

2(T ) = 1, then
diam(T ) ≤ 4. By considering a central vertex of T we infer that any other vertex must be
a leaf or a support vertex, hence ℓ + s ≥ n − 1. So 1 ≥ n−ℓ−s+4

5 .
From now on, let T be a tree with γ0

2(T ) ≥ 2. By [19, Lemma 2.1] there exists
uv ∈ E(T ) such that γ0

2(T ) = γ0
2(Tu) + γ0

2(Tv). By induction hypothesis, we know that
γ0

2(Tu) ≥ nu−ℓu−su+4
5 and γ0

2(Tv) ≥ nv−ℓv−sv+4
5 where nx, ℓx and sx denote the number of

vertices, leaves and support vertices in Tx for x ∈ {u, v}. By definition, nu + nv = n and it
is not hard to see that ℓu + ℓv ≤ ℓ + 2 and su + sv ≤ s + 2. Thus we have

γ0
2(T ) = γ0

2(Tu) + γ0
2(Tv)

≥
nu − ℓu − su + 4

5
+

nv − ℓv − sv + 4
5

≥
n − (ℓ + 2) − (s + 2) + 8

5

=
n − ℓ − s + 4

5
.

For the equality part of the theorem, assume that T is a tree with γ0
2(T ) = n−ℓ−s+4

5 . We
prove that T ∈ F2 by induction on γ0

2(T ).
If γ0

2(T ) = 1, then diam(T ) ≤ 4 and n − 1 = ℓ + s. So there is exactly one vertex v in
T that is neither a leaf nor a support. If T = K1, then it belongs to F2. And if n ≥ 2, then
N(v) is exactly the set of support vertices of T and the remaining vertices are leaves, so T
is not a star and d(x, y) = 2 for every two support vertices x, y of T . Hence, T ∈ F2.
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Let γ0
2(T ) ≥ 2 and assume that all trees with 2-distance domination number smaller

than γ0
2(T ) that attain the equality in Theorem 1.3 belong to F2. As γ0

2(T ) = n−ℓ−s+4
5 ,

reconsidering the proof of the inequality, we can conclude that γ0
2(Tx) = nx−ℓx−sx+4

5 for
x ∈ {u, v} and that ℓu+ ℓv = ℓ+2, su+ sv = s+2. By the induction hypothesis, this implies
Tu,Tv ∈ F2. It also follows that u is a leaf in Tu and that its neighbor u′ has no other
leaves in Tu. Similarly, v is a leaf in Tv and its neighbor v′ has no other leaves in Tv. Let
p, q be support vertices of T . If p, q ∈ V(Tu) or p, q ∈ V(Tv), then d(p, q) ≡ 2 (mod 5) as
Tu,Tv ∈ F2. If p ∈ V(Tu) and q ∈ V(Tv), then d(p, q) = d(p, u′)+3+d(v′, q) ≡ 2+3+2 ≡ 2
(mod 5). Hence, T ∈ F2.

Now let T ∈ F2. By induction on γ0
2(T ) we prove that γ0

2(T ) = n−ℓ−s+4
5 . If γ0

2(T ) = 1,
then diam(T ) ≤ 4. The only trees with diameter at most 4 that are in F2 are K1 and trees
of diameter 4 in which the center is neither support nor leaf. These trees attain equality in
Theorem 1.3.

Let γ0
2(T ) ≥ 2 and assume that trees in F2 with 2-distance domination number smaller

than T that are in F2 attain the equality. By Lemma 4.1 there is an edge uv ∈ E(T ) such
that Tu,Tv ∈ F2, γ0

2(T ) = γ0
2(Tu) + γ0

2(Tv), ℓ = ℓu + ℓv − 2 and s = su + sv − 2. By the
induction hypothesis, γ0

2(Tx) = nx−ℓx−sx+4
5 for x ∈ {u, v}. Summing these two equalities and

using the expressions for ℓ and s, we obtain γ0
2(T ) = n−ℓ−s+4

5 . □

5 Proof of Theorem 1.4
Recall that Theorem 1.4 asserts that if T is a tree on n ≥ 2 vertices with ℓ leaves and s
support vertices, then ⌈

n − ℓ − s + 4
5

⌉
≤ γ2

2(T ) ≤
⌊
n + 3s − 1

5

⌋
.

In the proof we will use the fact that D ⊆ V(G) is a 2-distance 2-dominating set if and
only if it is a maximal 2-packing in G.

Proof of Theorem 1.4. The lower bound follows by combining Theorem 1.3 with Propo-
sition 1.1.

To prove the upper bound, consider a nontrivial tree T with a diametrical path v0v1 . . . vd.
Then diam(T ) = d. We root T in the leaf vd. Let T (v) be the vertex set of the subtree
rooted in the vertex v ∈ V(T ); that is T (v) contains v and its descendants. Whenever we
define a subtree T ′, its order and the number of support vertices in T ′ are denoted by n′

and s′, respectively, and D′ denotes a γ2
2-set in T ′.

If d ≤ 4, then γ2
2(T ) = 1 and the statement holds because we either have n = s = 2 or

n ≥ 3 and s ≥ 1. We now assume that d ≥ 5 and proceed by induction on n.
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Case 1 : deg(v2) ≥ 3.
Let T ′ = T − T (v1) and note that it is not a trivial tree. By our degree condition, v2

is not a leaf in T ′ and hence, we have s′ = s − 1 and n′ ≤ n − 2. For a γ2
2-set D′ in

T ′, it is either a maximal 2-packing D in T or a maximal 2-packing in T is obtained
as D = D′ ∪ {v0}. Applying the induction hypothesis to T ′, we obtain

γ2
2(T ) ≤ |D| ≤ |D′| + 1 ≤

n′ + 3s′ − 1
5

+ 1 ≤
n + 3s − 1

5
.

Case 2 : deg(v2) = 2 and deg(v3) ≥ 3.
Let T ′ = T − T (v2) and observe that 2 ≤ n′ ≤ n − 3. Vertex v1 is the only support
vertex of T in T (v2), and as deg(v3) ≥ 3, no new support vertex arises when we
consider T ′. Hence, s′ = s − 1. The set D = D′ ∪ {v0} is always a maximal
2-packing in T . Then, we deduce

γ2
2(T ) ≤ |D| = |D′| + 1 ≤

n′ + 3s′ − 1
5

+ 1 ≤
n + 3s − 2

5
.

Case 3 : deg(v2) = deg(v3) = 2 and deg(v4) ≥ 3.
Let T ′ = T − T (v3) and observe again that 2 ≤ n′ ≤ n − 4 and s′ = s − 1 hold
under the present conditions. The set D = D′ ∪ {v1} is a maximal 2-packing in T .
Therefore, we have

γ2
2(T ) ≤ |D| = |D′| + 1 ≤

n′ + 3s′ − 1
5

+ 1 ≤
n + 3s − 3

5
.

Case 4 : deg(v2) = deg(v3) = deg(v4) = 2.
If deg(v5) = 1, then v5 is the root, n ≥ 6, and s = 2. For this case, we can
easily determine γ2

2(T ) = 2 < n+3s−1
5 . If deg(v5) ≥ 2, consider the nontrivial tree

T ′ = T −T (v4). Its order is n′ ≤ n−5. The number of support vertices in T ′ is either
s − 1 or s depending on whether deg(v5) ≥ 3 or deg(v5) = 2. For a γ2

2-set D′ of T ′,
the superset D = D′ ∪ {v2} is always a maximal 2-packing in T . We then conclude

γ2
2(T ) ≤ |D| = |D′| + 1 ≤

n′ + 3s′ − 1
5

+ 1 ≤
n + 3s − 1

5
.

As the above cases cover all possibilities and γ2
2(T ) is an integer, the upper bound follows.

□

The upper bound in Theorem 1.4 is sharp for all nontrivial paths except those of order
5k. Further sharp examples are obtained by taking graphs Gp − e1 as defined in Section 7
for p ∈ {2, 3, 4}.
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As already mentioned, in [11] Henning proved that γ2
2(T ) ≤ n+3−2

√
n

2 . Since n+3s−1
5 <

n+3−2
√

n
2 if and only if

s <
n
2
−

5
3
√

n +
17
6
,

the bounds are independent and, moreover, the one of Theorem 1.4 is sharper in most
cases.

6 Proof of Theorem 1.5
For this proof, we recall the following auxiliary result that will be useful to us.

Lemma 6.1. (Henning, Oellermann and Swart [14]) If G is a connected graph with
rad(G) ≥ d ≥ 1, then there exists a smallest d-distance dominating set D of G such
that for each v ∈ D, there exists a vertex w ∈ V(G) \ D at distance exactly d from v such
that Nd[w] ∩ D = {v}.

Recall that Theorem 1.5 asserts that if d ≥ 2 and T is a tree of order n, then γ2
d(T ) ≤

n−2
√

n+d+1
d .

Proof of Theorem 1.5. If T is a tree with rad(T ) ≤ d, then γ2
d(T ) = 1 = 1−2

√
1+d+1
d ≤

n−2
√

n+d+1
d . Hence assume in the rest that rad(T ) ≥ d + 1. Let D = {v1, v2, . . . , vb} be a

γ0
d(T )-set of T satisfying the statement of Lemma 6.1. For each i ∈ [b], let

Wi = {w ∈ V(T ) \ D : d(vi,w) = d and Nd[w] ∩ D = {vi}},

Xi = {x ∈ V(T ) : x belongs to a vi,w-path of order d + 1 for some w ∈ Wi},

Ui = {u ∈ Xi : u ∈ N(vi)},
Zi = {z ∈ Xi : z ∈ N2[vi] \ N[vi]}.

By Lemma 6.1, Wi,Ui,Zi , ∅. Moreover, |Xi| ≥ d + 1.

Claim C. Xi ∩ X j = ∅ for 1 ≤ i < j ≤ b.

Proof. Suppose that there exists a vertex x ∈ Xi ∩ X j for some i and j. Then there exist
two vertices wi ∈ Wi and w j ∈ W j such that the vi,wi-path and the v j,w j-path contain the
vertex x. It is easy to see that {vi, v j} ⊆ Nd[wi]∩D or {vi, v j} ⊆ Nd[w j]∩D, a contradiction.
(□)

Since D d-distance dominates V(T ), and by Claim C, we can partition V(T ) into
V1, . . . ,Vb, where each set Vi induces a tree Ti of radius at most d. For each i ∈ [b],
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Xi ⊆ Vi and vi d-distance dominates Vi. Let ni = |Vi|. Then ni ≥ d + 1. By the pigeonhole
principle, we may assume that n1 ≥

n
b . For each i ∈ [b], we further let

W ′
i = {w ∈ Vi : d(vi,w) = d},

X′i = {x ∈ Vi : x belongs to a vi,w-path of order d + 1 for some w ∈ W ′
i },

U′i = {u ∈ X′i : u ∈ N(vi)},
Z′i = {z ∈ X′i : z ∈ N2[vi] \ N[vi]}.

For each 1 ≤ i < j ≤ b, Ti joins T j by at most one edge in T . We can regard each
Ti as a vertex yi, and then we get a tree T ′ of order b. Then Ti joins T j if and only if
yiy j ∈ E(T ′). We also relabel the vertices such that for every i ∈ [b] the vertices y1, . . . , yi

induce a tree.
Consider the tree Ti and root it at vi. For j ∈ {0} ∪ [d], let Li

j be the set of vertices of
the j-th level of Ti. Let U′i = {u

i
1, u

i
2, . . . , u

i
s} where s ≥ 1. For each t ∈ [s], let Tui

t
be the

tree induced from Ti by the descendants of ui
t and {ui

t, vi}. Let zi
t ∈ V(Tui

t
) ∩ Z′i be a vertex.

Now we will construct a d-distance 2-packing dominating set S of T in b steps. First,
let S 1 = {v1}. For the i-th step, suppose that we have got the set S i−1 by the following
procedure. Let v ∈ V(Ti′) for some i′ < i and v is joined to some vertex v′ of Li

j. Clearly,
there is exactly one such vertex v for Ti and d(v, v′) = 1. Let d(v′, S i−1) be the shortest
distance between v′ and the vertices of S i−1 in T . We build S i form S i−1 as follows:

(1) If j = 0, i.e. v′ = vi, then let

S ′i =


⋃

t∈[s]{zi
t}; d(vi, S i−1) = 1,

{ui
1} ∪
⋃

t∈[s]\{1}{zi
t}; d(vi, S i−1) = 2,

{vi}; d(vi, S i−1) ≥ 3.

(2) If j = 1, then let

S ′i =


{ui

1} ∪
⋃

t∈[s]\{1}{zi
t}; d(v′, S i−1) = 1 and v′ ∈ NTi(vi) \ Ui,

{ui
2} ∪
⋃

t∈[s]\{1,2}{zi
t}; d(v′, S i−1) = 1 and v′ = ui

1
*,

{vi}; d(v′, S i−1) ≥ 2.

(3) If j ≥ 2, then let S ′i = {vi}.

(4) For each j ∈ {0} ∪ [d], let S i = S i−1 ∪ S ′i .

*If v′ ∈ Ui, we may without loss of generality assume that v′ = ui
1. Note that S ′i = ∅ is possible in this

case.
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By the procedure, we know that S = S b is a d-distance 2-packing dominating set, and
|S ′i | ≤

ni−1
d for i ∈ [b]\{1}. Since S = {v1}∪

⋃
i∈[b]\{1} S ′i , n1 ≥

n
b , and b+ n

b ≥
√

n+ n
√

n = 2
√

n,
we have

γ2
d(T ) ≤ |S | ≤ 1 +

∑
i∈[b]\{1}

ni − 1
d

≤ 1 +
1
d

(n −
n
b
− b + 1)

≤
n − 2

√
n + d + 1
d

.

□

The upper bound in Theorem 1.5 is best possible as demonstrated by the following
example. Let T be the tree obtained from a star K1,ds (s ≥ 0) by attaching s copies of Pd

to each vertex of the star. One can see Fig. 3 for an illustration for this construction.

Figure 3: An example where s = 2 and d = 3.

Note that
n = |V(T )| = ds + 1 + ds(ds + 1) = (ds + 1)2,

γ2
d(T ) = 1 + ds2,

and

γ2
d(T ) = 1 + ds2 =

(ds + 1)2 − 2(ds + 1) + d + 1
d

=
n − 2

√
n + d + 1
d

.

Inspired by the result from [9] asserting that γ1
d(G) ≤ n−2

√
n+d+1
d , and by Theorem 1.5,

we propose the following conjecture.

Conjecture 6.2. If 3 ≤ p ≤ d and T is a tree of order n, then γp
d (T ) ≤ n−2

√
n+d+1
d .

Note that if Conjecture 6.2 is true, then the above example can be used to show that
the bound is sharp.
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7 Spanning trees
Let e be an edge of a graph G. Since dG−e(u, v) ≥ d(u, v) for every u, v ∈ V(G), a packing
of G remains a packing in G − e. On the other hand, this property in general does not
extend to γ2

2(G). To see it, consider the graphs Gp and G′p (p ≥ 2) as shown in Fig. 4,
where deg(ui) = deg(vi) = p + 2 for i ∈ [2].

u2 v2

e2

u1 v1

e1

Figure 4: The graphs Gp (left) and G′p (right).

Note that eccGp(u1) = 2, hence γ2
2(Gp) = 1. Since γ2

2(Gp − e1) = 1 + p, this example
shows that γ2

2 can increase arbitrary by removing an edge. On the other hand, {u2, v2} is
a γ2

2-set of G′p − e, so γ2
2(G′p − e2) = 2, but γ2

2(G′p) = 1 + p, hence γ2
2 can also decrease

arbitrary by removing an edge.
The sequential removal of edges can therefore give rise to a non-monotonic sequence

of γ2
2 of associated graphs. Nevertheless, we have the following monotonicity result.

Proposition 7.1. Every connected graph G contains a spanning tree T such that γ2
2(T ) ≤

γ2
2(G).

Proof. Let S = {s1, . . . , sγ2
2(G)} be a γ2

2-set of G. Let S ′ = {v ∈ V(G) \ S : N(v) ∩ S , ∅},
and let S ′′ = {v ∈ V(G) \ S : N(v) ∩ S = ∅}. Then V(G) = S ∪ S ′ ∪ S ′′.

We are going to construct a required spanning tree T as follows. First add all the
vertices of S to T . Consider next the vertices from S ′. Then, by definition, each v ∈ S ′

is adjacent to some vertex si ∈ S , and, moreover, since S is a 2-packing, N(v) ∩ S = {si}.
We now add the edge vsi to T . After this is done for all the vertices of S ′, the so far
constructed T is a disjoint union of stars with the vertices of S being the centers of the
stars. Consider finally the vertices from S ′′. If v ∈ S ′′, then since S is a maximal 2-
packing, there exists a vertex s j such that d(v, s j) = 2. There could be more vertices in
S at distance two from v, but we select and fix s j. Let v, u, s j be a shortest v, s j-path and
note that u has already been added to T while considering the set S ′. We now add the
edge vu to T . We do this procedure for each of the vertices of S ′′ one by one.

After the above described procedure is finished, the so far constructed T forms a
spanning forest of G consisting of γ2

2(G) components (where each component contains
exactly one vertex from S ). We complete the construction of T by adding γ2

2(G) − 1
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additional edges of G to obtain the final spanning tree T . Note that in this way, having
in mind that S is a 2-packing in G, the set S is also a 2-packing in T . Moreover, by the
construction, for each vertex v ∈ V(T ) there exists a vertex si ∈ S such that dT (v, si) ≤ 2.
We can conclude that S is a maximal 2-packing of T and thus γ2

2(T ) ≤ |S | = γ2
2(G). □

Related to Proposition 7.1, we recall that every connected graph contains a spanning
tree with the same domination number, see [15, Exercise 10.14], and that the same holds
for the total domination number, see [10, Lemma 4.41] and, more generally, for the d-
distance domination number γ0

d(G) for every d ≥ 1, see [4, Lemma 2.1]. To see that we
cannot derive this conclusion for γ2

2 consider the graph Hp, p ≥ 2, as shown in Fig. 5,
where deg(vi) = p + 2 for i ∈ [3].

e

v1

v2

v3

Figure 5: The graph Hp with γ2
2(T ) < γ2

2(Hp) for each spanning tree T of Hp.

If a maximal packing S of Hp contains a vertex vi, then S ∩ {v1, v2, v3} = {vi}. From
this fact we can deduce that γ2

2(Hp) = 1+2p. The graph Hp contains exactly six spanning
trees, by the symmetry we may consider the spanning tree Hp − e, where e is the edge as
in Fig. 5. Then dHp−e(v1, v2) = 4 and the set containing v1, v2, and the leaves that are at
distance two from v3, is a γ2

2-set of Hp − e, so that γ2
2(G − e) = p + 2. Hence, since p ≥ 2,

we can conclude that γ2
2(T ) < γ2

2(Hp) for every spanning tree T of Hp.
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Csilla Bujtás, Vesna Iršič, and Sandi Klavžar were supported by the Slovenian Research

20



and Innovation Agency (ARIS) under the grants P1-0297, N1-0285, N1-0355, and Z1-
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[20] J. Raczek, M. Lemańska, J. Cyman, Lower bound on the distance k-domination
number of a tree, Math. Slovaca 56 (2006) 235–243.

[21] D.T. Taylor, Perfect r-codes in lexicographic products of graphs, Ars Combin. 93
(2009) 215–223.

[22] J.A. Trejo-Sánchez, F.A. Madera-Ramírez, J.A. Fernández-Zepeda, J.L. López-
Martínez, A. Flores-Lamas, A fast approximation algorithm for the maximum 2-
packing set problem on planar graphs, Optim. Lett. 17 (2023) 1435–1454.

22


	Introduction
	Notation
	Our results

	Algorithmic time complexity
	Cycles
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	Proof of Theorem 1.5
	Spanning trees

