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Abstract

The metric dimension of a graph is the cardinality of a minimum resolving set, which is the
set of vertices such that the distance representations of every vertex with respect to that set are
unique. A fault-tolerant metric basis is a resolving set with a minimum cardinality that continues
to resolve the graph even after the removal of any one of its vertices. The fault-tolerant metric
dimension is the cardinality of such a fault-tolerant metric basis. In this article, we investigate
the fault-tolerant metric dimension of graphs formed through the point-attaching process of
primary subgraphs. This process involves connecting smaller subgraphs to specific vertices of
a base graph, resulting in a more complex structure. By analyzing the distance properties and
connectivity patterns, we establish explicit formulae for the fault-tolerant resolving sets of these
composite graphs. Furthermore, we extend our results to specific graph products, such as rooted
products. For these products, we determine the fault-tolerant metric dimension in terms of the
fault-tolerant metric dimension of the primary subgraphs. Our findings demonstrate how the
fault-tolerant dimension is influenced by the structural characteristics of the primary subgraphs
and the attaching vertices. These results have potential applications in network design, error

correction, and distributed systems, where robustness against vertex failures is crucial.
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1 Introduction

The metric dimension of a graph is a fundamental metric in the study of networks, identifying
the smallest set of landmark vertices needed to uniquely locate all other vertices using distance
measures [1,2]. This concept underpins numerous applications including network verification, au-
tonomous navigation, and strategic resource placement. However, real-world networks often face
disruptions due to system faults, attacks, or environmental changes [3]. To enhance robustness, the
notion of the fault-tolerant metric dimension (FTMD) was developed [4], ensuring the uniqueness
of vertex identification persists even with the failure of any landmark node. This property enhances
the resilience [5], dependability [6], and robustness of networks [7], which is crucial for domains
like defense technology, sensor-based infrastructures, distributed systems, and intelligent transport
networks. Calculating FTMD is instrumental for constructing networks capable of withstanding
failures while preserving their operational integrity, facilitating continuous monitoring and swift sys-
tem adaptation during breakdowns [7]. The concept of FTMD was first explored in tree structures
where its connection to the traditional metric dimension was examined [4]. Later works delved into
fault-tolerant resolving sets [8]. Further investigations on characterization of graphs with respect
to maximum FTMD were erroneously done in [9], later it was corrected by Prabhu et al. in [10].
This studies extended to convex polytopes [11], grid graphs [12], and interconnection models like
honeycomb and hexagonal networks were analyzed [13]. Circulant graphs with degrees 4, 6, and
8 were thoroughly studied [14, 15]. The parameter FTMD has also been investigated for convex
polytopes [16], butterfly, Benes, and extended honeycomb-based silicate networks [10].

Further analysis of well-known networks such as generalized fat-tree [17], biswapped network [18],
and fractal cubic network [19]. Algebraic graph models including zero-divisor graphs and their line
graphs were also studied [20], and annihilator graphs over various ring structures have also been
investigated [21]. More recent efforts have broadened the application of FTMD in specific nanotube
structures with constant FTMD [22]. Further work includes FTMD analysis on arithmetic graphs
[23], and barycentric subdivisions [24]. The other fault-tolerant variants reported in [25-30] are also

interesting to investigate.

2 Preliminaries

Throughout this paper we denote the simple, undirected, connected graph as GG, and the metric

dg : V(G) x V(G) — Ny (d: V(G) x V(G) — Ny if G is understood) is defined to assign to each



pair (z,y), the minimum number of edges required to connect them. Here, we denote {0,1,2,...}
as No. Define r(v|X) = (d(v,z1),d(v,22),...,d(v,x;)) as the representation of a vertex v € G
concerning the ordered subset X = {z1,z2,...,2;}. The subset X is called a resolving set if, for
any vertices x,y € V(G), the condition r(z|X) # r(y|X) holds true. Let the set X be classified as
a fault-tolerant resolving set (FTRS) if, for any element s € X, the set X \ {s} remains a resolving
set. A FTRS X is considered minimal if there is no other fault-tolerant resolving set X’ such
that X’ € X. A minimal FTRS that possesses the least number of elements is referred to as a
fault-tolerant basis (FTB). The cardinality of a fault-tolerant basis is referred to as the FTMD of
the graph G, coined by fdim(G). A minimal FTRS with maximum cardinality is referred to as an
upper fault-tolerant basis. The cardinality of this upper FTB is termed the upper FTMD of G,
denoted as fdim™*(G). The upper FTMD of some standard graphs are as follows.

e for n > 2, fdim(P,) = 2 < fdim™(P,) = 3;
e for n > 5, fdim(C,,) = fdim*(C,,) = 3;

o for t > 3, fdim(K ;) = fdim™ (K ) = t;

e for n > 3, fdim(K,,) = fdim*(K,,) = n.

Let G be a resulting graph formed by merging a collection of pairwise disjoint graphs G1, ..., Gy,
k > 2, through the following process. First, select two vertices one from G; and the other from Gs,
and identify them. Next, continue this process inductively: assume that the graphs G, ..., G; have
already been included with i € {2,3,...k — 1}. Choose a vertex from the current graph (possibly
one of the previously identified vertices) and a vertex from G;;1, then identify them. The resulting
graph G has a tree-like structure, with the graphs G; serving as its building blocks (see Figure
1). We refer to this construction as point-attaching of Gi,...,Gy, where the graphs G; are called
the primary subgraphs of G [31]. Throughout this paper, the notation [k] denotes the index set
{1,2,...,k}. Here we would like to emphasize that if each of the graphs G;, i € [k], is 2-connected,
then the graphs G; are precisely the blocks of the graph constructed in the described way, see Figure
1 again.

A vertex a € V(Q) is said to be an attachment vertex of G, if V(G;) NV (G;) = {a}, for some i
and j. The collection of all such vertices of G is denoted by At(G), At(G;) = At(G) NV (G;). Note
that, V(G;) NV (G;) = At(G;) N At(G;) and E(G;) N E(G;) =0, for any ¢ # j and 1 <4,j < k.

The utility of primary subgraphs, which were introduced for the first time in [31], has been

demonstrated across various graph parameters. Topological indices like the Hosoya polynomial [31],



Figure 1: Graph G with attaching vertices

atom-bond connectivity [32], Graovac-Ghorbani index [32], and elliptic Sombor index [33], have
been efficiently computed via this approach. Additionally, parameters such as the total domina-
tion polynomial [34], distinguishing number and distinguishing index [35], and strong domination
number [36] have all seen computational benefits from subgraph decomposition. Metric-based pa-
rameters in particular have shown promising results through this strategy. Certain metric dimension
parameters have been successfully determined using primary subgraph frameworks [37,38], reducing
computational demands.

It is interesting to note that the Cactus graphs [39], rooted products of graphs [40], block
graphs [41], corona products of graphs [42] are some few prominent examples of graphs formed by
point-attaching process.

We now give a couple of basic properties of graphs formed by point-attaching. For this sake
recall that a subgraph H of a graph G is isometric, if for every two vertices u,v € V(H) we have
dp(u,v) = dg(u,v), and that H is convez if every shortest u,v-path from G lies completely in H.

Clearly, every convex subgraph is isometric (but not necessarily the other way around).

Lemma 1. If G is a graph formed by point-attaching G1,...,Gg, k > 1, then the following properties
hold.

(i) Gy, i € [k], is a convex subgraph of G.

(it) If u € V(G;) and v € V(G;), where i # j, then there exist attachment vertices x; € V(G;)

and x; € V(Gj), such that every shortest u,v-path contains x; and x;.

Proof. (i) Let w and v be arbitrary vertices from some primary subgraph G;, where i € [k]. Consider

an arbitrary shortest u,v-path P in G. If P contains no attachment vertex, then P clearly lies



completely in G;. Assume next that P contains some attachment vertex x and suppose that x has
a neighbor y ¢ V(G;) on P, so that P contain vertices u,...,2,y,...,v in that order. Then by
the point-attaching procedure, P cannot re-enter G, that is, P is not a shortest w.v-path. This
contradiction proves that all the vertices of P belong to V(G;) and we can conclude that G; is a
convex subgraph of G.

(ii) Let w € V(G;) and v € V(G,), where ¢ # j, and let P be an arbitrary shortest u,v-
path. Then by the (tree-like) point-attaching procedure, there exist a unique sequence of primary
subgraphs Gy, ,...,Gyg,, r > 1, such that P sequentially contains vertices from Gj;, Gy, ..., Gy,., Gj.
Then the claimed attachment vertex z; € V(G;) is the unique common vertex of G; and Gy, , and

the claimed attachment vertex z; € V(G;) is the unique common vertex of Gy, and Gj. 0

We add that in Lemma 1(ii), it is possible that x; = u, or that x; = v, or that z; = x;.

A primary end-subgraph is a primary subgraph G; with exactly one attachment vertex, i.e.,
|At(G;)| = 1. Tt is called a primary internal subgraph if it contains two or more attachment
vertices, i.e., | At(G;)| > 2.

In this paper, we present exact expressions for the FTMD of graphs formed through point-
attaching. We apply the main result to specific graph constructions, including the rooted product
and block graphs. An open neighborhood of a vertex v € V(G) is denoted by Ng(v), and its
eccentricity by eg(v). A graph G is said to be even graph [43] if, for every x € V(G), there exist
an unique y € V(G), such that they are diametrically opposite. The hypercubes and even cycles
are few examples of even graphs. Throughout the paper, definitions and concepts are introduced

as they become relevant.

3 Main results

To establish a foundation for our discussion, we first derive a some bound for the FTMD of G
formed by the point-attaching process. In this case, no specific rule governs the construction process
through point-attaching, making the analysis more intricate. Since these constructions rely on the
attachment process, they present additional challenges in determining their FTMD. To address this
complexity, we introduce an additional parameter that directly pertains to the FTMD of graphs
derived from primary subgraphs.

An attaching FTRS of G; is a subset F; C V(G;) \ At(G;) such that {F; U At(G;)} \ {z} is a
resolving set of GG; for every x € F;. An attaching FTB of G; is an attaching FTRS of minimum



cardinality, and its size is called the attaching FTMD of G;, denoted by fdim*(G;, At(G;)). For a
given primary subgraph G;, we will assume that its set At(G;) is fixed, so in the following we may
simplify the notation fdim*(G;, At(G;)) to fdim*(G;).

For example, if | At(G;)| = 1, then fdim*(G;) € {f{dim(G;), fdim(G;) —1}. Consider next the case
G = P,. Then fdim*(P,) = 2, if At(P,) consists of a single vertex of degree 2, while in all the other
cases fdim*(P,) = 0. For the cycle graph C,, the value of fdim*(C,,) is 2 when At(C,,) contains
exactly one vertex, or when it consists of exactly two antipodal vertices and the cycle has even length.
In all the other situations, fdim*(C),) = 0. Furthermore, fdim*(K,) = n—| At(K,)|. For a complete
graph K, the attaching fault-tolerant metric dimension is given by fdim*(K,) = n — | At(K,)|, if
| At(K,)| <n —1, and fdim*(K,,) = 0 otherwise.

Proposition 2. If G is formed by the point-attaching process over {G; : i € [k]}, k > 1, then
k
fdim(G) > ) fdim*(G;)

Proof. For i € Ng, let F;, = FnN(V(G;) \ At(G;)), where F is a FTB of G. We claim that F; is
an attaching FTRS of G;. That is, we need to prove F; U At(G;) \ {z} is a resolving set for each
reF;.

Fix x € &, and u,v € V(G;). Since ¥ is the FTB of G, the vertices u and v are resolved in G
by some vertex y from F\ {z}. Assume first that y € V(G;). Then having in mind that G; is an
isometric subgraph of G, vertices v and v are also resolved in G;. Assume second that y € V(G;) for
some j # i. Then there exists a unique vertex a € At(G;) such that d(y,u) = d(y,a) + d(a,u) and
d(y,v) = da(y,a) + d(a,v). Since d(y,u) # d(y,v), it follows that d(a,u) # d(a,z). This in turn
gives dg, (u,a) # dg,(x, a), hence u and v are also resolved in G; with a vertex from F;UAt(G;)\{z}.
We have thus proved that F; is an attaching FTRS of G; and therefore |F;| > fdim*(G;). This

implies
k k
fdim(G Z Z fdim™(

and we are done. O

By Proposition 2, for the graph illustrated in Figure 2, we obtain a lower bound of 4 for the fault-
tolerant metric dimension. However, the exact fault-tolerant metric dimension of this graph is 6,
showing that the bound is not tight in general. To address this gap, we introduce Condition 1 (Cy).
Similarly, for the graph illustrated in Figure 3, we obtain a lower bound of 2 for the fault-tolerant

metric dimension, whereas the exact value is 4. This example highlights the necessity that each



primary end subgraph must contain at least two fault-tolerant resolvers; therefore, we introduce

Condition 2 (Ca).

Figure 3: A graph obtained by point attachment of G; = Cys, Go = K3 and G3 = Ps.

Condition 1 (C1): For each a; € At(G;) and v € V(G;) \ At(G;), there exists ay € At(G;) such
that dg,(a1,a2) > dg, (v, az2).
Condition 2 (€2): At(G;) = {a} and either G; = P, and a is a vertex which is not a leaf, or G;
is not a path.

Note that there are large class of connected graphs satifying condition €1. For example, this

holds when G; meets one of the following.
1. V(G;) = At(Gy).
2. Any two vertices in At(G;) is not adjacent in G; and diam(G;) = 2.

3. &g, (u1) = Eq,(u2) = dg, (u1, uz) for any pair of distinct vertices uy, ug € At(G;). In particular,

this includes all non-trivial complete graphs.
4. G, is an even graph and if u € At(G;), then the vertex antipodal to u also belongs to At(G;).

A graph G has fault-tolerant metric dimension 2 if and only if it is a path graph [4]. Moreover, a

set {v1, vy} forms a fault-tolerant metric basis for a path if and only if both v; and vy are leaves of



the path. Therefore, if a graph G; satisfies condition €2, then its fault-tolerant metric dimension
must be at least 2, that is, fdim*(G;) > 2.
To demonstrate that the bound of Proposition 2 is tight, we impose restrictions on primary

subgraphs using conditions €1 and G2 as follows.

Theorem 3. If G is formed by the point-attaching process over {G; : i € [k|}, k > 3, such that
each internal subgraph and end-subgraph respectively satisfies C1 and C2, and no two primary end-

subgraphs share a vertex, then

k
fdim(G) = > fdim*(G;).
=1

Proof. By Proposition 2, we have fdim(G) > Zle fdim*(G;), hence it remains to show that
fdim(G) < Zle fdim*(G;). Let F;, i € [k], be an attaching FTB of G,. We will demonstrate
that the set F = Ulefr"i forms a FTRS for G. To do this, we have the following possibilities.

Case 1: z1,29 € V(G)), x1 # 2.

Subcase 1.1: JF; # .

Since JF; is non-empty and an attaching fault-tolerant basis for G;, there exists ui, us € F; such that
d(uy,xq) # d(uy, x2) and d(ug, x1) # d(ug, x2). If uy, us € F;, then the proof is clear. If u; € At(G;),
then 3 G # G, such that for each w € Jj, d(w,u1) = min ){d(w,v)}. Since, G; obeys €2, we

UEV(GZ‘
get F; > 2. Therefore,

d(w,z1) = d(w,u1) + d(uy, x1) # d(z2,u1) + d(ui, w) = d(z2,w).

Subcase: 1.2: F; = 0.
Since At(G;) is a resolving set for G;, for any two vertices of x1,z9 € V(G;) there exist a € At(G;),
such that d(x1,a) # d(x2,a). This implies that there exists a G; such that for each w € F; we have

d(w,a) = ven‘}i(g.){d(w,v)}. Now, |F;| > 2 due to G; satisfying €2. Hence, for any w € J},
d(z1,w) = d(z1,a) + d(a, wy) # d(x2,a) + d(a, w) = d(x2, w).

Case 2: z1 € V(Gl), To € V(Gj), G; 75 Gj.
Let a1 € At(G;) and ag € At(Gj), such that d(z1,22) = d(x1,a1) + d(a1,a2) + d(az, x2). Note that
a1 = ag, whenever At(G;) NAt(Gj) # 0. If zg = ag = a1 or &1 = a; = ag, then the discussion is

similar to Case 1. Hence, in the rest we may assume that zo # a; and x1 # ay. Subcase 2.1:



Let | At(G;)| > 1. As G; obeys C1, 3 ¢ € At(G;) \ {a1}, such that dg(ai,c) >

Gz, With | At(Gex)| = 1, s.t. for every t € Fy, d(t, ¢) = minyey (g,){d(t,v)}, (Fe

©2). Then for every ti,ty € Fy,

d(z1,t1) = d(c, 1) + d(c, t1) < d(c,a1) + d(c, 1)
< d(
d(z1,ts) = d(c, 1) + d(c, t2) < d(c,ar) + d(c, t3)

< d(x3,a1) + d(c, ay) + d(c,ty) = d(za, t2).

Subcase 2.2: [At(G;)| =1 = | At(G))|.

Since, G; and G obeys €2, |F;| > 2 and |F;| > 2. Hence, let p1,p2 € F; and q1,¢2 € Fj.

x9,a1) +d(c,a1) +d(e, t1) = d(xa,t1), and

dg(x1,c). Assume

> 2, as Gy obeys

If there

exist two vertices in {p1, q1,p2, g2} that distinguish z; and z9, then we are done. Suppose that there

do not exist at least two vertices in {p1,q1,p2,q2}, s.t. they individually distinguishes the vertices

x1 and xzo. We may suppose w.l.o.g. that in this case we have:
d(w1,p1) = d(z2,a2) + d(az, a1) + d(a1, p1) = d(x2, p1),

d(z1,p2) = d(z2,a2) + d(az,a1) + d(a1,p2) = d(z2,p2),
d(z2,q1) = d(x1,a1) + d(a1,a2) + d(az,q1) = d(z1, q1).

Observe that since At(G;) N At(G;) = (), we have a; # as. Moreover,
d(z1,p1) < d(p1,a1) +d(a1, z1),

d(z1,p2) < d(p2,a1) + d(ay, z1),

d(z2,q1) < d(q1,a2) + d(az, v2).
From (1), (2), (4) and (5) we obtain

d(ay,a2) + d(ag, x2) < d(z1,a1).
From (3) & (6)

d(z1,a1) + d(az,a1) < d(z2,a2).

Adding (7) & (8), we get
2. d(al,ag) < 0,

which is a contradiction. Hence, fdim(G) < S2%_| fdim*(G;).



Let us now illustrate Theorem 3 with two examples, the first of which is a block graph.

Example 4. The graph G illustrated in Figure 4 satisfies conditions (C1) and (C2). Hence, Theo-
rem 3 can be applied to compute the fault-tolerant metric dimension of G using the attaching metric

dimensions of its primary subgraphs as follows:
fdim(G) = fdim*(Gy) + fdim*(G2) + fdim*(G3) + fdim*(G4) + fdim* (G5)
=2+4+3+2+4

= 15.

Figure 4: A block graph G constructed by point attaching G = K3, Ga = K¢, G = K4, G4 = K3,
and G5 = K5.

Example 5. The graph G illustrated in Figure 5 satisfies conditions (C1) and (Cz). Hence, Theo-
rem 3 can be applied to compute the fault-tolerant metric dimension of G using the attaching metric

dimensions of its primary subgraphs as follows:
fdim(G) = fdim*(G1) + fdim* (G2) + fdim*(G3) + fdim*(G4) + fdim*(G5)
=24+440+2+2

= 10.

Figure 5: A graph G constructed by point attaching G; = C7, Go & Kg, Gg = P3, G4 = C4, and
G5 =~ Kj.
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The following sections focus on deriving several consequences of Theorem 3. Specifically, we
present closed-form expressions for the FTMD of certain collection of graphs which are derived by

point-attaching process.

4 An extremal case

The investigation of the case where each minimal fault-tolerant basis of a primary subgraph is also
of minimum cardinality, that is, when fdim(G;) = fdim™*(G;) for each G; were done in this section.

Let F(G;) denote the collection of all FTB of G; and let

max {|F NAt(G;)|}; At(G;) is not a resolving set of G,
92, — ) FeF(Gy)

fdim(G;); otherwise.
Corollary 1. Let G is formed by the point-attaching process over {G; : i € [k]}, k > 3, which
satisfy the conditions of Theorem 8. If also At(G;) # V(G;) and fdim(G;) = fdim™*(G;), i € [k],
then
k
fdim(G) = > (fdim(G;) — ;).
i=1

Proof. By the assumption, for any G; we have fdim(G;) = fdim™*(G;). Note now that the identity
fdim*(G;) = fdim(G;) — 0; follows by the definition 0; = maxpeg(q,) |[F N At(G;)|, because for
any attaching fault-tolerant resolving set of G;, the remaining vertices must necessarily be chosen
from V(G;) \ At(G;), and their number is therefore fdim(G;) — 6;. Hence, the result follows from
Theorem 3. U

Consider the graph with five primary subgraphs from Figure 6, where At(G1) = {a1}, At(G2) =
{a1,a2,a3}, At(G3) = {az}, At(G4) = {as,as}, and At(G5) = {a4}. Using Corollary 1 we get
fdim(G) = (fdim(G1) — 1) + (fdim(G2) — 4) + (fdim(Gs) — 1) + (fdim(G4) — 1) + (fdim(G5) — 1) =
3+0+2+2+4=11

It is interesting to see that block graph can be derived by point-attaching process on a collection
of complete graphs. Recalling that fdim(K,,) = n = fdim*(K,,), we get the remark as a special case

of Corollary 1, which is as follows.

Remark. If G is a block graph formed by the point-attaching process over {K,, : i € [k]|}, where
k>3 andr; > 3. If At(K,,) N At(K,,) =0 for any primary end-subgraphs K, and K., then,

fim(G) = > (1 — | At(K,,))).

i1€[k]
| A6(Gy)|<r;—1

11



Figure 6: A graph G and its primary subgraphs G; & K4, Go = K3, (G3 being the paw graph,
G4 = 08, and G5 = K5.

5 Rooted products

In this section, we explore a rooted product of graphs constructed through point-attaching.

A rooted graph is the one with a designated vertex that is uniquely vertex labeled to distinguish
it from the others. This distinguished vertex is referred to as the root of the graph. Let G be a
vertex labeled graph of order n, and let H = {H; : i € [n]} be a collection of rooted graphs. The
rooted product graph denoted by G[H] is formed by identifying the root of each H; with the i*"
vertex of G as defined in [44]. It is evident that any rooted product graph G[H] can be viewed as

a graph derived by point-attaching process. Using Theorem 3, we derive the following result.

Corollary 2. Let G of order n > 2, and let H = {H; : i € [n]} be a collection of rooted graphs,
each satisfying C2, with roots vy, ..., v,, respectively. Then
fdim(G[H]) = > fdim(H;) + > (fdim(H;) — 1),
H;eHy Hjeﬁfg

where H; € Hy if v; is not part of any FTB of H;, and H; € Hy otherwise.

Next, we examine the case where the family H consists of graphs that are vertex-transitive. Let
Aut(H) denote the automorphism group of a graph H. For any two vertices 1,22 € V(H) and
any automorphism f € Aut(H), the distance between the vertices is preserved. Consequently, if F
isa FTB of H and f € Aut(H), then the image of the basis under the automorphism, f(F), is also
a FTB of H. Thus, each vertex of H must belong to some FTB. The next remark is the direct

consequence of Corollary 1.

Remark. Let H = {H; : i € [n]} be a collection of vertex-transitive graphs of order at least 3, and

G of order at least 2, then

fdim(G[H]) = > _ (fdim(H;) — 1).

i=1

12



Further, if H ={K,, : i € [n]}, we have

n

fdim(G[3()) = > (r; — 1),

i=1
and if H = {C,, : i € [n]}, then
fdim(G[H]) =2 - n.

A special case of rooted product graphs arises when the family H consists of n isomorphic rooted
graphs. Let V(G) = {g; : i € [n]}, and let V(H) = {h; : i € [n']}. Declare the vertex h = hy to be
the root of H. The rooted product G o, H has the vertex set

V(Gop H) =V(G)x V(H) = {(gis hj) : i €[n],jen]},
and the edge set
E(Gop H) = {(gi,h) (g, h) : gigs € E(G)} U LnJ {(gis hj)(gishjr) = hjhj € E(H)} .
i=1
The following result is a special case of Corollary 1.
Proposition 6. If H is not isomorphic to a path and v € V(H), then the following hold.
(i) If v is not a part of any FTB of H, then for any G of order n,

fdim(G o, H) = n - fdim(H).

(ii) If v belongs to a FTB of H, then for any G of order at least 2,

fdim(G o, H) = n - (fdim(H) — 1).

Proposition 6 raises the question of identifying the conditions of necessity and sufficiency for
v € V(H) to be part of a FTB of H. It is straightforward to verify that a v is in FTB of P iff v

is one of its leaf vertices. Building on this observation, Proposition 6 (i) yields:

Corollary 3. Let v € V(H) is not part of any FTB of H, and let G be a graph of order n. Then
fdim(G o, H) = 2n iff H = P and v is not a leaf.

In view of Proposition 6 and Corollary 3, the remaining case to be considered is when the second
factor of a rooted product graph is a path with the root as a leaf. For this specific case, the following

bounds are established.
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Proposition 7. If G is of order n > 2, and v is a leaf of a non-trivial path P, then
fdim(G) < fdim(G o, P) < n.

Proof. G appears as an induced subgraph of GG o, P. Since any FTRS of G o, P must in particular
resolve (G, the lower bound follows.

To establish the upper bound we claim that V(G) x {v'} is a FTRS of G o, P, v' # v denotes
the leaf of P. Let (2/,y'), (z,y) € V(G o, P). If z = 2/, then for any uy,us € V(G),

d((ur,v'), (z,y)) # d((ur,v"), (z,9) -
And if @ # 2/, then
d((z,v), (z,9)) < d((z,v), (@,y)) and d((2',"), (z,y)) > d((@',0"), (", ¢)) -
Hence V(G) x {v'} is indeed a FTRS for G o, P, hence fdim(G o, P) < n. O

To see that the upper bound of Proposition 7 is sharp, consider the example from Figure 7.

(a) (b) (c)

Figure 7: (a) Graph G (b) Graph H = P3 (c) G o, P3, where the blue vertices form a fault-tolerant

basis, and the black vertices are the attaching vertices.

6 Conclusion

In this paper, we have introduced an effective methodology for computing the fault-tolerant metric
dimension of graphs constructed through point-attaching techniques involving primary subgraphs.
By systematically analyzing the role of distance relations and connectivity among the attached

substructures, we established explicit formulas for determining FTMD of graphs having subgraphs
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that satisfying both the conditions (€;1) and (C3). This framework not only simplifies the compu-
tation for complex graphs but also enhances our understanding of how the structural properties of
the primary subgraphs influence the overall fault tolerance. Explicit formulas for determining the
FTMD of graphs whose subgraphs do not satisfy conditions (€C1) or (C2) are under investigations.

Furthermore, we extended our approach to specific graph products, including the rooted product,
by expressing their fault-tolerant metric dimensions in terms of the fault-tolerant metric dimensions
of their component subgraphs. This generalization highlights the versatility and applicability of our
method across various graph constructions.

The results presented contribute significantly to the study of fault-tolerant graph invariants and
offer a modular approach for analyzing large-scale networks. Such insights are especially relevant
for applications in network design, fault detection, and resilient communication systems, where

maintaining unique identifiability despite node failures is essential.
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