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Abstract

The d-distance p-packing domination number γp
d (G) of G is the minimum size of a set of

vertices of G which is both a d-distance dominating set and a p-packing. In 1994, Beineke
and Henning conjectured that if d ≥ 1 and T is a tree of order n ≥ d + 1, then γ1

d(T ) ≤ n
d+1 .

They supported the conjecture by proving it for d ∈ {1, 2, 3}. In this paper, it is proved that
γ1

d(G) ≤ n
d+1 holds for any bipartite graph G of order n ≥ d + 1, and any d ≥ 1. Trees T

for which γ1
d(T ) = n

d+1 holds are characterized. It is also proved that if T has ℓ leaves, then
γ1

d(T ) ≤ n−ℓ
d (provided that n − ℓ ≥ d), and γ1

d(T ) ≤ n+ℓ
d+2 (provided that n ≥ d). The latter result

extends Favaron’s theorem from 1992 asserting that γ1
1(T ) ≤ n+ℓ

3 . In both cases, trees that attain
the equality are characterized and relevant conclusions for the d-distance domination number
of trees derived.
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1 Introduction
Let G = (V(G), E(G)) be a graph, S ⊆ V(G), let d and p be nonnegative integers, and let d( · , · )
denote the standard shortest-path distance. Then S is a d-distance dominating set of G if for every
vertex u ∈ V(G) \ S there exists a vertex w ∈ S such that d(u,w) ≤ d, and S is a p-packing of G if
d(w,w′) ≥ p + 1 for every two different vertices w,w′ ∈ S . The d-distance p-packing domination
number γp

d (G) of G is the minimum size of a set S which is at the same time d-distance dominating
set and p-packing. (If for some parameters d and p such a set does not exist, set γp

d (G) = ∞.)
The d-distance p-packing domination number was introduced by Beineke and Henning [1] un-

der the name (p, d)-domination number and with the notation ip,d(G). With the intention of placing
it within the trends of contemporary graph domination theory, the notation γp

d (G) was recently pro-
posed in [2] and we follow it here. In [2] it is proved that for every two fixed integers d and p with
2 ≤ d and 0 ≤ p ≤ 2d − 1, the decision problem whether γp

d (G) ≤ k holds is NP-complete for
bipartite planar graphs. Several bounds on γp

d (T ), where T is a tree on n vertices with ℓ leaves and
s support vertices are also proved, including γ0

2(T ) ≥ n−ℓ−s+4
5 and γ2

d(T ) ≤ n−2
√

n+d+1
d , d ≥ 2. These

results improve or extend earlier results from the literature.
In this paper, our focus is on the invariants γ0

d and γ1
d. For the first one we will simplify the

notation to γd because it has been investigated under the name of d-distance domination number of
G with the notation γd(G), see the survey [8]. We also refer to [3] for algorithmic aspects. For the
total version of this concept see [4]. The second invariant γ1

d deals with d-distance dominating sets
which are 1-packings. Note that a set of vertices is a 1-packing if and only if it is an independent
set, hence in this case we will say that γ1

d(G) is the d-distance independent domination number of
G, cf. [5, 7, 8].

Meierling and Volkmann [10], and independently Raczek, Lemańska, and Cyman [12], proved
that if d ≥ 1, and T is a tree on n vertices and with ℓ leaves, then γd(T ) ≥ n−dℓ+2d

2d+1 . On the other
hand, Meir and Moon [11] proved that if d ≥ 1 and T is a tree of order n ≥ d + 1, then γd(T ) ≤ n

d+1 .
About twenty years later, in 1991, Topp and Volkmann [13] gave a complete characterization of the
graphs G with γd(G) = n

d+1 . In 1994, Beineke and Henning [1] proved that if d ∈ {1, 2, 3} and T is
a tree of order n ≥ d + 1, then γ1

d(T ) ≤ n
d+1 . Moreover, they closed their paper with the following:

Conjecture 1.1. [1] If d ≥ 1 and T is a tree of order n ≥ d + 1, then γ1
d(T ) ≤ n

d+1 .

We point out here that in the book’s chapter [8], Conjecture 1.1 is stated as [8, Theorem 71] with
the explanation that the above-mentioned bound on γd(T ) due to Meir and Moon [11] is proved in
such a way, that the d-distance dominating set is also independent. Anyhow, in the next section
we prove that the bound holds for all bipartite graphs. In Section 3 we then characterize trees T of
order n for which γ1

d(T ) = n
d+1 holds. In Section 4, we prove that if T has ℓ leaves, then γ1

d(T ) ≤ n−ℓ
d

(provided that n − ℓ ≥ d), and γ1
d(T ) ≤ n+ℓ

d+2 (provided that n ≥ d). In both cases, the trees that attain
the equality are characterized. Using the fact that γd(T ) ≤ γ1

d(T ), we also derive analogous bounds
for γd(T ) and characterize trees attaining those bounds. In particular, if T is a tree with ℓ leaves and
of order n ≥ d + ℓ, then

γd(T ) ≤ γ1
d(T ) ≤


n−ℓ

d , if n < (d + 1)ℓ,
n

d+1 , if n = (d + 1)ℓ,
n+ℓ
d+2 , if n > (d + 1)ℓ,
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and the upper bounds are best possible. We conclude the paper with a conjecture.
In the rest of the introduction additional definitions necessary for understanding the rest of the

paper are given. For a positive integer n we will use the convention [n] = {1, . . . , n}. Let G be a
graph. The degree of u ∈ V(G) is denoted by degG(u) or deg(u) for short. Further, diam(G) is the
diameter of G and L(G) is the set of its leaves, that is, vertices of degree 1. We call a d-distance
p-packing dominating set of G of size γp

d (G) a γp
d (G)-set. When G is clear from the context, we

may shorten it to γp
d -set. A double star Dr,s is a tree with exactly two vertices that are not leaves,

with one adjacent to r ≥ 1 leaves and the other to s ≥ 1 leaves. When we say that a path P is
attached to a vertex v of a graph G, we mean that P is disjoint from G and that we add an edge
between v and an end vertex of P.

2 Bounding γ1
d for bipartite graphs

For the main result of this section, we first prove the following.

Theorem 2.1. If d ≥ 1 is an integer and G is a connected bipartite graph of order at least d + 1,
then V(G) can be partitioned into d + 1 d-distance independent dominating sets.

Proof. Set Z = diam(G).
If Z ≤ d, then each vertex is a d-distance dominating set of G. Since G is bipartite, a required

partition of V(G) can be constructed by considering a bipartition (X,Y) of G and partitioning X and
Y into d + 1 parts appropriately. Hence assume in the rest that Z ≥ d + 1.

Let P be a diametrical path of G, let x and y be its end-vertices, and root G at x. Let Li,
0 ≤ i ≤ Z, be the distance levels with respect to x, that is, Li = {u ∈ V(G) : d(x, u) = i}. Consider
now the sets

S i =
⋃
k≥0

Lk(d+1)+i, i ∈ {0, 1, . . . , d} .

We claim that {S 0, S 1, . . . , S d} is a partition of V(G) as stated in the theorem.
Since distance levels of a bipartite graph form independent sets and as d ≥ 1, each set S i is

independent. Hence it remains to prove that these sets are d-distance dominating sets.
Let u be an arbitrary vertex of G and assume that u ∈ Ls, where 0 ≤ s ≤ Z. If s ≥ d, then there

exists a path of length d between u and a vertex from Ls−d. This already implies that u is d-distance
dominated by each of the sets S i, i ∈ {0, 1, . . . , d}. Hence assume in the rest that s < d. Then by a
parallel argument, u is d-distance dominated by each of the sets S i, i ∈ {0, 1, . . . , s}. It remains to
verify that u is d-distance dominated by each of the sets S i, i ∈ {s+1, . . . , d}. For this sake consider
an arbitrary, fixed t ∈ {s+ 1, . . . , d}. Let Q be a shortest u, y-path and recall that by our assumption,
d(u, y) ≤ Z. Since every edge of G connects two vertices from consecutive distance levels Li, the
path Q necessarily contains a vertex w ∈ Lt. We claim that d(u,w) ≤ d. Suppose on the contrary
that d(u,w) > d. Since Q is a shortest path, d(w, y) ≥ Z − t. Using these facts together with t ≤ d,
we get

Z ≤ d + (Z − t) < d(u,w) + d(w, y) = d(u, y) ≤ Z ,

which is not possible. We can conclude that d(u,w) ≤ d. This means that u is d-distance dominated
by S t and we are done. □
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In connection with Theorem 2.1 we add that Zelinka [14] proved that if d ≥ 1 and G is a
connected graph of order at least d + 1, then V(G) can be partitioned into d + 1 disjoint d-distance
dominating sets. In this general case, however, the partition need not be into independent sets.

The following is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let d ≥ 1 be an integer. If G is a bipartite graph of order n ≥ d+1, then γ1
d(G) ≤ n

d+1 .

Corollary 2.2 generalizes [8, Theorem 71]. On the other hand, the upper bound in Corollary 2.2
may not hold if G is not bipartite. For example, for n ≥ d + 2 and k ≥ 2, let Gn,k,d be the complete
graph Kn with k copies of Pd attached to each vertex. Clearly, |V(Gn,k,d)| = n(dk + 1). While
γd(Gn,k,d) = n, a d-distance independent domination needs much more vertices, and it is not hard to
deduce that γ1

d(Gn,k,d) = 1 + (n − 1)k. As n ≥ d + 2 and k ≥ 2, we infer that γ1
d(Gn,k,d) > |V(Gn,k,d)|

d+1 .

3 Trees that attain equality in Corollary 2.2
Let d ≥ 1 be an integer. The Pd-corona H ◦ Pd of a graph H is the graph obtained from H and
|V(H)| disjoint copies of Pd, by attaching a copy of Pd to each vertex of H, see Fig. 1.

H

Pd

Figure 1: The Pd-corona H ◦ Pd of a graph H.

If d ≥ 2, then let Bd be the family of Pd-coronas of bipartite graphs, that is,

Bd = {H ◦ Pd : H is a bipartite graph}.

Note that Pd+1 ∈ Bd. Observe also that each G ∈ Bd, where G = H ◦ Pd, is a bipartite graph with
|V(G)| = (d + 1)|V(H)|. The following proposition shows that the upper bound in Corollary 2.2 is
best possible.

Proposition 3.1. If G ∈ Bd is of order n, then γ1
d(G) = n

d+1 .

Proof. Let G = H ◦ Pd for some bipartite graph H. By the definition of H ◦ Pd, the set L(G) is a
d-distance independent dominating set of G. Thus, γ1

d(G) ≤ |L(G)| = |V(H)| = n
d+1 .
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Conversely, for each u ∈ V(H), let Gu be the subgraph of G induced by u and the vertices of
the copy of Pd attached to u. Clearly, Gu � Pd+1. If D is a γ1

d(G)-set, then |D ∩ V(Gu)| ≥ 1. Thus,
γ1

d(G) = |D| ≥ |V(H)| = n
d+1 . □

Note that if G is a connected bipartite graph of order n = d + 1, then γ1
d(G) = 1 = n

d+1 , and
γ1

d(C2d+2) = 2 = 2d+2
d+1 . Moreover, if d = 1, then γ1

1(Kr,r) = r = r+r
2 =

n
2 . In 2004, Ma and Chen

gave an equivalent description of the bipartite graphs G of order n with γ1
1(G) = n

2 , see [9, Theorem
1]. They also proved an explicit characterization of such a family for the case of trees. To state the
result, let ζ1 be a family of trees defined by the following recursive construction.

(i) K2 ∈ ζ1.

(ii) If T ′ ∈ ζ1, and T is obtained by joining the center of a new copy of K1,t (t ≥ 1) to a support
vertex v of T ′ and adding t − 1 leaves at v, then T ∈ ζ1.

See Fig. 2 for an illustration.1

v

r ≥ 1

t − 1

r ≥ 1

t ≥ 1

Figure 2: A tree T from the family ζ1, where T ′ is the double star induced by the black vertices.

The result of Ma and Chen for trees now reads as follows.

Theorem 3.2. ([9, Corollary 1]) If T is a tree of order n, then γ1
1(T ) = n

2 if and only if T ∈ ζ1.

We shall focus on the general case for d ≥ 2, and give a complete characterization of the trees
achieving equality in the upper bound of Corollary 2.2. Set

Td = {T ∗ ◦ Pd : T ∗ is a non-trivial tree}.

Note that Td does not contain the path Pd+1. Since Td ⊂ Bd, and by Proposition 3.1, γ1
d(T ) = n

d+1
for each tree T ∈ Td of order n. Moreover, if T is a tree of order n = d + 1, then we also have
γ1

d(T ) = 1 = n
d+1 .

1For the definition of ζ1, we note that both vertices of a K2 are support vertices. Then, (ii) can be applied to K2, and
this step results in the double star Dr,r for every r ≥ 1. It shows that the family ζ1 is the same as {K2} ∪ ζ in [9].
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In a tree T and for a vertex v ∈ V(T ), let L(v) be the set of leaves of T that are neighbors of
v in T . Root T at some vertex. Let Tv be the subtree induced in T by v and its descendants, and
let T − Tv = T − V(Tv). A vertex of T is called a Pd-support vertex if it is attached to a copy of
Pd. For each H ∈ Td, every vertex of H∗ is a Pd-support vertex of H, where H = H∗ ◦ Pd for
some non-trivial tree H∗. In particular, a P1-support vertex of T is just a support vertex of T . A
vertex of T is a (Pi, P j)-support vertex if both a copy of Pi and a copy of P j are attached to it. In
particular, a (Pi, Pi)-support vertex has at least two copies of Pi attached. The d-subdivision of T is
the tree obtained from T by subdividing each edge d-times. Then the 1-subdivision of T is just the
subdivision of T .

Before proving the announced characterization of trees of order n with γ1
d(T ) = n

d+1 , we state
the following lemma which will also be used in the subsequent section.

Lemma 3.3. Let d ≥ 2 and let T be a tree with s = diam(T ) ≥ 2d+1. Suppose that P := v1v2 . . . vs+1

is a diametrical path in T and the tree is rooted at vs+1. If there is no Pd+1-support vertex and no
(Pi, P j)-support vertex in T with i ∈ [d − 1] and j ∈ [d], then the following statements hold.

(i) If k ∈ {2, . . . , d} ∪ {s − d + 2, . . . , s}, then deg(vk) = 2.

(ii) If k ∈ {d + 1, s − d + 1}, then deg(vk) ≥ 3.

(iii) For every v ∈ V(T ), if v is the only vertex with degT (v) ≥ 3 in the subtree Tv, then Tv is
isomorphic to the (d − 1)-subdivision of a star K1,t with t ≥ 2.

(iv) The subtree Tvd+1 is isomorphic to the (d − 1)-subdivision of a star K1,t with t ≥ 2.

(v) If s = 2d + 1, then T is obtained by taking the (d − 1)-subdivisions of two stars K1,t1 with
t1 ≥ 2 and K1,t2 with t2 ≥ 2, and adding an edge between the centers.

Proof. (i)–(ii) According to the conditions, there is no (P1, P1)-support vertex in T . That is, every
vertex of T is adjacent to at most one leaf, and in particular, deg(v2) = 2. Further, if d ≥ 3,
then deg(v3) = 2, since otherwise v3 would be a (Pi, P2)-support vertex with 1 ≤ i ≤ 2 ≤ d − 1
contradicting the condition. Similarly, deg(vk) = 2 holds for all k ∈ {2, . . . , d}. By symmetry, the
same is true for vk if k ∈ {s− d+ 2, . . . , s}. This proves (i). The assumption that there is no pendant
Pd+1 in T directly implies (ii).

(iii) If degT (v) ≥ 3 and degTv
(u) ≤ 2 for every further vertex u from V(Tv), then at least two

pendant paths are attached to v. Then, by the conditions in the lemma, every path attached is
isomorphic to Pd.

(iv)–(v) As P is a diametrical path, a vertex u ∈ V(Tvd+1) different from vd+1 cannot be a Pd-
support vertex. Part (iii) then implies (iv). If we re-root T at the vertex v1, the same property holds
for the subtree induced by vs−d+1 and its descendants in the re-rooted tree. This directly implies (v)
for the case of s = 2d + 1. □

Theorem 3.4. If d ≥ 2 and T is a tree of order n, then γ1
d(T ) = n

d+1 holds if and only if n = d + 1 or
T ∈ Td.
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Proof. If T is of order n = d + 1, then, clearly, γ1
d(T ) = 1 = n

d+1 , and if T ∈ Td, then by Proposi-
tion 3.1, we have γ1

d(T ) = n
d+1 . The proof of the necessity is by induction on n. If γ1

d(T ) = n
d+1 , then

n = (d + 1)q for some integer q ≥ 1. If q = 1, then n = d + 1. So, we may assume that q ≥ 2 and
n ≥ 2(d + 1). If diam(T ) ≤ 2d, then γ1

d(T ) = 1 < 2(d+1)
d+1 ≤

n
d+1 . In the continuation, we assume that

diam(T ) ≥ 2d + 1 and γ1
d(T ) = n

d+1 .

Claim A. If i ∈ [d − 1] and j ∈ [d], then there is no (Pi, P j)-support vertex in T .

Proof. Suppose, to the contrary, that v is a (Pi, P j)-support vertex in T and i ≤ j. Let P′ :=
x1x2 . . . xi and P′′ := y1y2 . . . y j be two copies of Pi and P j attached to v in T , where xiv, y jv ∈ E(T ).
Note that d(x1, v) = i ≤ j = d(y1, v). Consider T ′ = T − V(P′). Then n′ = |V(T ′)| = n − i ≥
2(d+1)− (d−1) = d+3. Let D′ be a γ1

d(T ′)-set. If v ∈ D′, then D′ is also a d-distance independent
dominating set of T . If v < D′, then |D′| = γ1

d(T ′) implies |D′ ∩ V(P′′)| ≤ 1. For the subcase
|D′ ∩ V(P′′)| = 1, we may assume that y j ∈ D′. Then d(xk, y j) ≤ d for each k ∈ [i]. For the subcase
|D′ ∩ V(P′′)| = 0, in order to d-distance dominate y1 in T ′, there exists a vertex u ∈ D′ such that
dT ′(u, y1) ≤ d. Since i ≤ j, it holds that dT (xk, u) ≤ dT (u, y1) = dT ′(u, y1) ≤ d for each k ∈ [i]. Thus,
D′ is always a d-distance independent dominating set of T . Corollary 2.2 then implies

γ1
d(T ) ≤ |D′| = γ1

d(T ′) ≤
n′

d + 1
<

n
d + 1

,

which contradicts the assumption γ1
d(T ) = n

d+1 . This proves Claim A. (□)

Claim B. If T has a Pd+1-support vertex v, then T ∈ Td.

Proof. Let P′ := x1x2 . . . xd+1 be a copy of Pd+1 attached to v, where xd+1v ∈ E(T ). Then deg(xk) =
2 for all k ∈ [d + 1] \ {1} and deg(x1) = 1. Consider T ′ = T − V(P′). Then n′ = |V(T ′)| =
n − (d + 1) ≥ 2(d + 1) − d − 1 = d + 1. Let D′ be a γ1

d(T ′)-set. Then D′ ∪ {x1} is a d-distance
independent dominating set of T . By Corollary 2.2,

γ1
d(T ) ≤ |D′| + 1 = γ1

d(T ′) + 1 ≤
n′

d + 1
+ 1 =

n − (d + 1)
d + 1

+ 1 =
n

d + 1
,

and the equality holds if and only if γ1
d(T ) = γ1

d(T ′)+ 1 and γ1
d(T ′) = n′

d+1 . The induction hypothesis
therefore implies n′ = d + 1 or T ′ ∈ Td.

Suppose n′ = d + 1. Then n = 2(d + 1) and T is the tree obtained from a copy of Pd+1 and a
tree T ′ of order d + 1 by joining xd+1 to a vertex v of T ′. Note that diam(T ′) ≤ d with equality if
and only if T ′ � Pd+1. Unless T ′ � Pd+1 and v is a leaf of T ′, {xd+1} is a d-distance independent
dominating set of T , implying that γ1

d(T ) = 1 < 2(d+1)
d+1 =

n
d+1 , a contradiction. For the exception, we

observe T � P2(d+1) ∈ Td.
Suppose T ′ ∈ Td. Let T ′ = T ′∗ ◦ Pd for some non-trivial tree T ′∗. If v ∈ V(T ′∗), then T =

T ∗ ◦ Pd ∈ Td, where T ∗ is the tree obtained from T ′∗ by adding a new vertex xd+1 and the edge
xd+1v to it. If v < V(T ′∗), then let u1 be the Pd-support vertex of T ′∗ such that the attached copy
of Pd contains v. Since |V(T ′∗)| ≥ 2, there exists a neighbor u2 ∈ V(T ′∗) of u1. Let u′1 and u′2

7



be the leaves of T ′ corresponding to u1 and u2, respectively. Note that v = u′1 is possible, and
D = (L(T ′) \ {u′1, u

′
2}) ∪ {xd+1, u2} is a d-distance independent dominating set of T . Thus,

γ1
d(T ) ≤ |D| = |L(T ′)| = |V(T ′∗)| =

n′

d + 1
<

n
d + 1

that contradicts our assumption on T and finishes the proof of Claim B. (□)

Claim B shows that if γ1
d(T ) = n

d+1 and T contains a pendant path Pd+1, then T ∈ Td. The
remaining part of the proof verifies that there is no tree T with |V(T )| > d + 1 and γ1

d(T ) = n
d+1 that

does not contain a pendant Pd+1. From now on, we suppose that there is no Pd+1-support vertex in
T and that γ1

d(T ) = n
d+1 .

Let s = diam(T ) ≥ 2d + 1 and P := v1v2 . . . vs+1 be a diametrical path in T . Then deg(v1) =
deg(vs+1) = 1. Root T at vs+1. Our assumption on the non-existence of Pd+1-support vertices and
Claim A imply that the properties stated in Lemma 3.3 (i)–(v) are valid for T .

If s = diam(T ) = 2d + 1 then, by Lemma 3.3 (v), the tree T can be obtained from the (d − 1)-
subdivisions of two stars K1,t1 and K1,t2 with t1 ≥ t2 ≥ 2 by joining the centers with an edge.
Then N(vd+2) is a d-distance independent dominating set of T . Since d ≥ 2, it gives the following
contradiction:

γ1
d(T ) ≤ |N(vd+2)| = t2 + 1 =

(t2 + 1)d + t2 + 1
d + 1

<
2dt2 + 2

d + 1
≤

d(t1 + t2) + 2
d + 1

=
n

d + 1
.

So, we may assume that diam(T ) ≥ 2d + 2 and n ≥ 2d + 3. Regarding vd+2, we divide the rest
of the proof into two cases and prove that in both we get a contradiction.

Case 1. Each vertex v in N(vd+2) \ {vd+1, vd+3} is of degree at least 3.
By Lemma 3.3 (iii) and since P is a diametrical path, for each v ∈ N(vd+2)\ {vd+3}, the subtree
Tv is isomorphic to the (d−1)-subdivision of a star K1,tv with tv ≥ 2. Clearly, Tvd+1 is contained
in Tvd+2 , and therefore, |V(Tvd+2)| ≥ 2d+2. Let T ′ = T −Tvd+2 . Since {vd+3, . . . , v2d+3} ⊆ V(T ′),
we obtain

d + 1 ≤ n′ = |V(T ′)| ≤ n − 2d − 2.

Let D′ be a γ1
d(T ′)-set. Then D = D′∪(N(vd+2)\{vd+3}) is a d-distance independent dominating

set of T . Let p = deg(vd+2). Observe that p ≥ 2 and n′ ≤ n − (2d + 1)(p − 1) − 1. By
Corollary 2.2, we get the following contradiction:

γ1
d(T ) ≤ |D| = γ1

d(T ′) + p − 1

≤
n′

d + 1
+ p − 1

≤
n − (2d + 1)(p − 1) − 1

d + 1
+ p − 1

=
n − d(p − 1) − 1

d + 1
<

n
d + 1

.
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Case 2. There is a vertex v in N(vd+2) \ {vd+1, vd+3} with deg(v) ≤ 2.
If deg(v) = 2 and Tv contains a vertex u with deg(u) ≥ 3, then Lemma 3.3 (iii) implies the
existence of a leaf w ∈ V(Tu) with d(w, u) = d. It follows then that d(w, vd+2) ≥ d + 2 and
d(w, vs+1) ≥ s + 1 = diam(T ) + 1, a contradiction. Therefore, deg(v) ≤ 2 implies that Tv is
a path and vd+2 is a Pi-support vertex for some i ≥ 1. By our assumption, i ≤ d. Further, by
Claim A, we have the following properties.

• If vd+2 is a Pi-support vertex of T for some i ∈ [d − 1], then there is only one pendant
path attached to vd+2, and it is clearly of order i.

• If vd+2 is a Pd-support vertex of T , then vd+2 is not a Pi-support vertex of T for any
i ∈ [d − 1], and there is at least one copy of Pd attached to vd+2.

Case 2.1. L(vd+2) , ∅.
In this case vd+2 is a P1-support vertex of T . Let x ∈ L(vd+2) and T ′ = T − x. Now for each
vertex v ∈ N(vd+2) \ {vd+3}, the subtree T ′v is isomorphic to the Pd-subdivision of a star K1,tv
for tv ≥ 2. Clearly, n′ = |V(T ′)| = n − 1 ≥ 2d + 2.

Let D′ be a γ1
d(T ′)-set. If vd+2 ∈ D′, then D′ is also a d-distance independent dominating set

of T . If vd+2 < D′, then since |D′∩V(T ′vd+1
)| ≥ 1, we may assume that vd+1 ∈ D′. The set D′ is

also a d-distance independent dominating set of T . For any subcase, γ1
d(T ) ≤ |D′| = γ1

d(T ′) ≤
n′

d+1 =
n−1
d+1 <

n
d+1 by Corollary 2.2.

Case 2.2. L(vd+2) = ∅.
In this case, vd+2 is a Pi-support vertex of T for some i ∈ [d] \ {1} (where if i = d, then
there could be multiple copies of Pd attached to vd+2). Let P′ := x1x2 . . . xi be the (selected)
copy of Pi attached to vd+2, where xivd+2 ∈ E(T ). Then deg(xk) = 2 for all k ∈ [i] \ {1} and
deg(x1) = 1. Consider T ′ = T − Tvd − Txi . Then n′ = |V(T ′)| = n − d − i ≤ n − d − 2 and
n′ ≥ d + 3 since vd+1, vd+2, . . . , v2d+3 ∈ V(T ′).

Let D′ be a γ1
d(T ′)-set. Then |D′ ∩ {vd+1, vd+2}| ≤ 1. If vd+1 ∈ D′ and vd+2 < D′, then let

D = D′ ∪ {xi}. If vd+1 < D′ and vd+2 ∈ D′, then let D = D′ ∪ {v1}. If vd+1, vd+2 < D′, then
since vd+1 is attached to at least two copies of Pd, we have D′ ∩ (V(Tvd+1) \ V(Tvd )) , ∅. Let
D = D′ ∪ {vd+1, xi} \ (V(Tvd+1) \ V(Tvd )). For any subcase, D is a d-distance independent
dominating set of T , and γ1

d(T ) ≤ |D′| + 1 = γ1
d(T ′) + 1 ≤ n′

d+1 + 1 ≤ n−d−2
d+1 + 1 < n

d+1 by
Corollary 2.2.

This completes the proof of Theorem 3.4. □

4 Upper bounds on γd and γ1
d of trees in terms of the order and

the number of leaves
For any tree T of order n and with ℓ leaves, the set of non-leaves is a dominating set of T . Hence,
γ1(T ) ≤ n − ℓ. Note that the equality holds if and only if each vertex of T is either a leaf or a
support vertex. If there exists a vertex u ∈ V(T ) that is neither a leaf nor a support vertex, then
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V(T ) \ ({u} ∪ L(T )) is a dominating set of T , implying that γ1(T ) < n − ℓ. On the other hand, the
upper bound γ1

1(T ) ≤ n− ℓ is not true for every tree T . For example, let T ′ = T ∗ ◦P1 ∈ T1 for some
tree T ∗, and let T be the tree obtained from T ′ by adding r ≥ 2 leaves to each vertex of T ′. It can
be checked that

γ1
1(T ) = |V(T ∗)| + r|V(T ∗)| > 2|V(T ∗)| = 2(r + 1)|V(T ∗)| − 2r|V(T ∗)| = n − ℓ.

Set now
F2 = {T : T − L(T ) ∈ ζ1} ,

and if d ≥ 3, then set

Fd =
{
T : T − L(T ) is a tree of order d or belongs to Td−1

}
.

Note that each graph from Fd, d ≥ 2, is a tree, and the following property is equivalent to the
definition of Fd.

(⋆) If d ≥ 3, a tree T belongs to Fd if and only if it can be obtained from some tree T ′, which
satisfies |V(T ′)| = d or T ′ ∈ Td−1, by adding at least one pendant vertex to each leaf of T ′,
and some number (possibly zero) to other vertices of T ′. For d = 2, a tree T belongs to F2 if
and only if it can be obtained similarly from a tree T ′ ∈ ζ1.

For d ≥ 2, we prove the following result.

Theorem 4.1. Let d ≥ 2 be an integer and T be a tree of order n and with ℓ leaves. If n − ℓ ≥ d,
then γ1

d(T ) ≤ n−ℓ
d with equality if and only if T ∈ Fd.

Proof. Consider the tree T ′ = T − L(T ). Let n′ = |V(T ′)| = n − ℓ ≥ d. Let D′ be a γ1
d−1(T ′)-set. By

Corollary 2.2, |D′| = γ1
d−1(T ′) ≤ n′

d . Moreover, D′ is also a d-distance independent dominating set
of T , implying that

γ1
d(T ) ≤ |D′| = γ1

d−1(T ′) ≤
n′

d
=

n − ℓ
d
. (1)

Assume that γ1
d(T ) = n−ℓ

d holds for a tree T . Inequalities in (1) therefore imply γ1
d(T ) =

γ1
d−1(T ′) = n′

d . By Theorems 3.2 and 3.4, we know that T ′ ∈ ζ1 when d = 2, and T ′ is a tree
of order d or T ′ ∈ Td−1 when d ≥ 3. Since T ′ = T − L(T ), we conclude T ∈ Fd.

It remains to prove that γ1
d(T ) ≥ n−ℓ

d holds for every T ∈ Fd. Consider first a tree T from F2 and
let T ′ = T − L(T ). Hence T ′ ∈ ζ1. We will prove the inequality by induction on T ′ according to the
recursive definition of ζ1. If T ′ � K2, then T is a double star and γ1

2(T ) = 1 = n−ℓ
2 . If T ′ � Dr,r, for

r ≥ 1, then any γ1
1(T ′)-set is a smallest 2-distance independent dominating set of T , implying that

γ1
2(T ) = γ1

1(T ′) = r + 1 =
2r + 2

2
=

n′

2
=

n − ℓ
2
.

Assume next that T ′ = T − L(T ) is a tree from ζ1 which is neither K2 nor a double star. Let
T ′2 = T ′ and let T ′1 be the tree from ζ1 such that T ′2 is obtained from T ′1 by the recursive construction
of ζ1, that is, T ′2 can be obtained by joining the center u of a new copy of K1,t (t ≥ 1) to a support
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vertex v of T ′1, and adding t − 1 leaves at v. For i ∈ [2], let Ti be a tree from F2, which is obtained
from T ′i according to (⋆). Moreover, let n′i = |V(T ′i )|, ni = |V(Ti)|, and ℓi = |L(Ti)|, i ∈ [2].

Assume that γ1
2(T1) = n1−ℓ1

2 . We are going to prove that γ1
2(T2) ≥ n2−ℓ2

2 . Note that n′i = ni − ℓi
and n′2 = n′1 + 2t. Let D2 be a γ1

2(T2)-set that contains as few leaves from T2 as possible and
let D1 = D2 ∩ V(T1). If v ∈ D2, then u < D2 and, by the minimality of |D2 ∩ L(T2)|, we have
LT ′2

(u) ⊂ D2. Now D1 = D2 \LT ′2
(u) is a 2-distance independent dominating set of T1, implying that

γ1
2(T1) ≤ |D1| = |D2| − t. If v < D2, then we may assume that u ∈ D2. Also, LT ′2

(v) \ LT ′1
(v) ⊂ D2

holds by the minimality of |D2 ∩ L(T2)|. Further, ∅ , LT ′1
(v) ⊂ D1, and v and the leaves added to

LT ′1
(v) in T1 will be independently dominated by LT ′1

(v). Hence, D1 = D2 \ {u} \ (LT ′2
(v) \ LT ′1

(v))
is a 2-distance independent dominating set of T1, implying that γ1

2(T1) ≤ |D1| = |D2| − t. Hence no
matter whether v belongs to D2 or not, we have

γ1
2(T2) ≥ γ1

2(T1) + t =
n1 − ℓ1

2
+

n′2 − n′1
2

=
n′2
2
=

n2 − ℓ2
2
.

Assume now that T ∈ Fd and d ≥ 3. For T ′ = T − L(T ), let n′ = |V(T ′)| = n − ℓ ≥ d. If n′ = d,
then γ1

d(T ) ≥ 1 = n−ℓ
d . If T ′ ∈ Td−1, then let T ′ = T ∗ ◦ Pd−1 for some non-trivial tree T ∗. For each

u ∈ V(T ∗), let T ′u be the subtree of T ′ induced by u and the vertices of the copy of Pd−1 attached
to u, and let Tu be the subtree of T induced by V(T ′u) and the leaves added to V(T ′u) in T . If D is a
γ1

d(T )-set, then |D ∩ V(Tu)| ≥ 1 for every u ∈ V(T ∗). Thus, we have

γ1
d(T ) = |D| ≥ |V(T ∗)| =

n′

d
=

n − ℓ
d
.

This completes the proof of Theorem 4.1. □

We note that the condition of n ≥ d + ℓ is necessary in Theorem 4.1. Let T ′ be a tree of order
at most d − 1. Consider the tree T obtained from T ′ by adding at least one pendant vertex to each
leaf of T ′ and some number to other vertices of T ′. Then n′ = |V(T ′)| = n − ℓ ≤ d − 1 and we may
infer γ1

d(T ) ≥ 1 > d−1
d ≥

n−ℓ
d .

Favaron [6] proved that if T is a tree of order n ≥ 2 and with ℓ leaves, then γ1
1(T ) ≤ n+ℓ

3 , and
gave the full list of extremal trees for this bound. Our next theorem extends Favaron’s result to all
d ≥ 2.

Theorem 4.2. Let d ≥ 2 be an integer and T a tree of order n and with ℓ leaves. If n ≥ d, then
γ1

d(T ) ≤ n+ℓ
d+2 with equality if and only if T ∈ {Pd} ∪ Td.

Proof. If T � Pd, then γ1
d(T ) = 1 = d+2

d+2 =
n+ℓ
d+2 . If T ∈ Td, then by Proposition 3.1, γ1

d(T ) = n
d+1 =

n+ n
d+1

d+2 =
n+ℓ
d+2 . To prove the upper bound and that the equality implies T ∈ {Pd} ∪ Td, we proceed by

induction on n. If diam(T ) ≤ 2d, then γ1
d(T ) = 1 = d+2

d+2 ≤
n+ℓ
d+2 . The equality holds if and only if

n = d and ℓ = 2, implying that T � Pd. So, we may assume that diam(T ) ≥ 2d + 1 and n ≥ 2d + 2.
Note that if ℓ > n

d+1 , then by Corollary 2.2, γ1
d(T ) ≤ n

d+1 <
n+ℓ
d+2 .

Claim C. Let i ∈ [d − 1] and j ∈ [d] with i ≤ j. If T has a vertex v that is a (Pi, P j)-support vertex,
then γ1

d(T ) < n+ℓ
d+2 .
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Proof. Let P′ := x1x2 . . . xi and P′′ := y1y2 . . . y j be a copy of Pi and P j, respectively, attached to
v in T , where xiv, y jv ∈ E(T ). Since n ≥ 2d + 2 and |V(P′)| ≤ |V(P′′)| ≤ d, we have deg(v) ≥ 3.
Consider T ′ = T − V(P′). Then ℓ′ = |L(T ′)| = ℓ − 1 and n′ = |V(T ′)| = n − i ≥ d + 3. As in the
proof of Claim A it can be proved that there exists a γ1

d(T ′)-set D′ that is a d-distance independent
dominating set of T . Using the induction hypothesis, we have

γ1
d(T ) ≤ |D′| = γ1

d(T ′) ≤
n′ + ℓ′

d + 2
=

n − i + ℓ − 1
d + 2

<
n + ℓ
d + 2

.

This proves Claim C. (□)

Claim D. If T has a Pd+1-support vertex v, then γ1
d(T ) ≤ n+ℓ

d+2 and if equality holds, then T ∈ Td.

Proof. Let P′ := x1x2 . . . xd+1 be a copy of Pd+1 attached to v, where xd+1v ∈ E(T ). Then degT (xk) =
2 for all k ∈ [d + 1] \ {1} and degT (x1) = 1. Consider T ′ = T − V(P′). Since n ≥ 2d + 2, we have
degT (v) ≥ 2. Then ℓ′ = |L(T ′)| = ℓ if degT (v) = 2 and ℓ′ = ℓ − 1 if degT (v) ≥ 3. We observe that
n′ = |V(T ′)| = n − (d + 1) ≥ d + 1 and consider two cases according to the degree of v.

Case D1. degT (v) ≥ 3.
Let D′ be a γ1

d(T ′)-set. The set D′ ∪ {x1} is a d-distance independent dominating set of T . By
the induction hypothesis,

γ1
d(T ) ≤ |D′ ∪ {x1}| = γ

1
d(T ′) + 1 ≤

n′ + ℓ′

d + 2
+ 1 =

n − (d + 1) + ℓ − 1
d + 2

+ 1 =
n + ℓ
d + 2

,

and the equality holds if and only if γ1
d(T ) = γ1

d(T ′)+1 and γ1
d(T ′) = n′+ℓ′

d+2 . Note that n′ ≥ d+1,
so T ′ � Pd and T ′ ∈ Td.

Let T ′ = T ′∗ ◦ Pd for some non-trivial tree T ′∗. Then ℓ′ = n′
d+1 . Since deg(v) ≥ 3, we infer

that v < L(T ′). If v ∈ V(T ′∗), then T = T∗ ◦ Pd ∈ Td, where T∗ is the tree obtained from
T ′∗ by adding a new vertex xd+1 to it such that xd+1v ∈ E(T∗). If v < V(T ′∗) ∪ L(T ′), then let
u be the Pd-support vertex of T ′∗ attached to the copy of Pd containing v, and u′ be the leaf
of T ′ corresponding to u. Note that v , u′ and D = (L(T ′) \ {u′}) ∪ {xd+1} is a d-distance
independent dominating set of T . Thus,

γ1
d(T ) ≤ |D| = |L(T ′)| =

n′

d + 1
=

n′ + ℓ′

d + 2
=

n − (d + 1) + ℓ − 1
d + 2

<
n + ℓ
d + 2

.

Case D2. degT (v) = 2.
Let P′′ := x1x2 . . . xd+1v be a copy of Pd+2 attached to v′, where vv′ ∈ E(T ). Consider
T ′′ = T − V(P′′) = T ′ − v. Then n′′ = |V(T ′′)| = n − (d + 2) ≥ d, and ℓ′′ = |L(T ′′)| ≤ ℓ with
equality if and only if degT (v′) = 2. Let D′′ be a γ1

d(T ′′)-set. The set D′′ ∪ {x2} is a d-distance
independent dominating set of T . By the induction hypothesis,

γ1
d(T ) ≤ |D′′ ∪ {x2}| = |D′′| + 1 = γ1

d(T ′′) + 1 ≤
n′′ + ℓ′′

d + 2
+ 1 ≤

n − (d + 2) + ℓ
d + 2

+ 1 =
n + ℓ
d + 2

,

and the equality holds if and only if γ1
d(T ) = γ1

d(T ′′) + 1, ℓ′′ = ℓ, and γ1
d(T ′′) = n′′+ℓ′′

d+1 , i.e.,
T ′′ ∈ {Pd} ∪ Td.
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Note that degT (v′) = 2 and degT ′′(v
′) = 1. If T ′′ � Pd, then T � P2d+2 ∈ Td. Suppose that

T ′′ ∈ Td. Let T ′′ = T ′′∗ ◦ Pd for some non-trivial tree T ′′∗ . Then ℓ′′ = n′′
d+1 . Clearly, v′ ∈ L(T ′′).

Let u′1 ∈ V(T ′′∗ ) be the Pd-support vertex in T ′′, which is attached to the copy of Pd containing
v′. Since |V(T ′′∗ )| ≥ 2, there exists a neighbor u′2 ∈ V(T ′′∗ ) of u′1. It is clear that v′ is the leaf
of T ′ corresponding to u′1. Let u′′2 be the leaf of T ′ corresponding to u′2. Since d ≥ 2, the set
D = (L(T ′′) \ {v′, u′′2 }) ∪ {u

′
2, xd+1} is a d-distance independent dominating set of T . Thus, we

have
γ1

d(T ) ≤ |D| = |L(T ′′)| =
n′′

d + 1
=

n′′ + ℓ′′

d + 2
=

n − (d + 2) + ℓ
d + 2

<
n + ℓ
d + 2

.

This completes the proof of Claim D. (□)

In the continuation, we may suppose that there is no Pd+1-support vertex in T and also that if
v is a (Pi, P j)-support vertex, then i = j = d. Let s = diam(T ) ≥ 2d + 1 and let P := v1v2 . . . vs+1

be a diametrical path in T . Root T at vs+1. Hence, by Lemma 3.3, deg(vk) ≤ 2 for each k ∈
[d] ∪ ([s + 1] \ [s − d + 1]), and deg(vk) ≥ 3 for each k ∈ {d + 1, s − d + 1}. It also follows that the
subtree Tvd+1 is isomorphic to the (d − 1)-subdivision of a star K1,t for some t ≥ 2.

If s = diam(T ) = 2d + 1, then by Lemma 3.3 (v), T is obtained from the (d − 1)-subdivision
of a star K1,t1 and the (d − 1)-subdivision of a star K1,t2 by joining the centers vd+1 and vd+2. We
may assume that t1 ≥ t2 ≥ 2. Then N(vd+2) is a d-distance independent dominating set of T . Since
d ≥ 2, we have

γ1
d(T ) ≤ |N(vd+2)| = deg(vd+2) = t2 + 1 =

(d + 1)t2 + d + t2 + 2
d + 2

<
(d + 1)t2 + dt2 + t2 + 2

d + 2
=

2(d + 1)t2 + 2
d + 2

≤
d(t1 + t2) + 2 + (t1 + t2)

d + 2
=

n + ℓ
d + 2

.

So, we may assume that diam(T ) ≥ 2d + 2 and n ≥ 2d + 3. Regarding vd+2, we divide the rest
of the proof into two cases and prove that the strict inequality γ1

d(T ) < n+ℓ
d+2 holds in each case.

Case 1. Every vertex v in N(vd+2) \ {vd+1, vd+3} is of degree at least 3.
For each vertex v ∈ N(vd+2) \ {vd+3} we have deg(v) ≥ 3, and the subtree Tv is isomorphic to
the (d− 1)-subdivision of a star K1,tv for tv ≥ 2. Let T ′ = T −Tvd+2 and p = deg(vd+2). It holds
that

d + 1 ≤ n′ = |V(T ′)| ≤ n − 1 − (2d + 1)(p − 1).

Moreover, we have

ℓ′ = |L(T ′)| ≤ ℓ − 2(p − 1) + 1 = ℓ − 2p − 1,

with equality if and only if deg(vd+3) = 2, and for each v ∈ N(vd+2) \ {vd+3}, tv = 2.
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Let D′ be a γ1
d(T ′)-set. Then D = D′∪(N(vd+2)\{vd+3}) is a d-distance independent dominating

set of T . Since d ≥ 2 and p ≥ 2, by the induction hypothesis we get

γ1
d(T ) ≤ |D| = |D′| + p − 1 = γ1

d(T ′) + p − 1 ≤
n′ + ℓ′

d + 2
+ p − 1

≤
n − 1 − (2d + 1)(p − 1) + ℓ − 2p − 1

d + 2
+ p − 1

=
n + ℓ − d(p − 1) − p − 3

d + 2
<

n + ℓ
d + 2

.

Case 2. There is a vertex v in N(vd+2) \ {vd+1, vd+3} with deg(v) ≤ 2.
Since vd+2 is not a Pd+1-support vertex and P is a diametrical path, Lemma 3.3 (iii) implies
that Tv is a pendant path Pi for some i ∈ [d]. Moreover, we have the following.

• If vd+2 is a Pi-support vertex of T for some i ∈ [d − 1], then there is no other pendant
path attached to vd+2.

• If vd+2 is a Pd-support vertex of T , then vd+2 is not a Pi-support vertex of T for any
i ∈ [d − 1], and there is at least one copy of Pd attached to vd+2.

Case 2.1. L(vd+2) , ∅.
Let x ∈ L(vd+2) and T ′ = T − x. Clearly, degT (vd+2) ≥ 3 and degT ′(vd+2) ≥ 2. Then
ℓ′ = |L(T ′)| = ℓ − 1 and n′ = |V(T ′)| = n − 1 ≥ 2d + 2. Let D′ be a γ1

d(T ′)-set. By
considering whether vd+2 is in D′ or not, we observe that D′ can be chosen such that it is
also a d-distance (independent) dominating set of T . By the induction hypothesis, we have
γ1

d(T ) ≤ |D′| = γ1
d(T ′) ≤ n′+ℓ′

d+2 =
n−1+ℓ−1

d+2 < n+ℓ
d+2 .

Case 2.2. L(vd+2) = ∅.
Let P′ := x1x2 . . . xi be a copy of Pi attached to vd+2, where xivd+2 ∈ E(T ). Then i ∈ [d] \ {1},
and deg(xk) = 2 for all k ∈ [i] \ {1}, while deg(x1) = 1. Consider T ′ = T − Tvd − Txi . By
Lemma 3.3 (ii), deg(vd+1) ≥ 3 and, by our condition, deg(vd+2) ≥ 3. Therefore, ℓ′ = |L(T ′)| =
ℓ − 2. We also know that n′ = |V(T ′)| = n − d − i ≤ n − d − 2 and n′ ≥ d + 3.

Let D′ be a γ1
d(T ′)-set. Then |D′ ∩ {vd+1, vd+2}| ≤ 1. As in Case 2.2 of Theorem 3.4, let

D =


D′ ∪ {xi}, if vd+1 ∈ D′ and vd+2 < D′,
D′ ∪ {v1}, if vd+1 < D′ and vd+2 ∈ D′,
D′ ∪ {vd+1, xi} \ (V(Tvd+1) \ V(Tvd )), if vd+1, vd+2 < D′.

For any subcase, D is a d-distance independent dominating set of T . By the induction hy-
pothesis, we have γ1

d(T ) ≤ |D| ≤ |D′| + 1 = γ1
d(T ′) + 1 ≤ n′+ℓ′

d+2 + 1 ≤ n−d−2+ℓ−2
d+2 + 1 < n+ℓ

d+2 .

This completes the proof of Theorem 4.2. □

Now we set
F ′2 = {T : T − L(T ) ∈ {K2} ∪ T1} ,
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and if d ≥ 3, then set
F ′d = Fd.

By Theorems 4.1 and 4.2, we have the following two corollaries, respectively.

Corollary 4.3. Let d ≥ 2 be an integer and T be a tree of order n and with ℓ leaves. If n − ℓ ≥ d,
then γd(T ) ≤ n−ℓ

d with equality if and only if T ∈ F ′d .

Corollary 4.4. Let d ≥ 2 be an integer and T be a tree of order n and with ℓ leaves. If n ≥ d, then
γd(T ) ≤ n+ℓ

d+2 with equality if and only if T ∈ {Pd} ∪ Td.

Combining the above results with Corollary 2.2, we obtain

Corollary 4.5. If d ≥ 2, and T is a tree with ℓ leaves and of order n ≥ d + ℓ, then

γd(T ) ≤ γ1
d(T ) ≤


n−ℓ

d , if n < (d + 1)ℓ,
n

d+1 , if n = (d + 1)ℓ,
n+ℓ
d+2 , if n > (d + 1)ℓ.

Moreover, these bounds are best possible.

5 A conjecture
Recall that Ma and Chen [9] described equivalently bipartite graphs G of order n with γ1

1(G) = n
2 .

For d ≥ 2 we pose:

Conjecture 5.1. If d ≥ 2 and G is a connected bipartite graph G of order n, then γ1
d(G) = n

d+1 if
and only if G ∈ {C2d+2} ∪ Bd or n = d + 1.

Since γ1
1(Kr,r) = r = r+r

2 =
n
2 , the condition of d ≥ 2 of the conjecture above is necessary. If

Conjecture 5.1 holds true, then it generalizes Theorem 3.4. Moreover, the result [13, Theorem 3]
due to Topp and Volkmann, restricted to bipartite graphs, gives exactly the same characterization for
graphs G with γd(G) = n

d+1 as we pose in Conjecture 5.1 for the d-distance independent domination.
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