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1 Introduction

The concept of a general position set was introduced into graph theory independently
in two papers, namely in [4,13], but in the case of hypercubes, implicitly also much
earlier in [10]. It was the article [13] that has stimulated a great deal of interest in
this concept. The survey [3] provides a systematic review of the results, in addition
we point to the following selected recent publications [2,5,8,9,11,12,15-17,20].

For a general position set, that is, a set in which no three vertices lie on a common
shortest path, one requires that the vertices of the set are in general position. This
requirement can be generalized by requiring that the vertices of some set lie in
general position with respect to the selected set. Using this idea, and considering
the natural selections for sets to be considered, in [18] a variety of general position
sets was defined as follows. First, for a given graph G = (V(G), E(G)) and a set
of vertices Z C V(G), two vertices z,y € V(G) are said to be Z-positionable if any
shortest z,y-path intersects Z at most in z and y, that is, no inner vertex of the
path lies in Z. Second, if Z = V(G) \ Z, then the set Z is

(i) a general position set, if every u,v € Z are Z-positionable;
(i) a total general position set, if every u,v € V(G) are Z-positionable;

(iii) an outer general position set, if every u,v € Z are Z-positionable, and every
u € Z,v € Z are Z-positionable; and

(iv) a dual general position set, if every u,v € Z are Z-positionable, and every
u,v € Z are Z-positionable.

Typically, we are interested in the cardinalities of largest such sets, which are respec-
tively denoted by gp(G), gp,(G), gp,(G), and gpy(G), and called the general position
number, the total general position number, the outer general position number, and
the dual general position number of G, respectively. If 7 € {gp, gp;, €D,, &Pq}, then
aset Z is a 7-set if it has the corresponding property and |Z| = 7(G). Note that, by
definition, gp,(G) < gp,(G) < gp(G) and gp,(G) < gpa(G) < gp(G). After being
introduced in [18], this variety has been also investigated on strong and lexicographic
products of graphs [6].

The paper [7] investigates how removing a vertex or an edge affects the general
position number of a graph. It is proved that gp(G—z) < 2gp(G) holds for any vertex
x of a connected graph G and that if x lies in some gp-set of G, then gp(G) — 1 <
gp(G — ). On the other hand, gp(G — ) can be much larger than gp(G) also when
G — z is connected. For the edge removal it is proved that gp(G)/2 < gp(G —e) <
2gp(@G) holds for any edge e of G. In this paper we continue this line of research



by investigating how removing a vertex or an edge affects the other three general
position numbers.

In the next section we give definitions and recall results needed in the rest of
the paper. In Section 3 we consider the vertex removal. For the total general
position sets we prove that if = is not a cut vertex, then gp,(G) — 1 < gp, (G — ) <
gp(G) + degq(x). Section 3.2 addresses the outer general position number of a
graph when a vertex is removed and shows that it cannot be bounded in terms of
the outer general position number of the original graph. On the other hand, if x
lies in some gp -set, then gp (G) — 1 < gp, (G — x). Moreover, if x is a simplicial
vertex, then gp (G — z) < gp,(G) + degq(z) — 1. Section 3.3 then deals with the
dual general position number. Similarly, as for the outer general position number,
gp4(G — x) can be arbitrarily larger/smaller than gp4(G). On the other hand, if
is not a cut vertex and lies in some gpy-set of G, then gpy(G) — 1 < gpy(G — ). In
the final section we consider the edge removal operation. For the total and the outer
general position number we prove sharp lower and upper bounds, while for the dual
general position number we show that the difference gpy(G) — gpa(G — €) can be
arbitrarily large. All bounds proved in this paper are demonstrated to be sharp.

2 Preliminaries

We consider simple and connected graphs G = (V(G), E(G)). For a positive integer
k, the set {1,...,k} is denoted by [k].

Let u € V(G). Then Ng(u) denotes the set of neighbors of v in G and Ng[u] =
Neg(u)U{u}. The degree degy(u) of u is degs(u) = |[Ng(u)|. If X C V(G), then the
subgraph of G induced by X is denoted by G[X]. The graph G — u is obtained by
deleting u and all incident edges from G, that is, G—u is the subgraph G[V (G)\ {u}].
For an edge e € F(G), the graph G — e is obtained by deleting the edge e from G.
A vertex u of G is simplicial if Ng(u) induces a complete subgraph. The set of
all simplicial vertices of G will be denoted by S(G) and the cardinality of S(G) by
s(G). Moreover, w(G) and a(G) stand for the clique number and the independence
number of G.

The distance dg(u,v) between vertices u and v of G is the number of edges
on a shortest u,v-path. A set X C V(G) is convez if for any vertices u,v € X,
any shortest u,v-path contains only vertices from X. By abuse of language, we
will also say that a subgraph H of G is convex if V(H) is convex. The vertex u
of G is mazimally distant from a vertex v € V(G) if every w € Ng(u) satisfies
dg(v,w) < dg(u,v). If u is maximally distant from v, and v is also maximally
distant from w, then u and v are mutually mazximally distant, MMD for short. Note



that true twins, that is, vertices u and v with Ng[u] = Ng[v], are MMD. The strong
resolving graph G'sg of G has V(@) as the vertex set, two vertices being adjacent in
Gisr if they are MMD in G. This concept was introduced in [14] for the purpose of
better understanding the strong metric dimension of graphs.

The first known result which we need later on describes general position sets in an
arbitrary graph. To state it, some more definitions are required. If P = { Xy, ..., X;}
is a partition of X C V(G), then P is distance-constant if for any i,j € [t], i # j,
there exists a constant p;;, such that dg(x,y) = p;; for every z € X;, y € Xj.
If so, we set dq(X;, X;) = pi;. A distance-constant partition P is in-transitive if
Pik 7 Pij + Djx holds for i, 7,k € [t].

Theorem 2.1 [1, Theorem 3.1] Let G be a graph. Then X C V(G) is a general

position set if and only if the components of G| X| are complete subgraphs, the vertices
of which form an in-transitive, distance-constant partition of X.

The following theorem is the most important for us since it contains characteri-
zations of the three variants of general position sets. They were respectively proved
in [18, Theorems 2.1, 2.3, 3.1].

Theorem 2.2 [f G is a graph and X C V(G), then the following hold.
(i) X is a total general position set of G if and only if X C S(G). Consequently,
gpy(G) = s(G).
(i) If |X| > 2, then X is an outer general position set of G if and only if each
pair of vertices from X is MMD. Consequently, gp,(G) = w(Gsr).

(1ii) If X is a general position set of G, then X is a dual general position set if and
only if G — X is convex in G.

We conclude the preliminaries with the following straightforward, but very useful
observation.

Lemma 2.3 If G is a graph and T € {gp, gD,, 8Pq &D: }, then 7(G) > s(G). More-
over, the equality holds if G is a block graph.

3 Vertex removal

Before we turn our attention to vertex-deleted subgraphs in specific variants of
general position sets, we consider the following example which is useful to understand
each of the three invariants investigated. Let G, n > 2, be the graph, and z its
vertex as shown in Fig. 1.
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Figure 1: Graph G,, with |X;| = |X3| = n.

Proposition 3.1 Ifn > 2 and 7 € {gp,, 8Pq, &D: }, then
7(Gy) =2n and 7(G, —z)=4n.

Proof. Since s(G,,) = 2n, Theorem 2.2(i) yields gp,(G,) = 2n. Observe that two
vertices of GG,, are MMD if and only if they are leaves, or they both belong to Xj,
or they both belong to X,. Hence the strong resolving graph (G),)sg has three
non-trivial components, one isomorphic to K5,, and the other two each isomorphic
to K,. Hence gp,(G,) = 2n by Theorem 2.2(ii). By Lemma 2.3 we also have
gp4(Gr) > 2n. To prove the reverse inequality, we will apply Theorem 2.2(iii). For
this sake we first get by a case analysis that gp(G,) = 2n + 1. By symmetry, the
gp-sets to be considered are X; UXo,U{v}, XoUY U{u}, XoUY U{v}, Xo UY U{w},
X,UY U{u}, X;UY U{v}, and X;UY U{w}. If Z is any of these sets, then G,, — Z
is not connected, hence clearly not convex. Theorem 2.2(iii) thus implies that none
of these sets is a dual general position set. It follows that gp,(G,,) < 2n and we can
conclude that gpy(G,,) = 2n.
Since the graph G,, — x is a tree, Lemma 2.3 gives

gpt(Gn - I) = gpo(Gn - :E) = gpd(Gn - l") = S(Gn - :L") =d4n,

and we are done. O

3.1 Total general position sets

In this subsection we show that the total general position set of G—x can be bounded
below and above when x is not a cut vertex of a graph G.
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Theorem 3.2 If z is not a cut vertex of a graph G, then

gp(G) — 1 < gp (G — 1) < gp(G) + degg(7) .

Moreover, if x is a simplicial vertex, then

2p(G — z) < gp,(G) 4 degg(z) — 1.

In addition, all three bounds are sharp.

Proof. The bounds clearly hold if G is complete, hence assume in the rest of the
proof that G is not complete.

Let X be a gp,-set of G. Then X = S(G) by Theorem 2.2(i).

To prove the lower bound, it suffices to show that X \ {z} C S(G —x). Suppose
to the contrary that y € X \ {z} is not simplicial in G — z. Then there exist
z,w € Ng_.(y) such that z and w are not adjacent in G — x. The vertices z and w
are also not adjacent in G, but then y is not simplicial in G, a contradiction. Hence
X\{z} C S(G—=z) and by applying Theorem 2.2(i) we get gp,(G)—1 < | X \{z}| <
gp.(G — x). This proves the lower bound.

For the upper bound observe that if y € V(G) \ Ng[z] is a simplicial vertex of
G — x, then y is a simplicial vertex of G. Using Theorem 2.2(i) once more we can
argue as follows:

gpi (G — 1) = 5(G — ) < 5(G) + degg () = gpy(G) + degg(z) .

This proves the upper bound in the general case. Assume now that x is a simplicial
vertex. Since G is not complete, at least one vertex in Ng(z) is not simplicial in
G — x, hence

gpi(G — 1) = 5(G —x) < 5(G) + (degg(x) — 1) = gpy(G) + degg(x) — 1.

To show that the lower bound is sharp, consider the stars K ,,n > 3. Clearly,
s(Kiy,) = n and then s(K;, —z) =n — 1 for any leaf x of K;,. To demonstrate
that the upper bound is tight, consider complete bipartite graphs Ky ,, n > 3. If x
is a vertex of Ks,, of degree n, then we have gp,(Ks,) = 0 and gp,(Ky, —z) =n =
gpy(Kon) + degg, (). Finally, to show that the upper bound is sharp in the case
when x is a simplicial vertex, consider the edge deleted complete graph K, — e and
let z; and x be the vertices of K,, — e of degree n — 2. Then S(K,, —¢) = {z,y},
so that gp, (K, —e) = 2. On the other hand, (K, —e) — 2y = K,_;. Hence
gpi((Kn —€) —x1) =n—1=gp (K, —e) +degg, (1) — 1. O



Note that in view of Theorem 2.2(i), we can rephrase Theorem 3.2 by saying
that if x is not a cut vertex of a graph G, then

s(G)—1<s(G—1z) <s(G)+degs(x),
and if z is a simplicial vertex, then

s(G—12) < s(G) +degg(z) — 1.

3.2 Outer general position sets

In this subsection we show that anything can happen with outer general position
sets when a vertex of a graph G is removed.

To demonstrate that gp,(G — x) can be arbitrarily larger than gp,(G), consider
the graph G,,, n > 2, from Fig. 1. By Proposition 3.1, gp,(G,) = 2n and gp (G, —
x) = 4n.

To show that gp, (G —x) can also be arbitrarily smaller than gp,(G), consider the
fan graph F,,, n > 3, of order n+ 1, which is obtained from P, and a vertex adjacent
to all the vertices of P,,. Let x be the vertex of F,, of degree n. In [6, Proposition 3.2]
it is proved that if G is a diameter 2 graph with no true twins, then gp (G) = o(G).
Since F,, —x = P,, we thus have

gpo(Fn) = [n/2] and gp,(F, —x) =2.

On the other hand, in the case when a vertex z lies in some gp -set, we can
bound gp, (G — x) from below as follows.

Theorem 3.3 If x is not a cut vertex and lies in some gp,-set of a graph G, then
gp,(G) — 1 < gp (G — x) and the bound is sharp.

Proof. Let X be a gp,-set of G such as x € X. Then |X| = gp,(G) and by
Theorem 2.2(ii), every pair of vertices in X are MMD in G.

To show the bound, it suffices to prove the assertion that X \ {z} is an outer
general position set of G — x. Given Theorem 2.2(ii) this is equivalent to proving
that every two vertices in X \ {z} are MMD in G — z. Suppose to the contrary that
there exist u,v € X\ {z} such that u and v are not MMD in G —z. By symmetry we
may assume that there exists ' € Ng_,(u) such that dg_.(v',v) = dg—.(u,v) + 1.
Since u and v are MMD in G, we have dg(u',v) < dg(u,v). This implies that x
lies on some shortest u/,v-path in G. But then v and z are not MMD in G, a
contradiction. This contradiction implies that every pair of vertices in X \ {z} are
MMD in G — z. We can conclude that gp, (G — z) > | X \ {z}| = gp,(G) — 1.

7



For sharpness of the bound, consider the stars K, n > 3. Then gp,(K1,) =n
and gp, (K1, — ) =n — 1 for any leaf x of K ,. O

By Theorem 3.3 we can thus bound gp, (G — z) from below when x is not a
cut vertex and lies in some gp-set of G. As a possible general upper bound on
gp, (G — x) we pose:

Conjecture 3.4 If z is not a cut vertex of a graph G, then
gpo(G - ZE’) < gpo(G) + degG<I> :

If Conjecture 3.4 holds true, then it is sharp as justified by Proposition 3.1. For
the case when z is a simplicial vertex, the conjecture holds true, and even more is
true:

Proposition 3.5 If x is a simplicial vertex of a graph G, then

8D (G — ) < gp,(G) + degg(z) — 1
and the bound is sharp.

Proof. Let u and v be arbitrary vertices of G—x. Since z is a simplicial vertex of G,
no shortest u, v-path in G contains x which in turn implies that a u, v-path is shortest
in G if and only if it is shortest in G — x. Consequently, if u,v € V(G)\ Ng[z], then
u,v are MMD in G if and only if they are MMD in G — z.

Let gp,(G) = k and let X be a largest set of pairwise MMD vertices of G. Note
that x € X. Let further Y be a largest set of pairwise MMD vertices of G —x. Then
by the above, |Y N (V(G) \ Nglz])| < k — 1. This in turn implies that

Y[ < (k=1)+ [Na(z)] = gpo(G) — 1 + degg(x),

which proves the bound.

Let Gy, k < "TH, be the graph obtained from K, and another vertex x which
is adjacent to k vertices of K,,. Then gp (Gnx) = max{n —k+ 1,k} =n —k + 1,
where the last equality holds because we have assumed that k£ < ”TH On the other
hand, G, — z = K, and hence gp,(G,x — ) = n. O



3.3 Dual general position sets

In this subsection we first show that gp (G — z) can be arbitrarily larger/smaller
than gp4(G). After that we prove that if z is not a cut vertex and lies in some gpy-set
of G, then gpy(G) —1 < gp4(G — z). We conclude the subsection by demonstrating
that for such a vertex z, the value gpy(G — x) cannot be bounded from above by
gpa(G).

Consider the fan graphs F,, (n > 4) defined in Subsection 3.2, where x denotes

the vertex of degree n. It was proved in [19, Corollary 2.9] that if n > 4, then

gp(Fy,) = L@J . Moreover, a gp-set of F, consists of the end-vertices of a largest

set of independent edges of the path P, in F,. By Theorem 2.2(iii) it is then
straightforward to check that every largest general position set of F), is a dual general

position set. Hence gp(F,,) = gpy(F,). Moreover, since gp(F,,) = {@J forn > 4,

and because F,, — x = P,, we have

2(n+1)

gpq(Fn) = { 3

J and gpy(F, —x)=2.

On the other hand, consider the family of graphs defined as follows. The wheel
W,, n > 4, is the graph of order n + 1 obtained from (), by adding one more vertex
and connecting it to all vertices of the cycle. The mushroom My, k > 4, is the graph
obtained from the disjoint union of Wy, 4 and K} by adding a matching between the
vertices of K} and k consecutive vertices of the (k4 4)-cycle of Wy, 4. See Fig. 2 for
M4.

Figure 2: The mushroom Mjy.



Proposition 3.6 If k > 4, then gpy(Mg) = k + 2 and gpy(My — x) = 0.
Proof. Let £ > 4, and set

V(M) ={wy, ..., Wgya,x,01,...,0},

where V(Wy14) = {wy,..., wris,x} with @ being the center of Wy 4, V(Kj) =
{v1,..., v}, and v;w; € E(My) for i € [k], see Fig. 2 again.

Let Y = V(Kj) U {wgy2, wrys3}. Then it follows from Theorem 2.1 that Y is
a general position set of M. Moreover, My — Y is convex, hence Theorem 2.2(iii)
implies that Y is a dual general position set of M. Thus gpy(My) > k + 2.

To prove that gpy(My) < k+ 2, suppose to the contrary that there exists a dual
general position set X of M}, with |X| > k+ 2. We first claim that = ¢ X by using
the argument that if x would belong to X, then G — X would not be convex. So
suppose that x € X. Then at least one of w; and w,; must belong to X, say w; € X.
Then wy ¢ X. Since w; € X, exactly one of wy and wyy4 lies in X. If wyyy € X,
then wy and wy are not X-positionable. And if wy € X, then w4 and w, are not
X-positionable. We analogously get a contradiction in the case when wy € X. We
can conclude that = ¢ X. We next claim that w; ¢ X for each i € [k]. Suppose
that w; € X for some i € [k]. Since = ¢ X, we get that v; € X because z,w;, v; is
the unique shortest x,v;-path. Further, exactly one of the neighbors of w; on the
(k 4+ 4)-cycle of Wy 4 lies in X. But this is not possible, as X is a general position
set.

From our assumption, we have | X N{wgy1, Wit2, Wris, Wrra}| > 3. fwg € X,
then wy,o € X because w, ¢ X. Otherwise, the vertices wy and wy,o are not
X-positionable. Since wy o lies on the shortest w1, wis-path, it follows that
wrrs € X and wiy € X. If wiyy € X, then we must have w; € X which is
not possible because we have proved that w; ¢ X for each i € [k]. This con-
tradiction implies that wgyq; ¢ X. Similarly, we get that w4y ¢ X. Therefore,
| X N{wgy1, Wer2, Wrys, wera}| < 2, which leads to | X| < k + 2, the final contradic-
tion. We can conclude that gpy (M) = k + 2.

We now prove that gpy (M —x) = 0. Let X be an arbitrary dual general position
set of M) — x. Then we first infer that w; ¢ X for each i € [k]. Indeed, if w; € X
for some i € [k], then exactly one of w;_1,w; 41 must belong to X, but this leads to
a contradiction that X is a dual general position set. Similarly we get that none of
Wi+, 7 € [4], belong to X. Finally, if some v; € X, then we get that all v;, i € [k]
belong to X, but then w; and w; are not X-positionable. We can conclude that

X =10. 0J

Proposition 3.6 shows that gp,(G — x) can be arbitrarily smaller than gp,(G).
Next, we show that gpy(G — x) can also be arbitrarily larger than gp,(G) by the

10



following example. Let T, k > 3, be a graph obtained from the disjoint union of
K o with the central vertex u and leaves vy, ..., vy, and an isolated vertex z, by
adding the edges zv;, i € [k].

Proposition 3.7 If k > 3, then gpy(Ty) = k and gpy(Ty — ) = 2k.

Proof. Since s(7}) = k, Lemma 2.3 gives gpy(T;) > k. To prove the reverse
inequality, consider an arbitrary gpy-set X of Tj. Suppose first that z € X. Then
v;,v; € X, where i, j € [k], is not possible since then v; and v; are not X-positionable.
Analogously we see that also v;, v; ¢ X, where ¢, j € [k], cannot happen. Since k > 3,
we can conclude that x ¢ X. By an analogous reason, u ¢ X. This in turn implies
that v; ¢ X for each i € [k]. Hence | X| < k, and then gpy(T) = k.

Since s(T}, — z) = 2k, Lemma 2.3 implies that gpy(7y — z) = 2k, and we are
done. O

We also have a result parallel to Theorem 3.3 for the dual general position number
in the following.

Theorem 3.8 If x is not a cut vertex and lies in some gpy-set of a graph G, then
gpa(G) — 1 < gp4(G — ) and the bound is sharp.

Proof. Let X be a gpg-set of G such that x € X. Then |X| = gpy(G) and by
Theorem 2.2(ii), G — X is convex. By the proof of [7, Proposition 3.3], the set
X \{z} is a general position set of G —z. It suffices to show that (G —x)— (X \{z})
is convex in G —z, because then by Theorem 2.2(iii) the set X \ {z} is a dual general
position set of G — x and hence gpy(G — z) > | X \ {z}| = gp4(G) — 1.

Suppose to the contrary that this is not the case. There are u,v ¢ X such that
a shortest u,v-path P contains a vertex w € X \ {z}. Since G — X is convex,
dg(u,v) < dg(u, w) + dg(w,v). Based on this, we can conclude the following:

da—z(u,v) = dg_(u,w) + dg_(w,v)
> dg(u,w) + dg(w, v)
> dg(u,v) .
This in turn implies that x lies on the shortest u, v-path in G which contradicts with
G — X being convex. We can conclude that (G —xz) — (X \ {z}) is convex in G — z.

To prove the sharpness of the bound, consider a graph K ,, n > 3, and let « be
an arbitrary leaf of it. Then gpy(K;,) =n and gpy(Ky, —x) =n — 1. O

In Theorem 3.8 we have bounded gpy(G — x) from below by gpy(G) — 1 when
x is not a cut vertex and lies in some gpy-set of G. We next demonstrate that for
such a vertex z the value gp4(G — ) cannot be bounded from above by gp4(G).
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Consider the graph Y}, which is obtained from the complete graph Kj.3 by
adding two vertices x and y, and connecting each of them them to the same k
vertices of Kj, 3 as illustrated in Fig. 3.

Figure 3: Graph Y;.

Proposition 3.9 If k > 2, then gpy(Yx) =5 and gpa(Yy — x) = k + 3.

Proof. Let {vy,..., v, u,v,w} be the set of vertices of the induced complete graph
Kii3 in Yy as indicated in Fig. 3. Then V(Yy) = {vi,..., v, u,v,w,z,y} and
degy. (u) = degy, (v) = degy (w) = k + 2. It is straightforward to check that
{z,y,u,v,w} is a general position set of Y;. Hence {z,y,u,v,w} is also a dual
general position set of Y; by Theorem 2.2(iii). Therefore, gp,(Y:) > 5.

To prove that gpy(Ys) < 5, consider an arbitrary gpy-set X of Y;. Suppose to
the contrary that v; € X for some i € [k]. Then exactly one of the vertices x and
y must belong to X, for otherwise v; would lie on a shortest x, y-path, which is a
contradiction. Without loss of generality assume that x € X and y ¢ X. We claim
that there is no vertex from {u, v, w} which is contained in X. If z € {u,v,w} N X,
then v; lies on a shortest x, z-path, but this contradicts the fact that X is a gp,-set
of Yj. If a vertex of {u, v, w} does not contain in X, say u, then v; lies on a shortest
y, u-path, which implies that y and u are not X-positionable. This contradiction
yields v; ¢ X for each i € [k]. Therefore, | X| < 5, and we conclude that gp,(Y:) = 5.

If x is removed from Y}, by Theorem 2.1, the set {vy, ..., v, u, v, w} is a largest
general position set of Y, —x. Using Theorem 2.2(iii), we get that {vy, ..., vk, u,v, w}
is also a dual general position set of Y,—x. Note that gpy(Yi—2z) < gp(Yr—2) = k+3.
We can conclude that gpy(Yy —x) = k + 3. O
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4 Edge removal

Impact of removing an edge on the general position number of a graph was inves-
tigated in [7]. In this section, we complement this by examining the effect of edge
removal on the other three general position invariants.

We begin with the total general position number, for which the following notation
is needed. If G is a graph and e = wv € E(G), then let S(G). denote the set of
simplicial vertices in G which are adjacent to both u and v.

Proposition 4.1 If e is an edge of a graph G, then
gpi(G) = [S(G)e| < gpi(G —€) < gpy(G) +2.
Moreover, the bounds are sharp.

Proof. Let ¢ = uv. If z is a simplicial vertex which is adjacent to at most one
of w and v, then z remains simplicial in G —e. Thus gp,(G —e) = s(G —¢) >
s(G) — |S(G)e| = gp(G) — |S(G)e|]- If x # u,v is a simplicial vertex of G — e, it
remains simplicial in G. Hence gp,(G) > gp, (G — ¢) — 2.

For the sharpness, note first that s(K,) = n and s(K, —e) = 2, hence the lower
bound is sharp. For the upper bound, let X,,, n > 2, be the graph obtained from
the disjoint union of two copies of K,,, say K and K’ and a vertex x, by adding an
edge e = uv between K and K’, and joining x to a vertex u' in K and a vertex
v in K', where {u,v} N {u v’} = 0. Then we infer that gp,(X,) = 2(n — 2) and
gp(Xn —e) =2(n—1). O

For the outer general position number, the following holds.

Theorem 4.2 If e is an edge in graph G, then

gp,(G)
2

< 8po(G =€) < 28p,(G).
Moreover, both bounds are sharp.

Proof. Let e = uv and let X be a gp,-set of G. Then consider the sets of vertices

Xuw ={w e X : dg(u,w) < da(v,w)},
Xpw ={w € X : dg(v,w) < dg(u,w)},
wXu={we X : dg(u,w) = dg(v,w)}.

13



Clearly, X = X, U X,, U ,X,. Let
Xo=XnwU X, and X, =X, U ,X,.

Then we recall from the proof of [7, Theorem 6.2] that X, and X, are general
position sets of G — e. Moreover, by a parallel argument we prove that X, and
X, remain to be MMD in G — e provided they were MMD in G. Since |X|/2 <
max{|X,|, |X,|}, Theorem 2.2(ii) yields the lower bound. The argument for the
upper bounds proceeds along parallel lines.

To demonstrate the sharpness of the lower bound, consider first graphs Y,/, n > 3,
constructed as follows. First, take two disjoint copies of K,,, say K and K’ and add
an edge between them, say e = uv, where u € K and v € K’'. Second, add two new
vertices v’ and v’, the edge u'v', all the edges between v’ and V(K) \ {u}, and all
the edges between v' and V(K’) \ {v}, see Fig. 4.

e

u (%

Figure 4: Graphs Y, and Y, — e, and their gp -sets

We can observe that gp,(Y,) = 2(n — 1) and that gp,(Y, —e) = n — 1. This
demonstrates the sharpness of the lower bound.

For the sharpness of the upper bound, let Z,, n > 2, be the graph obtained
from two disjoint copies of K5, by adding an edge e = uv between them, where u
and v are vertices of degree n in different copies of Ks,. Then gp,(Z,) = n and

8Po(Zn — €) = 2n. O

The sharpness of the upper bound in Theorem 4.2 is demonstrated by graphs
that contain bridges. Consider next the graphs Z,, n > 3, constructed as follows.
Take two disjoint complete graphs K,, add an edge e between them, and add a path
of length 3 between them disjoint from e. Then we can infer that gp (Z,) = 2n — 4
and that gp,(Z, —e) = 2n —2. In the case n = 3, we thus also have a graph without
bridges for which the upper bound in Theorem 4.2 is sharp. It remains to be seen
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whether the upper bound in Theorem 4.2 is sharp also on graphs without bridges
with an arbitrary large other general position number.

To conclude the paper, we consider the dual general position number under edge
removal for which we have the following.

Theorem 4.3 The difference gpy(G) — gpa(G — €) can be arbitrarily large.

Proof. Consider the graphs H,,, n > 1, obtained from n disjoint triangles and one
Cs, by selecting an edge in each of these n + 1 graphs and identifying them into a
single edge. See Fig. 5 from which the vertex labelling of H,, should be clear.

Wn,

Figure 5: The graph H,

Let X = {wy,...,w,}. It is straightforward to check that X is a general position
set of H,. Since there is a unique shortest path between z and y that does not
contain any vertex from X, it follows that G — X is convex. In addition, since
{z,y,v1,v9,v3,v4} induces a convex (g, using Theorem 2.2(iii) we infer that none
of these vertices lies in a dual general position set. We can conclude that X is the
largest dual general position set of H,,, therefore gp,y(H,) = n. On the other hand,
removing the edge e = zy, every edge of H, — e is the middle edge of some isometric
path P;. In view of [18, Proposition 3.3] we have gpy(H,, —e) = 0. O
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