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Abstract

The metric dimension of a graph is the cardinality of a minimum resolving set, which is the

set of vertices such that the distance representations of every vertex with respect to that set are

unique. A fault-tolerant metric basis is a resolving set with a minimum cardinality that continues

to resolve the graph even after the removal of any one of its vertices. The fault-tolerant metric

dimension is the cardinality of such a fault-tolerant metric basis. In this article, we investigate

the fault-tolerant metric dimension of graphs formed through the point-attaching process of

primary subgraphs. This process involves connecting smaller subgraphs to specific vertices of

a base graph, resulting in a more complex structure. By analyzing the distance properties and

connectivity patterns, we establish explicit formulae for the fault-tolerant resolving sets of these

composite graphs. Furthermore, we extend our results to specific graph products, such as rooted

products. For these products, we determine the fault-tolerant metric dimension in terms of the

fault-tolerant metric dimension of the primary subgraphs. Our findings demonstrate how the

fault-tolerant dimension is influenced by the structural characteristics of the primary subgraphs

and the attaching vertices. These results have potential applications in network design, error

correction, and distributed systems, where robustness against vertex failures is crucial.

∗Corresponding author: drsavariprabhu@gmail.com
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1 Introduction

The metric dimension of a graph is a fundamental metric in the study of networks, identifying

the smallest set of landmark vertices needed to uniquely locate all other vertices using distance

measures [1, 2]. This concept underpins numerous applications including network verification, au-

tonomous navigation, and strategic resource placement. However, real-world networks often face

disruptions due to system faults, attacks, or environmental changes [3]. To enhance robustness, the

notion of the fault-tolerant metric dimension (FTMD) was developed [4], ensuring the uniqueness

of vertex identification persists even with the failure of any landmark node. This property enhances

the resilience [5], dependability [6], and robustness of networks [7], which is crucial for domains

like defense technology, sensor-based infrastructures, distributed systems, and intelligent transport

networks. Calculating FTMD is instrumental for constructing networks capable of withstanding

failures while preserving their operational integrity, facilitating continuous monitoring and swift sys-

tem adaptation during breakdowns [7]. The concept of FTMD was first explored in tree structures

where its connection to the traditional metric dimension was examined [4]. Later works delved into

fault-tolerant resolving sets [8]. Further investigations on characterization of graphs with respect

to maximum FTMD were erroneously done in [9], later it was corrected by Prabhu et al. in [10].

This studies extended to convex polytopes [11], grid graphs [12], and interconnection models like

honeycomb and hexagonal networks were analyzed [13]. Circulant graphs with degrees 4, 6, and

8 were thoroughly studied [14, 15]. The parameter FTMD has also been investigated for convex

polytopes [16], butterfly, Beneš, and extended honeycomb-based silicate networks [10].

Further analysis of well-known networks such as generalized fat-tree [17], biswapped network [18],

and fractal cubic network [19]. Algebraic graph models including zero-divisor graphs and their line

graphs were also studied [20], and annihilator graphs over various ring structures have also been

investigated [21]. More recent efforts have broadened the application of FTMD in specific nanotube

structures with constant FTMD [22]. Further work includes FTMD analysis on arithmetic graphs

[23], and barycentric subdivisions [24]. The other fault-tolerant variants reported in [25–30] are also

interesting to investigate.

2 Preliminaries

Throughout this paper we denote the simple, undirected, connected graph as G, and the metric

dG : V (G) × V (G) → N0 (d : V (G) × V (G) → N0 if G is understood) is defined to assign to each
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pair (x, y), the minimum number of edges required to connect them. Here, we denote {0, 1, 2, . . .}

as N0. Define r(v|X) = (d(v, x1), d(v, x2), . . . , d(v, xl)) as the representation of a vertex v ∈ G

concerning the ordered subset X = {x1, x2, . . . , xl}. The subset X is called a resolving set if, for

any vertices x, y ∈ V (G), the condition r(x|X) 6= r(y|X) holds true. Let the set X be classified as

a fault-tolerant resolving set (FTRS) if, for any element s ∈ X, the set X \{s} remains a resolving

set. A FTRS X is considered minimal if there is no other fault-tolerant resolving set X ′ such

that X ′ ⊂ X. A minimal FTRS that possesses the least number of elements is referred to as a

fault-tolerant basis (FTB). The cardinality of a fault-tolerant basis is referred to as the FTMD of

the graph G, coined by fdim(G). A minimal FTRS with maximum cardinality is referred to as an

upper fault-tolerant basis. The cardinality of this upper FTB is termed the upper FTMD of G,

denoted as fdim+(G). The upper FTMD of some standard graphs are as follows.

• for n ≥ 2, fdim(Pn) = 2 < fdim+(Pn) = 3;

• for n ≥ 5, fdim(Cn) = fdim+(Cn) = 3;

• for t ≥ 3, fdim(K1,t) = fdim+(K1,t) = t;

• for n ≥ 3, fdim(Kn) = fdim+(Kn) = n.

Let G be a resulting graph formed by merging a collection of pairwise disjoint graphs G1, . . . , Gk,

k ≥ 2, through the following process. First, select two vertices one from G1 and the other from G2,

and identify them. Next, continue this process inductively: assume that the graphs G1, . . . , Gi have

already been included with i ∈ {2, 3, . . . k − 1}. Choose a vertex from the current graph (possibly

one of the previously identified vertices) and a vertex from Gi+1, then identify them. The resulting

graph G has a tree-like structure, with the graphs Gi serving as its building blocks (see Figure

1). We refer to this construction as point-attaching of G1, . . . , Gk, where the graphs Gi are called

the primary subgraphs of G [31]. Throughout this paper, the notation [k] denotes the index set

{1, 2, . . . , k}. Here we would like to emphasize that if each of the graphs Gi, i ∈ [k], is 2-connected,

then the graphs Gi are precisely the blocks of the graph constructed in the described way, see Figure

1 again.

A vertex a ∈ V (G) is said to be an attachment vertex of G, if V (Gi) ∩ V (Gj) = {a}, for some i

and j. The collection of all such vertices of G is denoted by At(G), At(Gi) = At(G) ∩ V (Gi). Note

that, V (Gi) ∩ V (Gj) = At(Gi) ∩At(Gj) and E(Gi) ∩E(Gj) = ∅, for any i 6= j and 1 ≤ i, j ≤ k.

The utility of primary subgraphs, which were introduced for the first time in [31], has been

demonstrated across various graph parameters. Topological indices like the Hosoya polynomial [31],
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Figure 1: Graph G with attaching vertices

atom-bond connectivity [32], Graovac-Ghorbani index [32], and elliptic Sombor index [33], have

been efficiently computed via this approach. Additionally, parameters such as the total domina-

tion polynomial [34], distinguishing number and distinguishing index [35], and strong domination

number [36] have all seen computational benefits from subgraph decomposition. Metric-based pa-

rameters in particular have shown promising results through this strategy. Certain metric dimension

parameters have been successfully determined using primary subgraph frameworks [37,38], reducing

computational demands.

It is interesting to note that the Cactus graphs [39], rooted products of graphs [40], block

graphs [41], corona products of graphs [42] are some few prominent examples of graphs formed by

point-attaching process.

We now give a couple of basic properties of graphs formed by point-attaching. For this sake

recall that a subgraph H of a graph G is isometric, if for every two vertices u, v ∈ V (H) we have

dH(u, v) = dG(u, v), and that H is convex if every shortest u, v-path from G lies completely in H.

Clearly, every convex subgraph is isometric (but not necessarily the other way around).

Lemma 1. If G is a graph formed by point-attaching G1, . . . , Gk, k ≥ 1, then the following properties

hold.

(i) Gi, i ∈ [k], is a convex subgraph of G.

(ii) If u ∈ V (Gi) and v ∈ V (Gj), where i 6= j, then there exist attachment vertices xi ∈ V (Gi)

and xj ∈ V (Gj), such that every shortest u, v-path contains xi and xj.

Proof. (i) Let u and v be arbitrary vertices from some primary subgraph Gi, where i ∈ [k]. Consider

an arbitrary shortest u, v-path P in G. If P contains no attachment vertex, then P clearly lies
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completely in Gi. Assume next that P contains some attachment vertex x and suppose that x has

a neighbor y /∈ V (Gi) on P , so that P contain vertices u, . . . , x, y, . . . , v in that order. Then by

the point-attaching procedure, P cannot re-enter Gi, that is, P is not a shortest u.v-path. This

contradiction proves that all the vertices of P belong to V (Gi) and we can conclude that Gi is a

convex subgraph of G.

(ii) Let u ∈ V (Gi) and v ∈ V (Gj), where i 6= j, and let P be an arbitrary shortest u, v-

path. Then by the (tree-like) point-attaching procedure, there exist a unique sequence of primary

subgraphs Gk1 , . . . , Gkr , r ≥ 1, such that P sequentially contains vertices from Gi, Gk1 , . . . , Gkr , Gj .

Then the claimed attachment vertex xi ∈ V (Gi) is the unique common vertex of Gi and Gk1 , and

the claimed attachment vertex xj ∈ V (Gj) is the unique common vertex of Gkr and Gj .

We add that in Lemma 1(ii), it is possible that xi = u, or that xj = v, or that xi = xj.

A primary end-subgraph is a primary subgraph Gi with exactly one attachment vertex, i.e.,

|At(Gi)| = 1. It is called a primary internal subgraph if it contains two or more attachment

vertices, i.e., |At(Gi)| ≥ 2.

In this paper, we present exact expressions for the FTMD of graphs formed through point-

attaching. We apply the main result to specific graph constructions, including the rooted product

and block graphs. An open neighborhood of a vertex v ∈ V (G) is denoted by NG(v), and its

eccentricity by ǫG(v). A graph G is said to be even graph [43] if, for every x ∈ V (G), there exist

an unique y ∈ V (G), such that they are diametrically opposite. The hypercubes and even cycles

are few examples of even graphs. Throughout the paper, definitions and concepts are introduced

as they become relevant.

3 Main results

To establish a foundation for our discussion, we first derive a some bound for the FTMD of G

formed by the point-attaching process. In this case, no specific rule governs the construction process

through point-attaching, making the analysis more intricate. Since these constructions rely on the

attachment process, they present additional challenges in determining their FTMD. To address this

complexity, we introduce an additional parameter that directly pertains to the FTMD of graphs

derived from primary subgraphs.

An attaching FTRS of Gi is a subset Fi ⊂ V (Gi) \ At(Gi) such that {Fi ∪ At(Gi)} \ {x} is a

resolving set of Gi for every x ∈ Fi. An attaching FTB of Gi is an attaching FTRS of minimum
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cardinality, and its size is called the attaching FTMD of Gi, denoted by fdim∗(Gi,At(Gi)). For a

given primary subgraph Gi, we will assume that its set At(Gi) is fixed, so in the following we may

simplify the notation fdim∗(Gi,At(Gi)) to fdim∗(Gi).

For example, if |At(Gi)| = 1, then fdim∗(Gi) ∈ {fdim(Gi), fdim(Gi)−1}. Consider next the case

Gi = Pn. Then fdim∗(Pn) = 2, if At(Pn) consists of a single vertex of degree 2, while in all the other

cases fdim∗(Pn) = 0. For the cycle graph Cn, the value of fdim∗(Cn) is 2 when At(Cn) contains

exactly one vertex, or when it consists of exactly two antipodal vertices and the cycle has even length.

In all the other situations, fdim∗(Cn) = 0. Furthermore, fdim∗(Kn) = n−|At(Kn)|. For a complete

graph Kn, the attaching fault-tolerant metric dimension is given by fdim∗(Kn) = n − |At(Kn)|, if

|At(Kn)| < n− 1, and fdim∗(Kn) = 0 otherwise.

Proposition 2. If G is formed by the point-attaching process over {Gi : i ∈ [k]}, k ≥ 1, then

fdim(G) ≥
k

∑

i=1

fdim∗(Gi).

Proof. For i ∈ Nk, let Fi = F ∩ (V (Gi) \ At(Gi)), where F is a FTB of G. We claim that Fi is

an attaching FTRS of Gi. That is, we need to prove Fi ∪ At(Gi) \ {x} is a resolving set for each

x ∈ Fi.

Fix x ∈ Fi, and u, v ∈ V (Gi). Since F is the FTB of G, the vertices u and v are resolved in G

by some vertex y from F \ {x}. Assume first that y ∈ V (Gi). Then having in mind that Gi is an

isometric subgraph of G, vertices u and v are also resolved in Gi. Assume second that y ∈ V (Gj) for

some j 6= i. Then there exists a unique vertex a ∈ At(Gi) such that d(y, u) = d(y, a) + d(a, u) and

d(y, v) = dG(y, a) + d(a, v). Since d(y, u) 6= d(y, v), it follows that d(a, u) 6= d(a, x). This in turn

gives dGi
(u, a) 6= dGi

(x, a), hence u and v are also resolved in Gi with a vertex from Fi∪At(Gi)\{x}.

We have thus proved that Fi is an attaching FTRS of Gi and therefore |Fi| ≥ fdim∗(Gi). This

implies

fdim(G) = |F| ≥
k

∑

i=1

|Fi| ≥
k

∑

i=1

fdim∗(Gi)

and we are done.

By Proposition 2, for the graph illustrated in Figure 2, we obtain a lower bound of 4 for the fault-

tolerant metric dimension. However, the exact fault-tolerant metric dimension of this graph is 6,

showing that the bound is not tight in general. To address this gap, we introduce Condition 1 (C1).

Similarly, for the graph illustrated in Figure 3, we obtain a lower bound of 2 for the fault-tolerant

metric dimension, whereas the exact value is 4. This example highlights the necessity that each
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primary end subgraph must contain at least two fault-tolerant resolvers; therefore, we introduce

Condition 2 (C2).

�


��

��

��

Figure 2: A graph obtained by point attachment of Gi, i ∈ [4], where Gi
∼= C8, i ∈ [4].
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Figure 3: A graph obtained by point attachment of G1
∼= C8, G2

∼= K3 and G3
∼= P3.

Condition 1 (C1): For each a1 ∈ At(Gi) and v ∈ V (Gi) \ At(Gi), there exists a2 ∈ At(Gi) such

that dGi
(a1, a2) ≥ dGi

(v, a2).

Condition 2 (C2): At(Gi) = {a} and either Gi
∼= Pn and a is a vertex which is not a leaf, or Gi

is not a path.

Note that there are large class of connected graphs satifying condition C1. For example, this

holds when Gi meets one of the following.

1. V (Gi) = At(Gi).

2. Any two vertices in At(Gi) is not adjacent in Gi and diam(Gi) = 2.

3. EGi
(u1) = EGi

(u2) = dGi
(u1, u2) for any pair of distinct vertices u1, u2 ∈ At(Gi). In particular,

this includes all non-trivial complete graphs.

4. Gi is an even graph and if u ∈ At(Gi), then the vertex antipodal to u also belongs to At(Gi).

A graph G has fault-tolerant metric dimension 2 if and only if it is a path graph [4]. Moreover, a

set {v1, v2} forms a fault-tolerant metric basis for a path if and only if both v1 and v2 are leaves of
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the path. Therefore, if a graph Gi satisfies condition C2, then its fault-tolerant metric dimension

must be at least 2, that is, fdim∗(Gi) ≥ 2.

To demonstrate that the bound of Proposition 2 is tight, we impose restrictions on primary

subgraphs using conditions C1 and C2 as follows.

Theorem 3. If G is formed by the point-attaching process over {Gi : i ∈ [k]}, k ≥ 3, such that

each internal subgraph and end-subgraph respectively satisfies C1 and C2, and no two primary end-

subgraphs share a vertex, then

fdim(G) =

k
∑

i=1

fdim∗(Gi).

Proof. By Proposition 2, we have fdim(G) ≥
∑k

i=1 fdim
∗(Gi), hence it remains to show that

fdim(G) ≤
∑k

i=1 fdim
∗(Gi). Let Fi, i ∈ [k], be an attaching FTB of Gi. We will demonstrate

that the set F = ∪k
i=1Fi forms a FTRS for G. To do this, we have the following possibilities.

Case 1: x1, x2 ∈ V (Gi), x1 6= x2.

Subcase 1.1: Fi 6= ∅.

Since Fi is non-empty and an attaching fault-tolerant basis for Gi, there exists u1, u2 ∈ Fi such that

d(u1, x1) 6= d(u1, x2) and d(u2, x1) 6= d(u2, x2). If u1, u2 ∈ Fi, then the proof is clear. If u1 ∈ At(Gi),

then ∃ Gj 6= Gi, such that for each w ∈ Fj , d(w, u1) = min
v∈V (Gi)

{d(w, v)}. Since, Gj obeys C2, we

get Fj ≥ 2. Therefore,

d(w, x1) = d(w, u1) + d(u1, x1) 6= d(x2, u1) + d(u1, w) = d(x2, w).

Subcase: 1.2: Fi = ∅.

Since At(Gi) is a resolving set for Gi, for any two vertices of x1, x2 ∈ V (Gi) there exist a ∈ At(Gi),

such that d(x1, a) 6= d(x2, a). This implies that there exists a Gj such that for each w ∈ Fj we have

d(w, a) = min
v∈V (Gi)

{d(w, v)}. Now, |Fj | ≥ 2 due to Gj satisfying C2. Hence, for any w ∈ Fj,

d(x1, w) = d(x1, a) + d(a,w1) 6= d(x2, a) + d(a,w) = d(x2, w).

Case 2: x1 ∈ V (Gi), x2 ∈ V (Gj), Gi 6= Gj .

Let a1 ∈ At(Gi) and a2 ∈ At(Gj), such that d(x1, x2) = d(x1, a1) + d(a1, a2) + d(a2, x2). Note that

a1 = a2, whenever At(Gi) ∩ At(Gj) 6= ∅. If x2 = a2 = a1 or x1 = a1 = a2, then the discussion is

similar to Case 1. Hence, in the rest we may assume that x2 6= a1 and x1 6= a2. Subcase 2.1:

|At(Gi)| ≥ 2 or |At(Gj)| ≥ 2.
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Let |At(Gi)| > 1. As Gi obeys C1, ∃ c ∈ At(Gi) \ {a1}, such that dG(a1, c) ≥ dG(x1, c). Assume

Gℓ 6=i, with |At(Gℓ 6=i)| = 1, s.t. for every t ∈ Fℓ, d(t, c) = minv∈V (Gi){d(t, v)}, (Fℓ ≥ 2, as Gℓ obeys

C2). Then for every t1, t2 ∈ Fℓ,

d(x1, t1) = d(c, x1) + d(c, t1) ≤ d(c, a1) + d(c, t1)

< d(x2, a1) + d(c, a1) + d(c, t1) = d(x2, t1), and

d(x1, t2) = d(c, x1) + d(c, t2) ≤ d(c, a1) + d(c, t2)

< d(x2, a1) + d(c, a1) + d(c, t2) = d(x2, t2).

Subcase 2.2: |At(Gi)| = 1 = |At(Gj)|.

Since, Gi and Gj obeys C2, |Fi| ≥ 2 and |Fj| ≥ 2. Hence, let p1, p2 ∈ Fi and q1, q2 ∈ Fj. If there

exist two vertices in {p1, q1, p2, q2} that distinguish x1 and x2, then we are done. Suppose that there

do not exist at least two vertices in {p1, q1, p2, q2}, s.t. they individually distinguishes the vertices

x1 and x2. We may suppose w.l.o.g. that in this case we have:

d(x1, p1) = d(x2, a2) + d(a2, a1) + d(a1, p1) = d(x2, p1), (1)

d(x1, p2) = d(x2, a2) + d(a2, a1) + d(a1, p2) = d(x2, p2), (2)

d(x2, q1) = d(x1, a1) + d(a1, a2) + d(a2, q1) = d(x1, q1). (3)

Observe that since At(Gi) ∩At(Gj) = ∅, we have a1 6= a2. Moreover,

d(x1, p1) ≤ d(p1, a1) + d(a1, x1), (4)

d(x1, p2) ≤ d(p2, a1) + d(a1, x1), (5)

d(x2, q1) ≤ d(q1, a2) + d(a2, x2). (6)

From (1), (2), (4) and (5) we obtain

d(a1, a2) + d(a2, x2) ≤ d(x1, a1). (7)

From (3) & (6)

d(x1, a1) + d(a2, a1) ≤ d(x2, a2). (8)

Adding (7) & (8), we get

2 · d(a1, a2) ≤ 0,

which is a contradiction. Hence, fdim(G) ≤
∑k

i=1 fdim
∗(Gi).
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Let us now illustrate Theorem 3 with two examples, the first of which is a block graph.

Example 4. The graph G illustrated in Figure 4 satisfies conditions (C1) and (C2). Hence, Theo-

rem 3 can be applied to compute the fault-tolerant metric dimension of G using the attaching metric

dimensions of its primary subgraphs as follows:

fdim(G) = fdim∗(G1) + fdim∗(G2) + fdim∗(G3) + fdim∗(G4) + fdim∗(G5)

= 2 + 4 + 3 + 2 + 4

= 15.

�� ��

��

��

��

Figure 4: A block graph G constructed by point attaching G1
∼= K3, G2

∼= K6, G3
∼= K4, G4

∼= K3,

and G5
∼= K5.

Example 5. The graph G illustrated in Figure 5 satisfies conditions (C1) and (C2). Hence, Theo-

rem 3 can be applied to compute the fault-tolerant metric dimension of G using the attaching metric

dimensions of its primary subgraphs as follows:

fdim(G) = fdim∗(G1) + fdim∗(G2) + fdim∗(G3) + fdim∗(G4) + fdim∗(G5)

= 2 + 4 + 0 + 2 + 2

= 10.

� 

�!

"#

"$

%&

Figure 5: A graph G constructed by point attaching G1
∼= C7, G2

∼= K6, G3
∼= P3, G4

∼= C4, and

G5
∼= K3.
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The following sections focus on deriving several consequences of Theorem 3. Specifically, we

present closed-form expressions for the FTMD of certain collection of graphs which are derived by

point-attaching process.

4 An extremal case

The investigation of the case where each minimal fault-tolerant basis of a primary subgraph is also

of minimum cardinality, that is, when fdim(Gi) = fdim+(Gi) for each Gi were done in this section.

Let F(Gi) denote the collection of all FTB of Gi and let

θi =















max
F∈F(Gi)

{|F ∩At(Gi)|}; At(Gi) is not a resolving set of Gi,

fdim(Gi); otherwise.

Corollary 1. Let G is formed by the point-attaching process over {Gi : i ∈ [k]}, k ≥ 3, which

satisfy the conditions of Theorem 3. If also At(Gi) 6= V (Gi) and fdim(Gi) = fdim+(Gi), i ∈ [k],

then

fdim(G) =

k
∑

i=1

(fdim(Gi)− θi).

Proof. By the assumption, for any Gi we have fdim(Gi) = fdim+(Gi). Note now that the identity

fdim∗(Gi) = fdim(Gi) − θi follows by the definition θi = maxF∈F(Gi) |F ∩ At(Gi)|, because for

any attaching fault-tolerant resolving set of Gi, the remaining vertices must necessarily be chosen

from V (Gi) \ At(Gi), and their number is therefore fdim(Gi) − θi. Hence, the result follows from

Theorem 3.

Consider the graph with five primary subgraphs from Figure 6, where At(G1) = {a1}, At(G2) =

{a1, a2, a3}, At(G3) = {a2}, At(G4) = {a3, a4}, and At(G5) = {a4}. Using Corollary 1 we get

fdim(G) = (fdim(G1)− 1) + (fdim(G2)− 4) + (fdim(G3)− 1) + (fdim(G4)− 1) + (fdim(G5)− 1) =

3 + 0 + 2 + 2 + 4 = 11.

It is interesting to see that block graph can be derived by point-attaching process on a collection

of complete graphs. Recalling that fdim(Kn) = n = fdim+(Kn), we get the remark as a special case

of Corollary 1, which is as follows.

Remark. If G is a block graph formed by the point-attaching process over {Kri : i ∈ [k]}, where

k ≥ 3 and ri ≥ 3. If At(Kri) ∩At(Krj ) = ∅ for any primary end-subgraphs Kri and Krj , then,

fdim(G) =
∑

i∈[k]
|At(Gi)|<ri−1

(ri − |At(Kri)|).
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Figure 6: A graph G and its primary subgraphs G1
∼= K4, G2

∼= K3, G3 being the paw graph,

G4
∼= C8, and G5

∼= K5.

5 Rooted products

In this section, we explore a rooted product of graphs constructed through point-attaching.

A rooted graph is the one with a designated vertex that is uniquely vertex labeled to distinguish

it from the others. This distinguished vertex is referred to as the root of the graph. Let G be a

vertex labeled graph of order n, and let H = {Hi : i ∈ [n]} be a collection of rooted graphs. The

rooted product graph denoted by G[H] is formed by identifying the root of each Hi with the ith

vertex of G as defined in [44]. It is evident that any rooted product graph G[H] can be viewed as

a graph derived by point-attaching process. Using Theorem 3, we derive the following result.

Corollary 2. Let G of order n ≥ 2, and let H = {Hi : i ∈ [n]} be a collection of rooted graphs,

each satisfying C2, with roots v1, . . . , vn, respectively. Then

fdim(G[H]) =
∑

Hi∈H1

fdim(Hi) +
∑

Hj∈H2

(fdim(Hj)− 1),

where Hi ∈ H1 if vi is not part of any FTB of Hi, and Hj ∈ H2 otherwise.

Next, we examine the case where the family H consists of graphs that are vertex-transitive. Let

Aut(H) denote the automorphism group of a graph H. For any two vertices x1, x2 ∈ V (H) and

any automorphism f ∈ Aut(H), the distance between the vertices is preserved. Consequently, if F

is a FTB of H and f ∈ Aut(H), then the image of the basis under the automorphism, f(F), is also

a FTB of H. Thus, each vertex of H must belong to some FTB. The next remark is the direct

consequence of Corollary 1.

Remark. Let H = {Hi : i ∈ [n]} be a collection of vertex-transitive graphs of order at least 3, and

G of order at least 2, then

fdim(G[H]) =

n
∑

i=1

(

fdim(Hi)− 1
)

.
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Further, if H = {Kri : i ∈ [n]}, we have

fdim(G[H]) =

n
∑

i=1

(ri − 1),

and if H = {Cri : i ∈ [n]}, then

fdim(G[H]) = 2 · n.

A special case of rooted product graphs arises when the family H consists of n isomorphic rooted

graphs. Let V (G) = {gi : i ∈ [n]}, and let V (H) = {hi : i ∈ [n′]}. Declare the vertex h = h1 to be

the root of H. The rooted product G ◦h H has the vertex set

V (G ◦h H) = V (G)× V (H) =
{

(gi, hj) : i ∈ [n], j ∈ [n′]
}

,

and the edge set

E(G ◦h H) =
{

(gi, h)(gi′ , h) : gigi′ ∈ E(G)
}

∪
n
⋃

i=1

{

(gi, hj)(gi, hj′) : hjhj′ ∈ E(H)
}

.

The following result is a special case of Corollary 1.

Proposition 6. If H is not isomorphic to a path and v ∈ V (H), then the following hold.

(i) If v is not a part of any FTB of H, then for any G of order n,

fdim(G ◦v H) = n · fdim(H).

(ii) If v belongs to a FTB of H, then for any G of order at least 2,

fdim(G ◦v H) = n · (fdim(H)− 1).

Proposition 6 raises the question of identifying the conditions of necessity and sufficiency for

v ∈ V (H) to be part of a FTB of H. It is straightforward to verify that a v is in FTB of P iff v

is one of its leaf vertices. Building on this observation, Proposition 6 (i) yields:

Corollary 3. Let v ∈ V (H) is not part of any FTB of H, and let G be a graph of order n. Then

fdim(G ◦v H) = 2n iff H ∼= P and v is not a leaf.

In view of Proposition 6 and Corollary 3, the remaining case to be considered is when the second

factor of a rooted product graph is a path with the root as a leaf. For this specific case, the following

bounds are established.

13



Proposition 7. If G is of order n ≥ 2, and v is a leaf of a non-trivial path P , then

fdim(G) ≤ fdim(G ◦v P ) ≤ n.

Proof. G appears as an induced subgraph of G ◦v P . Since any FTRS of G ◦v P must in particular

resolve G, the lower bound follows.

To establish the upper bound we claim that V (G) × {v′} is a FTRS of G ◦v P , v′ 6= v denotes

the leaf of P . Let (x′, y′), (x, y) ∈ V (G ◦v P ). If x = x′, then for any u1, u2 ∈ V (G),

d
(

(u1, v
′), (x, y)

)

6= d
(

(u1, v
′), (x, y′)

)

.

And if x 6= x′, then

d
(

(x, v′), (x, y)
)

< d
(

(x, v′), (x′, y′)
)

and d
(

(x′, v′), (x, y)
)

> d
(

(x′, v′), (x′, y′)
)

.

Hence V (G)× {v′} is indeed a FTRS for G ◦v P , hence fdim(G ◦v P ) ≤ n.

To see that the upper bound of Proposition 7 is sharp, consider the example from Figure 7.

(a) (b) (c)

Figure 7: (a) Graph G (b) Graph H = P3 (c) G ◦v P3, where the blue vertices form a fault-tolerant

basis, and the black vertices are the attaching vertices.

6 Conclusion

In this paper, we have introduced an effective methodology for computing the fault-tolerant metric

dimension of graphs constructed through point-attaching techniques involving primary subgraphs.

By systematically analyzing the role of distance relations and connectivity among the attached

substructures, we established explicit formulas for determining FTMD of graphs having subgraphs

14



that satisfying both the conditions (C1) and (C2). This framework not only simplifies the compu-

tation for complex graphs but also enhances our understanding of how the structural properties of

the primary subgraphs influence the overall fault tolerance. Explicit formulas for determining the

FTMD of graphs whose subgraphs do not satisfy conditions (C1) or (C2) are under investigations.

Furthermore, we extended our approach to specific graph products, including the rooted product,

by expressing their fault-tolerant metric dimensions in terms of the fault-tolerant metric dimensions

of their component subgraphs. This generalization highlights the versatility and applicability of our

method across various graph constructions.

The results presented contribute significantly to the study of fault-tolerant graph invariants and

offer a modular approach for analyzing large-scale networks. Such insights are especially relevant

for applications in network design, fault detection, and resilient communication systems, where

maintaining unique identifiability despite node failures is essential.
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[19] M. Arulperumjothi, S. Klavžar, S. Prabhu, Redefining fractal cubic networks and determining

their metric dimension and fault-tolerant metric dimension, Applied Mathematics and Com-

putation 452 (2023) 128037.

[20] S. Sharma, V.K. Bhat, Fault-tolerant metric dimension of zero-divisor graphs of commutative

rings, AKCE International Journal of Graphs and Combinatorics 19(1) (2022) 24–30.

[21] M.S. Akhila, K. Manilal, Fault-tolerant metric dimension of annihilator graphs of commutative

rings, Journal of Algebraic Systems 13(1) (2025)135–150.

[22] Z. Hussain, M.M. Munir, Fault-tolerance in metric dimension of boron nanotubes lattices,

Frontiers in Computational Neuroscience 16 (2023) 1023585.

[23] M. Sardar, K. Rasheed, M. Cancan, M. Farahani, M. Alaeiyan, S. Patil, Fault-tolerant metric

dimension of arithmetic graphs, Journal of Combinatorial Mathematics and Combinatorial

Computing 122 (2024) 13–32.
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