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1 Introduction

Let G = (V(G), E(G)) be a graph, S C V(G), let d and p be nonnegative integers, and let d( -, -)
denote the standard shortest-path distance. Then S is a d-distance dominating set of G if for every
vertex u € V(G) \ S there exists a vertex w € S such that d(u,w) < d, and S is a p-packing of G if
dw,w") > p + 1 for every two different vertices w,w’ € S. The d-distance p-packing domination
number vy, "(G) of G is the minimum size of a set § which is at the same time d-distance dominating
set and p-packing. (If for some parameters d and p such a set does not exist, set y, P(G) = .)

The d-distance p-packing domination number was introduced by Beineke and Henning [1] un-
der the name (p, d)-domination number and with the notation i, ,(G). With the intention of placing
it within the trends of contemporary graph domination theory, the notation y/(G) was recently pro-
posed in [2] and we follow it here. In [2] it is proved that for every two fixed integers d and p with
2 <dand 0 < p < 2d — 1, the decision problem whether y/(G) < k holds is NP-complete for
bipartite planar graphs. Several bounds on y/(T), where T is a tree on n vertices with ¢ leaves and

s support vertices are also proved, including yz(T) > = ‘] st4 and y d(T) <= 2\F+d+1 ,d > 2. These
results improve or extend earlier results from the hterature

In this paper, our focus is on the invariants 39 and ). For the first one we will simplify the
notation to y, because it has been investigated under the name of d-distance domination number of
G with the notation y,(G), see the survey [8]. We also refer to [3] for algorithmic aspects. For the
total version of this concept see [4]. The second invariant 7’}1 deals with d-distance dominating sets
which are 1-packings. Note that a set of vertices is a 1-packing if and only if it is an independent
set, hence in this case we will say that yjl(G) is the d-distance independent domination number of
G, cf. [5,7, 8].

Meierling and Volkmann [10], and independently Raczek, Lemariska, and Cyman [12], proved
that if d > 1, and T is a tree on n vertices and with ¢ leaves, then y,(T) > ~ 2‘2‘:2‘1 On the other
hand, Meir and Moon [11] proved thatif d > 1 and 7T is a tree of order n > d + 1, then y4(T) < 75.
About twenty years later, in 1991, Topp and Volkmann [13] gave a complete characterization of the
graphs G with y;(G) = e ‘. In 1994, Beineke and Henning [1] proved that if d € {1,2,3} and T is
a tree of order n > d + 1, then y(T) < - Moreover, they closed their paper with the following:

Conjecture 1.1. [1] Ifd > 1 and T is a tree of order n > d + 1, then yd(T) < 75

We point out here that in the book’s chapter [8], Conjecture 1.1 is stated as [8, Theorem 71] with
the explanation that the above-mentioned bound on y,4(7") due to Meir and Moon [11] is proved in
such a way, that the d-distance dominating set is also independent. Anyhow, in the next section
we prove that the bound holds for all bipartite graphs. In Section 3 we then characterize trees T of
order n for which 7[11(T) = -7 holds. In Section 4, we prove that if 7" has ¢ leaves, then 7y, d(T) < "‘f
(provided that n — £ > d), and yjl(T) < Zig (provided that n > d). In both cases, the trees that attaln
the equality are characterized. Using the fact that y,(T) < y}(T), we also derive analogous bounds
for y,(T) and characterize trees attaining those bounds. In particular, if 7 is a tree with ¢ leaves and
of order n > d + ¢, then
=L ifn<(d+ 1,

L oifn=(d+1),

Ya(T) < yy(T) <4 &,
Bl ifn > (d+ 1)L,



and the upper bounds are best possible. We conclude the paper with a conjecture.

In the rest of the introduction additional definitions necessary for understanding the rest of the
paper are given. For a positive integer n we will use the convention [n] = {1,...,n}. Let G be a
graph. The degree of u € V(G) is denoted by deg(u) or deg(u) for short. Further, diam(G) is the
diameter of G and L(G) is the set of its leaves, that is, vertices of degree 1. We call a d-distance
p-packing dominating set of G of size yS(G) a yS(G)-set. When G is clear from the context, we
may shorten it to y/-set. A double star D, is a tree with exactly two vertices that are not leaves,
with one adjacent to r > 1 leaves and the other to s > 1 leaves. When we say that a path P is
attached to a vertex v of a graph G, we mean that P is disjoint from G and that we add an edge
between v and an end vertex of P.

2 Bounding y) for bipartite graphs

For the main result of this section, we first prove the following.

Theorem 2.1. If d > 1 is an integer and G is a connected bipartite graph of order at least d + 1,
then V(G) can be partitioned into d + 1 d-distance independent dominating sets.

Proof. Set Z = diam(G).

If Z < d, then each vertex is a d-distance dominating set of G. Since G is bipartite, a required
partition of V(G) can be constructed by considering a bipartition (X, Y) of G and partitioning X and
Y into d + 1 parts appropriately. Hence assume in the rest that Z > d + 1.

Let P be a diametrical path of G, let x and y be its end-vertices, and root G at x. Let L;,
0 < i < Z, be the distance levels with respect to x, thatis, L; = {u € V(G) : d(x,u) = i}. Consider
now the sets

Si =) Liasners i€10,1,....d).
We claim that {S, S, ...,S4} is a partition of V(G) as stated in the theorem.

Since distance levels of a bipartite graph form independent sets and as d > 1, each set §; is
independent. Hence it remains to prove that these sets are d-distance dominating sets.

Let u be an arbitrary vertex of G and assume that u € L;, where 0 < s < Z. If s > d, then there
exists a path of length d between u and a vertex from L,_,. This already implies that u is d-distance
dominated by each of the sets S;, i € {0, 1,...,d}. Hence assume in the rest that s < d. Then by a
parallel argument, u is d-distance dominated by each of the sets S;, i € {0, 1,..., s}. It remains to
verify that u is d-distance dominated by each of the sets S;,i € {s+1,...,d}. For this sake consider
an arbitrary, fixed r € {s + 1,...,d}. Let Q be a shortest u, y-path and recall that by our assumption,
d(u,y) < Z. Since every edge of G connects two vertices from consecutive distance levels L;, the
path Q necessarily contains a vertex w € L,. We claim that d(u#, w) < d. Suppose on the contrary
that d(u, w) > d. Since Q is a shortest path, d(w,y) > Z — t. Using these facts together with r < d,
we get

Z<d+(Z-1t<duw)+dw,y)=d(u,y)<Z,

which is not possible. We can conclude that d(u, w) < d. This means that u is d-distance dominated
by S, and we are done. O



In connection with Theorem 2.1 we add that Zelinka [14] proved that if d > 1 and G is a
connected graph of order at least d + 1, then V(G) can be partitioned into d + 1 disjoint d-distance
dominating sets. In this general case, however, the partition need not be into independent sets.

The following is an immediate consequence of Theorem 2.1.

Corollary 2.2. Letd > 1 be an integer. If G is a bipartite graph of order n > d+1, then y}(G) < e

Corollary 2.2 generalizes [8, Theorem 71]. On the other hand, the upper bound in Corollary 2.2
may not hold if G is not bipartite. For example, for n > d + 2 and k > 2, let G, ;4 be the complete
graph K, with k copies of P, attached to each vertex. Clearly, |V(G,xq4)| = n(dk + 1). While
va(Gnia) = n, a d-distance independent domination needs much more vertices, and it is not hard to

V(Gnia)l

deduce that y)(Guxq) = 1 + (n — Dk. Asn > d +2 and k > 2, we infer that y}(G,x4) > — .

3 Trees that attain equality in Corollary 2.2

Let d > 1 be an integer. The P;-corona H o P, of a graph H is the graph obtained from H and
|V(H)| disjoint copies of P,, by attaching a copy of P, to each vertex of H, see Fig. 1.
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Figure 1: The P;-corona H o P, of a graph H.

If d > 2, then let B, be the family of P,;-coronas of bipartite graphs, that is,
By ={H o P, : H is abipartite graph}.

Note that P, € B,. Observe also that each G € B,, where G = H o P,, is a bipartite graph with
[V(G)| = (d + 1)|V(H)|. The following proposition shows that the upper bound in Corollary 2.2 is
best possible.

Proposition 3.1. If G € B, is of order n, then y,(G) = .

Proof. Let G = H o P, for some bipartite graph H. By the definition of H o P,, the set L(G) is a

d-distance independent dominating set of G. Thus, ybli(G) <|LG)| =|V(H)| = 75




Conversely, for each u € V(H), let G, be the subgraph of G induced by u and the vertices of
the copy of P, attached to u. Clearly, G, = Py,,. If Dis a ygl(G)-set, then |[D N V(G,)| = 1. Thus,

v,(G) = ID| 2 |V(H)| = 75. O

Note that if G is a connected bipartite graph of order n = d + 1, then y(G) = 1 = - and
Y(Caai2) = 2 = 2. Moreover, if d = 1, then y}(K,,) = r = £ = £. In 2004, Ma and Chen
gave an equivalent description of the bipartite graphs G of order n with y}(G) = 5. see [9, Theorem
1]. They also proved an explicit characterization of such a family for the case of trees. To state the

result, let £; be a family of trees defined by the following recursive construction.

(i) K> €.

(i) If 77 € £;, and T is obtained by joining the center of a new copy of K, (t > 1) to a support
vertex v of 7’ and adding ¢ — 1 leaves at v, then T € (.

See Fig. 2 for an illustration.!

Figure 2: A tree T from the family {;, where 7" is the double star induced by the black vertices.

The result of Ma and Chen for trees now reads as follows.
Theorem 3.2. ([9, Corollary 1]) If T is a tree of order n, then yi(T) =S ifandonly if T € (.

We shall focus on the general case for d > 2, and give a complete characterization of the trees
achieving equality in the upper bound of Corollary 2.2. Set

Ta={T"oP,;:T" is anon-trivial tree}.

n

Note that 7, does not contain the path P,,;. Since 7, C B,, and by Proposition 3.1, y}l(T) =75

for each tree T € 7, of order n. Moreover, if T is a tree of order n = d + 1, then we also have
1 n
Y1) =1= 77

IFor the definition of £}, we note that both vertices of a K, are support vertices. Then, (ii) can be applied to K, and
this step results in the double star D, , for every r > 1. It shows that the family ¢; is the same as {K,} U { in [9].




In a tree T and for a vertex v € V(T), let L(v) be the set of leaves of T that are neighbors of
vin T. Root T at some vertex. Let T, be the subtree induced in 7 by v and its descendants, and
letT —T, =T — V(T,). A vertex of T is called a P,-support vertex if it is attached to a copy of
P,. For each H € 7,, every vertex of H* is a P;-support vertex of H, where H = H* o P, for
some non-trivial tree H*. In particular, a P-support vertex of 7 is just a support vertex of 7. A
vertex of T is a (P;, P;)-support vertex if both a copy of P; and a copy of P; are attached to it. In
particular, a (P;, P;)-support vertex has at least two copies of P; attached. The d-subdivision of T is
the tree obtained from 7 by subdividing each edge d-times. Then the 1-subdivision of 7 is just the
subdivision of 7.

Before proving the announced characterization of trees of order n with y)(T) =
the following lemma which will also be used in the subsequent section.

n

T41° we state

Lemma 3.3. Letd > 2 and let T be a tree with s = diam(T) > 2d+1. Suppose that P := v{v, ...V
is a diametrical path in T and the tree is rooted at vy.,. If there is no P, -support vertex and no
(P;, Pj)-support vertex in T with i € [d — 1] and j € [d], then the following statements hold.

(i) Ifke{2,...,d}U{s—d+2,...,s}, then deg(vy) = 2.
(ii) If ke {d+1,s —d + 1}, then deg(vy) > 3.

(iii) For every v € V(T), if v is the only vertex with deg;(v) > 3 in the subtree T,, then T, is
isomorphic to the (d — 1)-subdivision of a star K, with t > 2.

(iv) The subtree T, , is isomorphic to the (d — 1)-subdivision of a star K, with t > 2.

Vd+1

(v) If s = 2d + 1, then T is obtained by taking the (d — 1)-subdivisions of two stars K, with
t1 > 2 and Ky, with t, > 2, and adding an edge between the centers.

Proof. (1)—(i1) According to the conditions, there is no (P, Py)-support vertex in 7. That is, every
vertex of T is adjacent to at most one leaf, and in particular, deg(v,) = 2. Further, if d > 3,
then deg(vs;) = 2, since otherwise v3 would be a (P;, P,)-support vertex with 1 <i <2 <d -1
contradicting the condition. Similarly, deg(v;) = 2 holds for all k € {2,...,d}. By symmetry, the
same is true for vy if k € {s—d+2,..., s}. This proves (i). The assumption that there is no pendant
P, in T directly implies (i1).

(i) If degr(v) > 3 and degy (1) < 2 for every further vertex u from V(T,), then at least two
pendant paths are attached to v. Then, by the conditions in the lemma, every path attached is
isomorphic to P,.

(iv)—(v) As P is a diametrical path, a vertex u € V(T,,,,) different from v, cannot be a P;-
support vertex. Part (ii1) then implies (iv). If we re-root T at the vertex v, the same property holds
for the subtree induced by v,_,. and its descendants in the re-rooted tree. This directly implies (v)
for the case of s = 2d + 1. O

Theorem 3.4. Ifd > 2 and T is a tree of order n, then ytli(T) = -7 holds if and only ifn = d + 1 or
T €T,



Proof. If T is of order n = d + 1, then, clearly, ycll(T) = 1= S5, and if T € 7, then by Proposi-
tion 3.1, we have y(T) = -7+ The proof of the necessity is by induction on n. If yi(T) = - then
n = (d + 1)q for some integer ¢ > 1. If ¢ = 1, then n = d + 1. So, we may assume that g > 2 and
n>2d+1). If diam(T) < 2d, then ycll(T) =1 < 24t < 1y the continuation, we assume that

d+1  — d+1°
diam(T) > 2d + 1 and y(T) = /.

Claim A. Ifi € [d — 1] and j € [d], then there is no (P;, P;)-support vertex in T.

Proof. Suppose, to the contrary, that v is a (P;, P;)-support vertex in 7" and i < j. Let P’ :=
xixy...x;and P” := y;y,...y; be two copies of P; and P; attached to v in T', where x;v,y;v € E(T).
Note that d(x;,v) =i < j = d(y;,v). Consider T’ = T — V(P’). Thenn’ = |V(T")| = n—-1i >
2d+1)—(d-1)=d+3.LetD’ bea yj,(T’)-set. If v € D', then D’ is also a d-distance independent
dominating set of 7. If v ¢ D’, then |D’| = y;(T’) implies |D’ N V(P”)| < 1. For the subcase
|ID” N V(P"”)| = 1, we may assume that y; € D". Then d(x,y;) < d for each k € [i]. For the subcase
|D" N V(P")| = 0, in order to d-distance dominate y; in 7’, there exists a vertex u € D’ such that
dr(u,yy) <d. Since i < j, it holds that d7(xy, u) < dr(u,y,) = d(u,y,) < d for each k € [i]. Thus,
D’ is always a d-distance independent dominating set of 7. Corollary 2.2 then implies

’

n < n
d+1 d+1

yiT) < |D'| = y(T") <

which contradicts the assumption yali(T) = . This proves Claim A. «©

Claim B. If T has a P ,-support vertex v, then T € T,.

Proof. Let P’ := x1x; ... x4+ be a copy of Py, attached to v, where x;,1v € E(T). Then deg(x;) =
2 forall k € [d+ 1]\ {1} and deg(x;) = 1. Consider 7" = T — V(P’). Then n’ = |V(T")| =
n—d+1)>2(d+1)—d-1=d+ 1. Let D' be a y;(T’)—set. Then D’ U {x;} is a d-distance
independent dominating set of 7. By Corollary 2.2,

n _n—(d+1) n

'Y <ID|+1=yTH+1< l=—=""7 -
o) <ID1+ YaT) + _d+1+ d+1 * d+1’

and the equality holds if and only if y}(T) = y}(T") + 1 and y}(T") = 2. The induction hypothesis
therefore impliesn’ =d +1or T’ € 7.

Suppose n’ = d + 1. Thenn = 2(d + 1) and T is the tree obtained from a copy of P, and a
tree T’ of order d + 1 by joining x4, to a vertex v of 7’. Note that diam(7") < d with equality if
and only if 7" = P4,y. Unless 77 = P, and v is a leaf of T, {x;,,} is a d-distance independent
dominating set of 7', implying that y(T) = 1 < zg:]” = -7, a contradiction. For the exception, we
observe T = P11y € T4

Suppose T € 7,4. Let T" = T, o P, for some non-trivial tree T,. If v € V(T)), then T =
T" o P; € T4, where T" is the tree obtained from 7', by adding a new vertex x,.; and the edge
Xg4v toit. If v ¢ V(T)), then let u; be the P;-support vertex of 7, such that the attached copy

of P, contains v. Since |V(T})| > 2, there exists a neighbor u, € V(T7)) of u;. Let u} and u)




be the leaves of T’ corresponding to u; and u,, respectively. Note that v = u/ is possible, and
D = (L(T") \ {u}, u3}) U {x4:1, U2} is a d-distance independent dominating set of 7. Thus,

’

< n
d+1 d+1

yYT) < |D| = |(T")| = |V(T)| =

that contradicts our assumption on 7" and finishes the proof of Claim B.

Claim B shows that if 7[11(T) = - and T contains a pendant path P,,;, then T € 7,. The

d+1
remaining part of the proof verifies that there is no tree 7 with |V(T')| > d + 1 and yj,(T) = -7 that
does not contain a pendant P,,;. From now on, we suppose that there is no P, {-support vertex in

T and that y)(T) = 2.
Let s = diam(T) > 2d + 1 and P := vyv,...v, be a diametrical path in 7. Then deg(v;) =
deg(vsy1) = 1. Root T at vy, y. Our assumption on the non-existence of P,,i-support vertices and

Claim A imply that the properties stated in Lemma 3.3 (i)—(v) are valid for 7.

If s = diam(T") = 2d + 1 then, by Lemma 3.3 (v), the tree T can be obtained from the (d — 1)-
subdivisions of two stars K;, and K;,, with #; > #, > 2 by joining the centers with an edge.
Then N(v4,») is a d-distance independent dominating set of 7. Since d > 2, it gives the following
contradiction:

Dd+t6,+1 2dt+2 d(ty+1)+2 n
1 < _ :(fz‘l‘ 2 2 < _ .
YaD) < INCa2)l = 12 +1 d+1 STd+1l S d+1 d+1

So, we may assume that diam(7) > 2d + 2 and n > 2d + 3. Regarding v,,,, we divide the rest
of the proof into two cases and prove that in both we get a contradiction.

Case 1. Each vertex vin N(vyy2) \ {vas1, vass} 1s of degree at least 3.
By Lemma 3.3 (iii) and since P is a diametrical path, for each v € N(v;,,) \ {v443}, the subtree
T, 1s isomorphic to the (d—1)-subdivision of a star K, ,, with ¢, > 2. Clearly, T,,,, is contained
inT,,,, and therefore, |V(T,, )| > 2d+2. LetT' =T -T,,,. Since {vg3, ..., vaa3} € V(T7),

we obtain

d+2
d+1<n =|\V(T"| <n-2d-2.

LetD’ bea )/cll(T’)—set. Then D = D'U(N(v442)\{vas3}) 1s a d-distance independent dominating
set of T. Let p = deg(vysy2). Observe that p > 2 andn’ < n—-Q2d+ 1)(p-1)—-1. By
Corollary 2.2, we get the following contradiction:

Yo(T) < Dl = y,(T") + p— 1

’

<
d+1

n-2d+1)(p-1)-1 N

d+1
_n—dip-1)-1
B d+1

+p-—1

p—1

n

< .
d+1




Case 2. There is a vertex v in N(vgy2) \ {Var1, vass} with deg(v) < 2.
If deg(v) = 2 and T, contains a vertex u with deg(u) > 3, then Lemma 3.3 (iii) implies the
existence of a leaf w € V(T,) with d(w,u) = d. It follows then that d(w,v;.») > d + 2 and
dw,vs1) = s+ 1 = diam(T) + 1, a contradiction. Therefore, deg(v) < 2 implies that T, is
a path and v, is a P;-support vertex for some i > 1. By our assumption, i < d. Further, by
Claim A, we have the following properties.

e If vy, is a P;-support vertex of T for some i € [d — 1], then there is only one pendant
path attached to v,,,, and it is clearly of order i.

o If vsy 1s a Py-support vertex of 7, then v,,, is not a P;-support vertex of 7 for any
i € [d — 1], and there is at least one copy of P, attached to v4,.,.

Case 2.1. L(vgn) # 0.
In this case v, is a Py-support vertex of 7. Let x € L(v4y,) and T° = T — x. Now for each
vertex v € N(vgi2) \ {vas3), the subtree T is isomorphic to the P;-subdivision of a star K,
fort, > 2. Clearly,n’ = |V(T")|=n—-12>2d + 2.

Let D’ be a y;(T’)-set. If vy € D', then D’ is also a d-distance independent dominating set
of T. If vgyr ¢ D', then since [D'N V(T )| > 1, we may assume that vy, € D". The set D’ is
also a d-distance independent dominating set of 7'. For any subcase, y}l(T) <|D|= y}l(T’) <

2 — 1l o _n_ by Corollary 2.2.

d+1 — d+1 d+1

Case 2.2. L(vz,) = 0.
In this case, v;4, 1s a P;-support vertex of T for some i € [d] \ {1} (where if i = d, then
there could be multiple copies of P, attached to v;,,). Let P’ := x1x; ... x; be the (selected)
copy of P; attached to v,,,, where x;vs.o € E(T). Then deg(x;) = 2 for all k € [i] \ {1} and
deg(x;) = 1. Consider 7" =T -T,,—T,. Thenn' = |V(T')| =n—-d—-i<n—-d-2and
n >d+3since Vi, Vasa, .., Vages € V(T').

Let D’ be a y}i(T’)—set. Then |D" N {vge1, v}l < 1. If vy € D and vy, ¢ D', then let
D =D U{x;}. Ifvgey ¢ D and vy, € D', thenlet D = D’ U {v;}. If vgiq, v € D', then
since v,y is attached to at least two copies of P,, we have D’ N (V(T,,,,) \ V(T,,)) # 0. Let
D = D" U {vg1,xi} \ (V(T,,,,)\ V(T,,)). For any subcase, D is a d-distance independent
dominating set of 7, and y(T) < |D/|+1 = yX(T) +1 < 25 +1 < =22 4] < L by
Corollary 2.2.

This completes the proof of Theorem 3.4. O

4 Upper bounds on y,; and Vclz of trees in terms of the order and
the number of leaves
For any tree T of order n and with ¢ leaves, the set of non-leaves is a dominating set of 7. Hence,

v1(T) < n —{. Note that the equality holds if and only if each vertex of T is either a leaf or a
support vertex. If there exists a vertex u € V(T) that is neither a leaf nor a support vertex, then



V(T) \ ({u} U L(T)) is a dominating set of T, implying that y,(7T") < n — €. On the other hand, the
upper bound y{(T) < n— ¢ is not true for every tree T. For example, let T’ = T* o P; € 7, for some

tree T, and let T be the tree obtained from 7" by adding r > 2 leaves to each vertex of 7’. It can
be checked that

Yi(T) = V(T + rIV(T)] > 2AV(T)| = 2(r + DIV(T)| = 2rV(TH) = n — L.

Set now
Fr={T:T-LT)el},

and if d > 3, then set
Fa={T : T — L(T) is a tree of order d or belongs to 7,_} .

Note that each graph from ¥,, d > 2, is a tree, and the following property is equivalent to the
definition of ¥,.

(x) If d > 3, atree T belongs to ¥, if and only if it can be obtained from some tree 7', which
satisfies |V(T’)| = d or T" € 7,41, by adding at least one pendant vertex to each leaf of 7,
and some number (possibly zero) to other vertices of 7’. For d = 2, a tree T belongs to 7 if
and only if it can be obtained similarly from a tree 7"’ € (.

For d > 2, we prove the following result.

Theorem 4.1. Let d > 2 be an integer and T be a tree of order n and with € leaves. If n — € > d,
then y(T) < nT_tg with equality if and only if T € F,.

Proof. Considerthetree 7/ =T — L(T). Letn’ = |V(T")|=n—-{ >d. Let D’ be a yj,_l(T’)-set. By

Corollary 2.2, |D'| = y}_(T") < ”3'. Moreover, D’ is also a d-distance independent dominating set

of T, implying that / ;
noon-

YD I =y, (T < = = ——.

Assume that y,}l(T) = %5 holds for a tree T. Inequalities in (1) therefore imply 7[11(T) =
Y (T = ”3'. By Theorems 3.2 and 3.4, we know that 7 € {; when d = 2, and T’ is a tree
oforderdor T’ € T,y whend > 3. Since T’ = T — I(T), we conclude T € F,.

It remains to prove that y}l(T) > 2= holds for every T € F,. Consider first a tree T from ¥, and
let 7" =T — L(T). Hence T’ € {;. We will prove the inequality by induction on 7’ according to the
recursive definition of ;. If 7" = K,, then T is a double star and yé(T) =1= ”7‘[ If7" = D,,, for
r > 1, then any y|(T")-set is a smallest 2-distance independent dominating set of T, implying that

(1

2r+2_n' n—+¢

2 2 2

HT) =y(T)=r+1=
Assume next that 77 = T — L(T) is a tree from {; which is neither K; nor a double star. Let

T; = T’ and let T be the tree from £; such that 7] is obtained from 7’| by the recursive construction
of £y, that is, T can be obtained by joining the center u of a new copy of K;, (f > 1) to a support
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vertex v of T, and adding ¢ — 1 leaves at v. For i € [2], let T; be a tree from ¥, which is obtained
from T according to (x). Moreover, let n; = [V(T})|, n; = |V(T})|, and ¢; = |[L(T;)|, i € [2].

Assume that y,(T)) = '“T_K‘ We are going to prove that y,(T>) > %. Note that n} = n; — ¢;
and n, = n} +2t. Let D, be a yé(Tz)—set that contains as few leaves from 7, as possible and
let Dy = D, N V(Ty). If v € D,, then u ¢ D, and, by the minimality of |D, N L(T,)|, we have
LTé(u) c D,. Now D, = D, \LTé(u) is a 2-distance independent dominating set of 7', implying that
¥5(T1) < |Dy| = |Dy| — 1. If v ¢ D,, then we may assume that u € D,. Also, L")\ Ly;(v) € D,
holds by the minimality of |D, N L(T,)|. Further, @ # Lz (v) € Dy, and v and the leaves added to
LT (v) in T will be independently dominated by LT v). Hence Dy = Dy \ {u} \ (LT W\ LT W)
is a 2-distance independent dominating set of 77, 1mp1y1ng that 72(T1) < |Dy| = |Dy| —t. Hence no
matter whether v belongs to D, or not, we have

_ € n/ _ n/ n/ n, — €

Ty >y Ty +r=""N 2 1 T Mo

Y2(T2) = v, (Th) > > > >

Assumenow that T € Fy,andd > 3. For T =T — L(T),letn’ = |V(T")|=n—-€>d. If " =d,
then 7[11(T) >1= "T‘f. If7" € 744, thenlet T’ = T* o P,_; for some non-trivial tree T*. For each
u € V(T"), let T, be the subtree of 7 induced by u and the vertices of the copy of P,_; attached
to u, and let T, be the subtree of T induced by V(7)) and the leaves added to V(7)) inT. If D is a

y;(T)-set, then |[D N V(T,)| > 1 for every u € V(T*). Thus, we have

' on—¢
WTY = D| > V(T = = =222
v,(T) = |D| > |V(T")| 7 p

This completes the proof of Theorem 4.1. O

We note that the condition of n > d + € is necessary in Theorem 4.1. Let 7" be a tree of order
at most d — 1. Consider the tree T obtained from 7" by adding at least one pendant vertex to each
leaf of 77 and some number to other vertices of 7’. Then n’ = |V(T")| = n — € < d — 1 and we may
infer y(T) > 1 > &1 > =L,

Favaron [6] proved that if T is a tree of order n > 2 and with ¢ leaves, then 7}(T) < ”;5, and

gave the full list of extremal trees for this bound. Our next theorem extends Favaron’s result to all
d>?2.

Theorem 4.2. Let d > 2 be an integer and T a tree of order n and with € leaves. If n > d, then

yiT) < Z:g with equality if and only if T € {P;} U 7.

Proof. f T = Py, then y}(T) = 1 = ©2 = 2L If T € T, then by Proposition 3.1, y(T) = =

d+2 d+2° d+1
% = Z—:g. To prove the upper bound and that the equality implies T € {P,} U T ,, we proceed by
induction on n. If diam(7) < 2d, then y(T) = 1 = 482 < L The equality holds if and only if

d+2 = d+2°
n=dand{ =2, implying that 7 = P;. So, we may assume that diam(7) > 2d + 1 and n > 2d + 2.
Note that if £ > -~ then by Corollary 2.2, yi(T) < /5 < 2L,

Claim C. Leti€[d—1]and j € [d] withi < j. If T has a vertex v that is a (P;, P;)-support vertex,

then yd(T) < Zig
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Proof. Let P’ := x1x,...x;and P’ := y;y,...y; be a copy of P; and P;, respectively, attached to
vin T, where x;v,y;v € E(T). Since n > 2d + 2 and |V(P")| < [V(P")| £ d, we have deg(v) > 3.
Consider T/ =T —V(P). Then ¢’ = |[L(T")|=¢—-1andn =|V(T')) =n—-i>d+ 3. Asin the
proof of Claim A it can be proved that there exists a y}l(T’)—set D’ that is a d-distance independent
dominating set of 7. Using the induction hypothesis, we have

"+ n—-i+€-1 n+t¢
1 < N — 1 ’ <l’l+ — .
YaD) < ID1=7,T) < 7= d+2 " d+2

This proves Claim C. «)

Claim D. If T has a Py, -support vertex v, then y\(T) < % and if equality holds, then T € T .

Proof. Let P’ := x1x; ... x4 be acopy of Py, attached to v, where x,.1v € E(T). Then deg,(x;) =
2forall k € [d+ 1]\ {1} and deg,(x;) = 1. Consider 7" = T — V(P’). Since n > 2d + 2, we have
deg,(v) > 2. Then ¢’ = |L(T")| = ¢ if deg,(v) = 2 and ¢’ = ¢ — 1 if deg,(v) > 3. We observe that
n =|V(T")=n—-(d+1)>d+ 1 and consider two cases according to the degree of v.

Case D1. deg,(v) > 3.
Let D’ be a yi(T’)—set. The set D’ U {x,} is a d-distance independent dominating set of 7. By
the induction hypothesis,

T+ n—-d+1)+{-1 n+{
1 < ’ — 1 ’ <l’l+ — _rre
v,(T) < |D" U {x;}] yd(T)+1_d+2+1 . +1 T

and the equality holds if and only if y)(T) = y}(T")+1 and y(T") = ”dig . Note thatn’ > d+1,
soT’ 2 P;and T’ € 7.

Let T’ = T. o P, for some non-trivial tree 7.. Then ¢’ = ﬁ. Since deg(v) > 3, we infer
that v ¢ L(T"). If v e V(T)),thenT =T, o P; € T,4, where T, is the tree obtained from
T! by adding a new vertex x,;; to it such that x,.1v € E(T.). If v ¢ V(T,) U L(T’), then let
u be the P -support vertex of 7T attached to the copy of P, containing v, and u’ be the leaf
of T’ corresponding to u. Note that v # u’ and D = (L(T") \ {¢/}) U {x441} is a d-distance

independent dominating set of 7. Thus,

W W+l n-d+D+l-1 . n+t
+1 d+2 d+2 d+2

Yo(T) < |D| = |L(T")| = p

Case D2. deg,(v) = 2.
Let P” := x1x...x4+1v be a copy of P,,, attached to v/, where v € E(T). Consider
T" =T —-VP"')=T —v. Thenn” =|V(T")|=n—-(d+2)>d,and ¢ = |L(T")| < ¢ with
equality if and only if deg,(v') = 2. Let D" be a y(T"')-set. The set D" U {x,} is a d-distance
independent dominating set of 7. By the induction hypothesis,

n + ¢’ n—-d+2)+¢ n+¢
+l<—+1=—,
d+?2 d+?2 d+?2

and the equality holds if and only if y}(T) = yX(T”) + 1, £” = ¢, and y}(T") = £, e,
T" € {P;} U Ty.

yiT) <ID" Uixa}l = D"+ 1 =y (T")+ 1 <
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Note that deg,(v') = 2 and deg;,(v') = 1. If T”” = Py, then T = P,4» € T4. Suppose that
T" € T,4. LetT” = T o P, for some non-trivial tree 7.'. Then £ = d”j Clearly, v’ € L(T").
Let u| € V(T}") be the P;-support vertex in 7", which is attached to the copy of P, containing
V. Since [V(T})| > 2, there exists a neighbor u), € V(T}") of u}. It is clear that V" is the leaf
of T’ corresponding to u]. Let u) be the leaf of 7" corresponding to u}. Since d > 2, the set
D = (L(T")\ {V',uy}) U{uj, x4.1} is a d-distance independent dominating set of T'. Thus, we

" i f” (d 2) f f
1 < ’” n n .

This completes the proof of Claim D.

In the continuation, we may suppose that there is no P,.;-support vertex in 7" and also that if
v is a (P;, Pj)-support vertex, theni = j = d. Let s = diam(T) > 2d + 1 and let P := vivy ... Vg
be a diametrical path in 7. Root T at vy.;. Hence, by Lemma 3.3, deg(v;) < 2 for each k €
[d]U([s+ 1]\ [s—d+ 1]), and deg(vy) > 3 for each k € {d + 1, s — d + 1}. It also follows that the

subtree 7,,,, is isomorphic to the (d — 1)-subdivision of a star K, for some ¢ > 2.

If s = diam(T) = 2d + 1, then by Lemma 3.3 (v), T is obtained from the (d — 1)-subdivision
of a star K, and the (d — 1)-subdivision of a star K, by joining the centers v, and v4.,. We
may assume that #; > t, > 2. Then N(v,,,) is a d-distance independent dominating set of 7. Since
d > 2, we have

d+Dtr+d+16+2

7[11(T) S INWgs)l = deg(vgsn) =t + 1 =

d+?2
- d+Dh+dh+t+2 2d+ 1 +2
d+2 B d+2
<d(t1+t2)+2+(t1+t2)_ n+¢
- d+2 S d+2

So, we may assume that diam(7") > 2d + 2 and n > 2d + 3. Regarding v,,,, we divide the rest

of the proof into two cases and prove that the strict inequality y}(T) < Z—:g holds in each case.

Case 1. Every vertex v in N(vyi2) \ {va+1, vas3} 1s of degree at least 3.
For each vertex v € N(vyy2) \ {vs+3} we have deg(v) > 3, and the subtree 7, is isomorphic to
the (d — 1)-subdivision of a star K, ;, fort#, > 2. LetT’ =T -T,,, and p = deg(v,). It holds
that
d+1<n =|V(T)<n-1-Q2d+ 1)(p-1).

Moreover, we have
U =|L(TH <t-2p-1H)+1=¢-2p—1,

with equality if and only if deg(v,,3) = 2, and for each v € N(vg40) \ {vass), £, = 2.
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Let D’ bea y},(T’)-set. Then D = D'U(N(v442)\{vas3}) 1s a d-distance independent dominating
set of T. Since d > 2 and p > 2, by the induction hypothesis we get

’ ’

’ ’ n
yT)<ID|=|D|+p-1=yT)+p-1< - +p-1
n-1-Qd+1)(p-1)+L-2p—1
= +p—1
B d+2 p
_n+t-dp-1)-p-3 n+¢
- d+2 d+2

Case 2. There is a vertex v in N(vgy2) \ {Var1, vass} with deg(v) < 2.
Since v44; is not a Py, -support vertex and P is a diametrical path, Lemma 3.3 (iii) implies
that 7', is a pendant path P; for some i € [d]. Moreover, we have the following.

e If vy, is a P;-support vertex of T for some i € [d — 1], then there is no other pendant
path attached to v ;.

e If vy, is a Py-support vertex of T, then v,,, is not a P;-support vertex of T for any
i € [d — 1], and there is at least one copy of P, attached to v4,.,.

Case 2.1. L(vg) # 0.
Let x € L(vge2) and T = T — x. Clearly, deg;(vs2) > 3 and deg; (vs2) = 2. Then
U =T =¢—-1andn = |V(T')) =n-12>2d+2. Let D' bea 7}1(T’)—set. By
considering whether v,,, is in D’ or not, we observe that D’ can be chosen such that it is
also a d-distance (independent) dominating set of 7. By the induction hypothesis, we have

1 o— Al ’ '+l _ n=1+(-1 n+f
YD) <D =y,(T") < HF5 = =5 < 13-

Case 2.2. L(vgy) = 0.
Let P’ := x1x, ... x; be a copy of P; attached to v,,,, where x;v ., € E(T). Theni € [d] \ {1},
and deg(xy) = 2 for all k € [i] \ {1}, while deg(x;) = 1. Consider 7" =T -T,, - T,. By
Lemma 3.3 (ii), deg(v4+1) > 3 and, by our condition, deg(vy4,) > 3. Therefore, ¢’ = |L(T")| =
¢ —2. Wealsoknow thatn’ = |V(T')|=n—-d-i<n—-d-2andn’ >d+ 3.

Let D" be a y}l(T’)—set. Then |[D" N {vg41,vas2}l < 1. As in Case 2.2 of Theorem 3.4, let

D' U {Xi}, if Vi1 €D and Vi € D',
D =D U{v}, ifvy ¢ D andv,;, € D,
DU g, x}\ (V(T,,, )\ V(T,,), fvg,ven €D

For any subcase, D is a d-distance independent dominating set of 7. By the induction hy-

pothesis, we have y)(T) < [D| < [D'|+ 1 = y)(T") + 1 < 2 4 | <22 4 ) il

This completes the proof of Theorem 4.2. O

Now we set
F ={T: T~ L(T) € (K} UT1},
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and if d > 3, then set
7i = T

By Theorems 4.1 and 4.2, we have the following two corollaries, respectively.
Corollary 4.3. Let d > 2 be an integer and T be a tree of order n and with € leaves. If n — € > d,
then v (T) < %‘7 with equality if and only if T € F .
Corollary 4.4. Let d > 2 be an integer and T be a tree of order n and with € leaves. If n > d, then
va(T) < % with equality if and only if T € {P;} U 7.

Combining the above results with Corollary 2.2, we obtain

Corollary 4.5. If d > 2, and T is a tree with € leaves and of order n > d + €, then

=t ifn < (d + 1),
Ya(T) < yy(T) <34, ifn=(d+ 1),
ml - ifn > (d + 1)L

Moreover, these bounds are best possible.

5 A conjecture

n

Recall that Ma and Chen [9] described equivalently bipartite graphs G of order n with y](G) = 3
For d > 2 we pose:

Conjecture 5.1. If d > 2 and G is a connected bipartite graph G of order n, then y\(G) = 7 i
and only if G € {Cyy2} UBs0orn=d+ 1.

Since y{(K,,) = r = 5 = 3, the condition of d > 2 of the conjecture above is necessary. If
Conjecture 5.1 holds true, then it generalizes Theorem 3.4. Moreover, the result [13, Theorem 3]
due to Topp and Volkmann, restricted to bipartite graphs, gives exactly the same characterization for

graphs G with y,(G) = 715 as we pose in Conjecture 5.1 for the d-distance independent domination.
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