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Abstract

The metric dimension of a graph is the cardinality of a minimum resolving set, which is the

set of vertices such that the distance representations of every vertex with respect to that set are

unique. A fault-tolerant metric basis is a resolving set with a minimum cardinality that continues

to resolve the graph even after the removal of any one of its vertices. The fault-tolerant metric

dimension is the cardinality of such a fault-tolerant metric basis. In this article, we investigate

the fault-tolerant metric dimension of graphs formed through the point-attaching process of

primary subgraphs. This process involves connecting smaller subgraphs to specific vertices of

a base graph, resulting in a more complex structure. By analyzing the distance properties and

connectivity patterns, we establish explicit formulae for the fault-tolerant resolving sets of these

composite graphs. Furthermore, we extend our results to specific graph products, such as rooted

products. For these products, we determine the fault-tolerant metric dimension in terms of the

fault-tolerant metric dimension of the primary subgraphs. Our findings demonstrate how the

fault-tolerant dimension is influenced by the structural characteristics of the primary subgraphs

and the attaching vertices. These results have potential applications in network design, error

correction, and distributed systems, where robustness against vertex failures is crucial.
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1 Introduction

The metric dimension of a graph is a fundamental metric in the study of networks, identifying

the smallest set of landmark vertices needed to uniquely locate all other vertices using distance

measures [1, 2]. This concept underpins numerous applications including network verification, au-

tonomous navigation, and strategic resource placement. However, real-world networks often face

disruptions due to system faults, attacks, or environmental changes [3]. To enhance robustness,

the notion of the fault-tolerant metric dimension (FTMD) was developed [4], ensuring the unique-

ness of vertex identification persists even with the failure of any landmark node. This property

enhances the resilience [5], dependability [6], and robustness of networks [7], which is crucial for

domains like defense technology, sensor-based infrastructures, distributed systems, and intelligent

transport networks. Calculating FTMD is instrumental for constructing networks capable of with-

standing failures while preserving their operational integrity, facilitating continuous monitoring and

swift system adaptation during breakdowns [7]. The concept of FTMD was first explored in tree

structures where its connection to the traditional metric dimension was examined [4]. Later works

delved into fault-tolerant resolving sets [8], while optimization methods using integer linear pro-

gramming were applied to tackle the FTMD problem [9]. Investigations also identified graphs with

extremal FTMD values with respect to the order [10]. FTMD studies extended to graphs such as

molecules like bismuth tri-iodide, lead chloride, and quartz [11], convex polytopes [12], prism-based

graphs [13], and specific compound graphs like P (n, 2)⊙K1 [14]. Exact FTMD values were estab-

lished for grid graphs [15], and interconnection models like honeycomb and hexagonal networks were

analyzed [16]. For cographs, linear-time algorithms were proposed for weighted FTMD [17]. Various

graph families including gear and anti-web structures were examined for closed-form FTMD values,

with some cases exhibiting constant values [18]. Circulant graphs with degrees 4, 6, and 8 were

thoroughly studied [19, 20]. FTMD has also been applied to convex polytopes [21] and extended

honeycomb-based silicate networks [22].

Further analysis of well-known networks such as butterfly and Beneš topologies led to refined

FTMD results [22]. Algebraic graph models including zero-divisor graphs and their line graphs

were also studied [23]. FTMD has been determined for grids [24] and hexagonal ladders [25].

More recent efforts have broadened the application of FTMD to optical interconnects [26], fractal-

based topologies [27], and specific nanotube structures with constant FTMD [28]. Further work

includes FTMD analysis on arithmetic graphs [29], barycentric subdivisions [30], and generalized
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fat tree networks [31]. In algebraic contexts, annihilator graphs over various ring structures have

also been investigated [32]. The utility of primary subgraphs, which were introduced for the first

time in [33], has been demonstrated across various graph parameters. Topological indices like the

Hosoya polynomial [33], atom-bond connectivity [34], Graovac-Ghorbani index [34], and elliptic

Sombor index [35], have been efficiently computed via this approach. Additionally, parameters

such as the total domination polynomial [36], distinguishing number and index [37] and strong

domination number [38] have all seen computational benefits from subgraph decomposition. Metric-

based parameters in particular have shown promising results through this strategy. Both the metric

dimension [39] and local metric dimension [40] have been successfully determined using primary

subgraph frameworks, reducing computational demands.

2 Preliminaries

In a simple, connected graph G, the metric dG : V (G) × V (G) → N0 is defined to assign to

each pair of vertices x and y the length of a shortest path connecting them. Define r(v|X) =

(dG(v, x1), dG(v, x2), . . . , dG(v, xl)) as the representation of a vertex v ∈ G concerning the ordered

subset X = {x1, x2, . . . , xl}. The subset X is termed as a resolving set if, for any vertices x, y ∈

V (G), the condition r(x|X) 6= r(y|X) holds true. Let the set X be classified as a fault-tolerant

resolving set if, for any element s ∈ X, the set X \ {s} remains a resolving set. A fault-tolerant

resolving set X is considered minimal if there is no other fault-tolerant resolving set X ′ such that

X ′ ⊂ X. A minimal fault-tolerant resolving set that possesses the least number of elements is

referred to as a fault-tolerant basis. The cardinality of a fault-tolerant basis is referred to as the fault-

tolerant metric dimension of the graph G, denoted by fdim(G). A minimal fault-tolerant resolving

set with maximum cardinality is referred to as an upper fault-tolerant basis. The cardinality of

this upper fault-tolerant basis is termed the upper fault-tolerant metric dimension of G, denoted

by fdim+(G). For instance,

• for path graphs Pn, n ≥ 2, we have fdim(Pn) = 2 < fdim+(Pn) = 3;

• for cycle graph Cn, n ≥ 5, we have fdim(Cn) = fdim+(Cn) = 3;

• for star graphs K1,t, t ≥ 3, we have fdim(K1,t) = fdim+(K1,t) = t;

• for complete graphs of order n, we have fdim(Kn) = fdim+(Kn) = n.
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Let G be a connected graph formed by merging a collection of pairwise disjoint connected graphs

G1, . . . , Gk, k ≥ 2, through the following process. First, select a vertex from G1 and a vertex from

G2, and identify them. Next, continue this process inductively: assume that the graphs G1, . . . , Gi

have already been included in the construction, where 2 ≤ i ≤ k−1. Select a vertex from the current

graph (possibly one of the previously identified vertices) and a vertex from Gi+1, then identify them.

The resulting graph G has a tree-like structure, with the graphs Gi serving as its building blocks

(see Figure 1). We refer to this construction as point-attaching of G1, . . . , Gk, where the graphs Gi

are called the primary subgraphs of G [33]. A special case of this construction is the decomposition

of a connected graph into its blocks.
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Figure 1: Graph G with attaching vertices

G is obtained by point-attaching the pairwise disjoint connected graphs G1, . . . , Gk, where each

Gi serves as a primary subgraph of G. The vertices of G formed by identifying two vertices from

different primary subgraphs are called the attachment vertices of G. The set of all attachment

vertices of G is denoted by At(G), and the attachment vertices within each primary subgraph Gi

are represented by At(Gi) = At(G) ∩ V (Gi). Furthermore, for any two vertices x, y ∈ V (Gi), the

distance between them in G is the same as their distance in Gi, i.e., dG(x, y) = dGi
(x, y). Note

that, V (Gi) ∩ V (Gj) = At(Gi) ∩At(Gj) and E(Gi) ∩E(Gj) = ∅, for any i 6= j and 1 ≤ i, j ≤ k.

Cactus graphs, rooted products of graphs, circuits of graphs, block graphs, bouquets of graphs,

generalized corona products of graphs, etc., are some examples of graphs formed by point-attaching.

A primary subgraph Gi is referred to as a primary end-subgraph if it contains exactly one

attachment vertex, i.e., |At(Gi)| = 1. It is called a primary internal subgraph if it contains two or

more attachment vertices, i.e., |At(Gi)| ≥ 2. Clearly, any graph formed by point-attaching contains

at least two primary end-subgraphs.

In this paper, we present closed-form expressions for the FTMD of graphs formed through point-
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attaching. We apply the main result to specific graph constructions, including the rooted product,

the corona product, block graphs, and chain graphs. To introduce the necessary terminology, let

G be a simple graph. The neighborhood of a vertex v ∈ V (G) is denoted by NG(v), and its

eccentricity by ǫG(v). The diameter of G is represented by diam(G). For a subset S ⊆ V (G), the

subgraph induced by S is written as 〈S〉. A graph G is said to be even graph [41] if, for every

vertex x ∈ V (G), there is exactly one vertex y ∈ V (G) such that dG(x, y) = diam(G). Examples of

even graphs include even cycles and hypercubes. Throughout the paper, definitions and concepts

are introduced as they become relevant.

3 Main results

To establish a foundation for our discussion, we first derive a lower bound for the FTMD of graphs

formed from primary subgraphs in a general setting. In this case, no specific rule governs the con-

struction process through point-attaching, making the analysis more intricate. Since these construc-

tions rely on the attachment vertices of the primary subgraphs, they present additional challenges

in determining their FTMD. To address this complexity, we introduce an additional parameter that

directly pertains to the FTMD of graphs derived from primary subgraphs. The precise definition

of this parameter is given below.

Let G be a connected graph formed by point-attaching the primary subgraphs G1, . . . , Gk. An

attaching fault-tolerant resolving set for a primary subgraph Gi is a subset Fi ⊂ V (Gi)\At(Gi) such

that {Fi ∪At(Gi)} \ {x} is a resolving set of Gi for every x ∈ Fi. An attaching fault-tolerant basis

of Gi is an attaching fault-tolerant resolving set of minimum cardinality, and its size is called the

attaching fault-tolerant metric dimension of Gi, denoted by fdim∗(Gi,At(Gi)). For a given primary

subgraph Gi, we will assume that its set At(Gi) is fixed, so in the following we may simplify the

notation fdim∗(Gi,At(Gi)) to fdim∗(Gi).

For example, if |At(Gi)| = 1, then fdim∗(Gi) ∈ {fdim(Gi), fdim(Gi) − 1}. Consider next the

case Gi = Pn. Then fdim∗(Pn) = 2, if At(Pn) consists of a single vertex of degree 2, while in all

the other cases fdim∗(Pn) = 0. For the cycle graph Cn, the value of fdim∗(Cn) is 2 when At(Cn)

contains exactly one vertex, or when it consists of exactly two antipodal vertices and the cycle has

even length. In all the other situations, fdim∗(Cn) = 0. Furthermore, for a complete graph we

have that fdim∗(Kn) = n−|At(Kn)|. For a complete graph Kn, the attaching fault-tolerant metric

dimension is given by fdim∗(Kn) = n−|At(Kn)|, if |At(Kn)| < n−1, and fdim∗(Kn) = 0 otherwise.
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Proposition 1. If G is a graph formed by point-attaching G1, . . . , Gk, k ≥ 1, then

fdim(G) ≥
k

∑

i=1

fdim∗(Gi).

Proof. Let F be a fault-tolerant basis of G, and for i ∈ Nk, set

Fi = F ∩ (V (Gi) \At(Gi)) .

We claim that Fi is an attaching fault-tolerant resolving set of Gi. That is, we need to prove

Fi ∪At(Gi) \ {x} is a resolving set for every x ∈ Fi.

Fix x ∈ Fi, and let u and v be arbitrary two vertices of Gi. Since F is the fault-tolerant basis of

G, the vertices u and v are resolved in G by some vertex y from F\{x}. Assume first that y ∈ V (Gi).

Then having in mind that Gi is an isometric subgraph of G, vertices u and v are also resolved in Gi.

Assume second that y ∈ V (Gj) for some j 6= i. Then there exists a unique vertex a ∈ At(Gi) such

that dG(u, y) = dG(u, a) + dG(a, y) and dG(v, y) = dG(v, a) + dG(a, y). Since dG(u, y) 6= dG(v, y),

it follows that dG(u, a) 6= dG(x, a). This in turn gives dGi
(u, a) 6= dGi

(x, a), hence also in this case

vertices u and v are also resolved in Gi with a vertex from Fi ∪At(Gi) \ {x}. We have thus proved

that Fi is an attaching fault-tolerant resolving set of Gi and therefore |Fi| ≥ fdim∗(Gi). This implies

fdim(G) = |F| ≥
k

∑

i=1

|Fi| ≥
k

∑

i=1

fdim∗(Gi)

and we are done.

For a graph G constructed through point-attaching, we define the following properties for each

primary subgraph Gi.

Condition 1 (C1): For any a1 ∈ At(Gi) and v ∈ V (Gi) \ At(Gi), there exists a2 ∈ At(Gi) such

that dGi
(a1, a2) ≥ dGi

(v, a2).

Condition 2 (C2): At(Gi) = {a} and either Gi is a path and a is not a leaf, or Gi is not a path.

Note that condition C1 is satisfied by a large class of connected graphs. For example, this holds

when a primary internal subgraph Gi meets one of the following conditions.

1. V (Gi) = At(Gi).

2. At(Gi) is any independent set for Gi and diam(Gi) = 2.

3. EGi
(u1) = EGi

(u2) = dGi
(u1, u2) for any pair of distinct vertices u1, u2 ∈ At(Gi). In particular,

this includes all non-trivial complete graphs.
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4. Gi is an even graph and if u ∈ At(Gi), then the vertex antipodal to u also belongs to At(Gi).

A graph G has fault-tolerant metric dimension 2 if and only if it is a path graph. Moreover, a set

{v1, v2} forms a fault-tolerant metric basis for a path if and only if both v1 and v2 are leaves of the

path. Therefore, if a graph Gi satisfies condition C2, then its fault-tolerant metric dimension must

be at least 1, that is, fdim∗(Gi) ≥ 1.

To demonstrate that the bound of Proposition 1 is tight, we impose restrictions on primary

subgraphs using conditions C1 and C2 as follows.

Theorem 2. If G is a graph formed by point-attaching G1, . . . , Gk, k ≥ 3, such that each primary

internal subgraph satisfies C1, every primary end-subgraph satisfies C2, and At(Gi) ∩ At(Gj) = ∅

for any pair of primary end-subgraphs Gi and Gj , then

fdim(G) =
k

∑

i=1

fdim∗(Gi).

Proof. By Proposition 1, we have fdim(G) ≥
∑k

i=1 fdim
∗(Gi), hence it remains to show that

fdim(G) ≤
∑k

i=1 fdim
∗(Gi). Let Fi, i ∈ [k], be an attaching fault-tolerant basis of Gi. We will

demonstrate that the set F = ∪k
i=1Fi forms a fault-tolerant resolving set for G. To do this, we

consider the following cases for any two distinct vertices x1 and x2 of G.

Case 1: x1, x2 ∈ V (Gi), x1 6= x2.

Subcase 1.1: Fi 6= ∅.

Since Fi is non-empty and is at the same an attaching fault-tolerant basis for Gi, there exists

u1, u2 ∈ Fi such that dG(x1, u1) 6= dG(x2, u1) and dG(x1, u2) 6= dG(x2, u2). If u1, u2 ∈ Fi, then we

are done. Now if u1 ∈ At(Gi), then there exists a primary end-subgraph Gj , j 6= i, such that for any

w ∈ Fj we have dG(u1, w) = min
v∈V (Gi)

{dG(v,w)}. Notice that since Gj satisfies C2, we get Fj ≥ 2.

Hence

dG(x1, w) = dG(x1, u1) + dG(u1, w) 6= dG(x2, u1) + dG(u1, w) = dG(x2, w).

Subcase: 1.2: Fi = ∅.

Since At(Gi) is a resolving set for Gi, for any two vertices of x1, x2 ∈ V (Gi) there exist a ∈ At(Gi),

such that dG(x1, a) 6= dG(x2, a). This implies that there exists a primary end-subgraph Gj such

that for any w ∈ Fj we have dG(a,w) = min
v∈V (Gi)

{dG(v,w)}. Since Gj satisfies C2, |Fj | ≥ 2. Hence,

for any w ∈ Fj ,

dG(x1, w) = dG(x1, a) + dG(a,w1) 6= dG(x2, a) + dG(a,w) = dG(x2, w).
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Case 2: x1 ∈ V (Gi), x2 ∈ V (Gj), where i 6= j.

Let a1 ∈ V (Gi) and a2 ∈ V (Gj) be the attachment vertices such that dG(x1, x2) = dG(x1, a1) +

dG(a1, a2)+ dG(a2, x2). Note that if Gi and Gj have a common attachment vertex, then a1 = a2. If

x2 = a2 = a1 or x1 = a1 = a2, then we proceed as Case 1. Hence, in the rest we may assume that

x1 and x2 do not belong to the same primary subgraph, that is, x2 6= a1 and x1 6= a2.

Subcase 2.1: |At(Gi)| ≥ 2 or |At(Gj)| ≥ 2.

Assume without loss of generality that |At(Gi)| ≥ 2. Since Gi satisfies C1, there exists c ∈ At(Gi)\

{a1}, such that dG(a1, c) ≥ dG(x1, c). Now, let Gℓ, ℓ 6= i, be a primary end-subgraph such that for

any t ∈ Fℓ, dG(c, t) = minv∈V (Gi){dG(v, t)}, (Fℓ ≥ 2, as Gℓ satisfies C2). Then for any t1, t2 ∈ Fℓ,

dG(x1, t1) = dG(x1, c) + dG(c, t1) ≤ dG(a1, c) + dG(c, t1)

< dG(x2, a1) + dG(a1, c) + dG(c, t1) = dG(x2, t1), and

dG(x1, t2) = dG(x1, c) + dG(c, t2) ≤ dG(a1, c) + dG(c, t2)

< dG(x2, a1) + dG(a1, c) + dG(c, t2) = dG(x2, t2).

Subcase 2.2: |At(Gi)| = |At(Gj)| = 1.

Clearly Gi and Gj are primary end-subgraphs and since they satisfy C2, it follows that |Fi| ≥ 2 and

|Fj| ≥ 2. Hence, let p1, p2 ∈ Fi and q1, q2 ∈ Fj . If there exist two vertices in {p1, p2, q1, q2} that

distinguish x1 and x2, then we are done. On the contrary, suppose that there do not exist at least

two vertices in {p1, p2, q1, q2}, such that they individually distinguishes the vertices x1 and x2. We

may suppose without loss of generality that in this case we have:

dG(x1, p1) = dG(x2, p1) = dG(x2, a2) + dG(a2, a1) + dG(a1, p1), (1)

dG(x1, p2) = dG(x2, p2) = dG(x2, a2) + dG(a2, a1) + dG(a1, p2), (2)

dG(x2, q1) = dG(x1, q1) = dG(x1, a1) + dG(a1, a2) + dG(a2, q1). (3)

Observe that since |At(Gi) ∩At(Gj)| = ∅, we have a1 6= a2. Moreover,

dG(x1, p1) ≤ dG(x1, a1) + dG(a1, p1), (4)

dG(x1, p2) ≤ dG(x1, a1) + dG(a1, p2), (5)

dG(x2, q1) ≤ dG(x2, a2) + dG(a2, q1). (6)

From (1), (2), (4) and (5) we obtain

dG(x2, a2) + dG(a2, a1) ≤ dG(x1, a1). (7)
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From (3) and (6)

dG(x1, a1) + dG(a1, a2) ≤ dG(x2, a2). (8)

Adding (7) and (8), we get

2 · dG(a1, a2) ≤ 0,

which is a contradiction. Hence, fdim(G) ≤
∑k

i=1 fdim
∗(Gi).

The following sections focus on deriving several consequences of Theorem 2. Specifically, we

present closed-form expressions for the FTMD of certain families of graphs in terms of parameters

associated with their primary subgraphs. This is done in cases where the point-attaching process

can be described as a graph composition scheme or when the primary subgraphs satisfy specific

properties.

4 An extremal case

As before, let G be a graph formed by point-attaching the primary subgraphs G1, . . . , Gk. In this

section, we examine the case where every minimal fault-tolerant basis of a primary subgraph is also

of minimum cardinality, that is, when fdim(Gi) = fdim+(Gi) for each Gi. Let F(Gi) denote the

collection of all fault-tolerant metric bases of Gi and let

θi =















max
F∈F(Gi)

{|F ∩At(Gi)|}; At(Gi) is not a resolving set of Gi,

fdim(Gi); otherwise.

In other words, θi represents the maximum number of attachment vertices of G that are also part

of a metric basis of Gi.

Corollary 1. Let G be a graph formed by point-attaching G1, . . . , Gk, k ≥ 3, which satisfy the

conditions of Theorem 2. If also At(Gi) 6= V (Gi) and fdim(Gi) = fdim+(Gi), i ∈ [k], then

fdim(G) =

k
∑

i=1

(fdim(Gi)− θi).

Proof. For any primary subgraph Gi of G such that fdim(Gi) = fdim+(Gi), we have fdim∗(Gi) =

fdim(Gi)− θi. Hence, the result follows from Theorem 2.

Consider the graph with five primary subgraphs from Figure 2, where At(G1) = {a1}, At(G2) =

{a1, a2, a3}, At(G3) = {a2}, At(G4) = {a3, a4}, and At(G5) = {a4}. Using Corollary 1 we get

9
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Figure 2: A graph G formed by point-attaching from G1
∼= K4, G2

∼= K3, G3 being the paw graph,

G4
∼= C8, and G5

∼= K5.

fdim(G) = (fdim(G1)− 1) + (fdim(G2)− 4) + (fdim(G3)− 1) + (fdim(G4)− 1) + (fdim(G5)− 1) =

3 + 0 + 2 + 2 + 4 = 11.

A block graph is a graph in which each biconnected component (block) forms a clique. Observe

that any block graph can be constructed by point-attaching a family of connected graphs. Recalling

that fdim(Kn) = n = fdim+(Kn), we get the following remark as a special case of Corollary 1.

Remark. Let G be a block graph formed by point-attaching {Kr1 ,Kr2 , . . . ,Krk}, where k ≥ 3 and

ri ≥ 3, i ∈ [k]. If At(Kri) ∩At(Krj ) = ∅ for any primary end-subgraphs Kri and Krj , then,

fdim(G) =
∑

i∈[k]
|At(Gi)|<ri−1

(ri − |At(Kri)|).

5 Rooted products

In this section, we explore a notable special case of graphs constructed through point-attaching:

the rooted product of graphs.

A rooted graph is a graph with a designated vertex that is uniquely labeled to distinguish it

from the others. This distinguished vertex is referred to as the root of the graph. Let G be a

labeled graph with n vertices, and let H = {H1, . . . ,Hn} be a collection of rooted graphs. The

rooted product graph G[H] is formed by identifying the root of each graph Hi with the ith vertex

of G. It is evident that any rooted product graph G[H] can be viewed as a graph obtained by

point-attaching. Here, the primary internal subgraph is G with At(G) = V (G), while the family

H consists of primary end-subgraphs, where each attachment vertex corresponds to the root of the

respective graph. Using Theorem 2, we derive the following result.
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Corollary 2. Let G be a connected graph of order n ≥ 2, and let H = {H1, . . . ,Hn} be a family of

rooted graphs, each satisfying C2, with roots v1, . . . , vn, respectively. Then

fdim(G[H]) =
∑

Hi∈H1

fdim(Hi) +
∑

Hj∈H2

(fdim(Hj)− 1),

where Hi ∈ H1 if vi is not part of any fault-tolerant basis of Hi, and Hj ∈ H2 otherwise.

Next, we examine the case where the family H consists of vertex-transitive graphs. Let Aut(H)

denote the automorphism group of a graphH. For any two vertices x1, x2 ∈ V (H) and any automor-

phism f ∈ Aut(H), the distance between the vertices is preserved, i.e., d(x1, x2) = d(f(x1), f(x2)).

Consequently, if F is a fault-tolerant basis of a connected graph H and f ∈ Aut(H), then the image

of the basis under the automorphism, f(F), is also a fault-tolerant basis of H. Thus, each vertex of

H must belongs to some fault-tolerant basis. Applying Corollary 1, we derive the following remark.

Remark. Let H = {H1, . . . ,Hn} be a collection of vertex-transitive graphs with orders greater than

two. Then for any connected graph G of order n ≥ 2, we have

fdim(G[H]) =
n
∑

i=1

(

fdim(Hi)− 1
)

.

In particular, if H = {Kr1 , . . . ,Krn}, then

fdim(G[H]) =
n
∑

i=1

(ri − 1),

and if H = {Cr1 , . . . , Crn}, then

fdim(G[H]) = 2 · n.

A special case of rooted product graphs arises when the family H consists of n isomorphic rooted

graphs. Formally, let V (G) = {u1, . . . , un}, and let v be the root vertex of a graph H. The rooted

product graph G ◦v H is defined with the vertex set V (G ◦v H) = V (G) × V (H) and the edge set

E(G ◦v H) =

n
⋃

i=1

{(ui, b)(ui, y) : by ∈ E(H)} ∪ {(ui, v)(uj , v) : uiuj ∈ E(G)}.

For this case, Corollary 1 reduces to the following.

Proposition 3. If H is a connected graph not isomorphic to a path and v ∈ V (H), then the

following hold.

(i) If v is not a part of any fault-tolerant basis of H, then for any connected graph G of order n,

fdim(G ◦v H) = n · fdim(H).
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(ii) If v belongs to a fault-tolerant basis of H, then for any connected graph G of order n ≥ 2,

fdim(G ◦v H) = n · (fdim(H)− 1).

Proposition 3 raises the question of identifying the necessary and/or sufficient conditions for a

vertex v ∈ V (H) to be part of a fault-tolerant basis of H. For example, it is straightforward to

verify that a vertex v in a path graph P belongs to fault-tolerant basis of P if and only if v is one

of its leaf vertices. Building on this observation, Proposition 3 (i) yields:

Corollary 3. Let H be a connected graph, v ∈ V (H) a vertex that is not part of any fault-tolerant

basis of H, and let G be a connected graph of order n. Then fdim(G ◦v H) = 2n if and only if H is

a path graph and v is not a leaf.

In view of Proposition 3 and Corollary 3, the remaining case to be considered is when the second

factor of a rooted product graph is a path with the root as a leaf. For this specific case, the following

bounds are established.

Proposition 4. If G is a connected graph of order n ≥ 2, and v is a leaf of a non-trivial path P ,

then

fdim(G) ≤ fdim(G ◦v P ) ≤ n.

Proof. G appears as an induced subgraph of G◦v P . Since any fault-tolerant resolving set of G◦v P

must in particular resolve G, the lower bound follows.

To establish the upper bound we claim that V (G) × {v′} is a fault-tolerant resolving set for

G ◦v P , where v′ denotes the leaf of P distinct from v. Let (x, y) and (x′, y′) be any two vertices of

G ◦v P . If x = x′, then for any u1, u2 ∈ V (G),

d
(

(u1, v
′), (x, y)

)

6= d
(

(u1, v
′), (x, y′)

)

.

And if x 6= x′, then

d
(

(x, v′), (x, y)
)

< d
(

(x, v′), (x′, y′)
)

and d
(

(x′, v′), (x, y)
)

> d
(

(x′, v′), (x′, y′)
)

.

Hence V (G)× {v′} is indeed a fault-tolerant resolving set for G ◦v P , hence fdim(G ◦v P ) ≤ n.

To see that the upper bound of Proposition 4 is sharp, consider the example from Figure 3.

12



(a) (b) (c)

Figure 3: (a) Graph G (b) Graph H = P3 (c) G ◦v P3, where the blue vertices form a fault-tolerant

basis, and the black vertices are the attaching vertices.

6 Conclusion

In this paper, we have introduced an effective methodology for computing the fault-tolerant metric

dimension of graphs constructed through point-attaching techniques involving primary subgraphs.

By systematically analyzing the role of distance relations and connectivity among the attached sub-

structures, we established explicit formulas for determining fault-tolerant resolving sets. This frame-

work not only simplifies the computation for complex graphs but also enhances our understanding

of how the structural properties of the primary subgraphs influence the overall fault tolerance.

Furthermore, we extended our approach to specific graph products, including the rooted product,

by expressing their fault-tolerant metric dimensions in terms of the fault-tolerant metric dimensions

of their component subgraphs. This generalization highlights the versatility and applicability of our

method across various graph constructions.

The results presented contribute significantly to the study of fault-tolerant graph invariants and

offer a modular approach for analyzing large-scale networks. Such insights are especially relevant

for applications in network design, fault detection, and resilient communication systems, where

maintaining unique identifiability despite node failures is essential.
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[41] F. Göbel, H.J. Veldman, Even graphs, Journal of Graph Theory 10(2) (1986) 225–239.

17


