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Abstract

The d-distance p-packing domination number γp
d (G) of a graph G is the cardinal-

ity of a smallest set of vertices of G which is both a d-distance dominating set and a
p-packing. If no such set exists, then we set γp

d (G) = ∞. For an arbitrary strong prod-
uct G ⊠H it is proved that γp

d (G ⊠H) ≤ γp
d (G)γp

d (H). By proving that γp
d (Pm ⊠ Pn) =⌈

m
2d+1

⌉ ⌈
n

2d+1

⌉
, and that if γp

d (Cn) < ∞, then γp
d (Pm ⊠ Cn) =

⌈
m

2d+1

⌉ ⌈
n

2d+1

⌉
, the sharp-

ness of the upper bound is demonstrated. On the other hand, infinite families of
strong toruses are presented for which the strict inequality holds. For instance, we
present strong toruses with difference 2 and demonstrate that the difference can be
arbitrarily large if only one factor is a cycle. It is also conjectured that if γp

d (G) = ∞,
then γp

d (G⊠H) = ∞ for every graph H. Several results are proved which support the
conjecture, in particular, if γp

d (Cm) = ∞, then γp
d (Cm ⊠Cn) = ∞.
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1 Introduction
Let G = (V(G), E(G)) be a graph, d and p nonnegative integers, and S ⊆ V(G). The set
S is said to be a d-distance dominating set of G if for every vertex u ∈ V(G) \ S there
exists a vertex x ∈ S such that dG(u, x) ≤ d, and S is said to be a p-packing of G if
dG(x, y) ≥ p + 1 for every different vertices x, y ∈ S . As usual, here and later dG(x, y)
denotes the shortest-path distance between x and y. The cardinality of a smallest set S
which is both a d-distance dominating set and a p-packing is the d-distance p-packing
domination number γp

d (G) of G. If d < p, it might happen that no such set exists. In
this case, we set γp

d (G) = ∞. A smallest d-distance p-packing dominating set will be
briefly called a γp

d -set. We may also briefly call a d-distance p-packing dominating set a
d-distance p-packing set.

The d-distance p-packing domination number was introduced by Beineke and Hen-
ning [4]. At that time, in 1994, they suggested to denote it by ip,d(G) and call it the
(p, d)-domination number. To place this general concept within the trends of the con-
temporary graph theory, our present terminology and notation was suggested in [7]. This
approach broadly generalizes various concepts. One of them is the concept of perfect
d-codes which we will discuss in Section 3. Moreover, γ0

1 = γ is the usual domination
number, γ0

d = γd is the d-distance domination number [16], γ1
1 is the independent domina-

tion number [14], γ1
d is the d-distance independent domination number [12, 16], γ2

2 is the
lower packing number [15], and γd

d(G) is the d-independent d-domination number [17].
Let’s quickly summarize what has been done recently in [7, 8]. In the first paper it was

shown that for every fixed d and p, where 2 ≤ d and 0 ≤ p ≤ 2d−1, the decision problem
whether γp

d (G) ≤ k holds is NP-complete for bipartite planar graphs. For cycles Cn, the
value γp

d (Cn) was determined in all cases, while for trees T , (in most cases sharp) lower
and upper bounds proved for γ0

2(T ), γ2
2(T ), and γ2

d(T ), d ≥ 2. In [8] it was established
that γ1

d(G) ≤ n
d+1 holds for any bipartite graph G of order n ≥ d + 1 ≥ 2, which proves

and extends Beineke and Henning’s conjecture from 1994. Moreover, for trees T with ℓ
leaves, it has been proved that γ1

d(T ) ≤ n−ℓ
d and γ1

d(T ) ≤ n+ℓ
d+2 , where the latter inequality

extends Favaron’s theorem from 1992 [11] asserting that γ1
1(T ) ≤ n+ℓ

3 .
The strong product is one of four standard graph products and is the subject of con-

stant interest. Among recent studies of this product, we mention the papers dealing with
coloring aspects [3, 9, 10], the bootstrap percolation [6], the vertex forwarding index [18],
and the clique immersion [19]. The independent domination number of the strong prod-
uct of cycles was studied in [20]. Recall that the strong product G ⊠ H of graphs G
and H has vertex set V(G) × V(H), while vertices (g, h) and (g′, h′) are adjacent if one
of the following three conditions holds: (i) gg′ ∈ E(G) and h = h′, (ii) g = g′ and
hh′ ∈ E(H), (iii) gg′ ∈ E(G) and hh′ ∈ E(H). If g ∈ V(G), then the subgraph of G ⊠ H
induced by {g} × V(H) is isomorphic to H and denoted by gH. Similarly, the subgraph
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induced by V(G) × {h} is isomorphic to G and denoted by Gh. These subgraphs gH and
Gh are called layers of G ⊠ H. By a strong grid we mean the strong product of two
paths, by a strong prism the strong product of a path by a cycle, and by a strong torus
the strong product of two cycles. The key property of the strong product for us is that
dG⊠H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}, cf. [13, Proposition 5.4]. Another basic
property of the strong product is that the operation is commutative, hence in all our results
the role of factors can be interchanged. For additional information on the many aspects
of the strong product we refer to the book [13].

In this paper we investigate the d-distance p-packing domination number of the strong
product of graphs. In the next section we give additional definitions, recall needed results,
and prove that γp

d (G ⊠ H) ≤ γp
d (G)γp

d (H) holds for any graphs G and H. In Section 3 we
conjecture that if γp

d (G) = ∞, then γp
d (G ⊠ H) = ∞ for every graph H. Several results

are proved which support the conjecture. In particular, the conjecture holds true if H
contains a so-called (d, p)-close vertex, which represents a new concept that can receive
independent attention. Also, we prove that if γp

d (Cm) = ∞, then γp
d (Cm ⊠ Cn) = ∞. In

Section 4 we demonstrate that γp
d (Pm ⊠ Pn) =

⌈
m

2d+1

⌉ ⌈
n

2d+1

⌉
, and that if γp

d (Cn) < ∞, then

γ
p
d (Pm ⊠ Cn) =

⌈
m

2d+1

⌉ ⌈
n

2d+1

⌉
. These results show that the above general upper bound is

sharp. On the other hand, in Section 5, infinite families of strong toruses are presented
for which the strict inequality holds. In particular, if t = 0 or t ≥ 2, and d = ⌊5(t + 1)/2⌋,
p = 3t + 2, then γp

d

(
C11(t+1) ⊠C11(t+1)

)
≤ γ

p
d

(
C11(t+1)

)
γ

p
d

(
C11(t+1)

)
− 2. But certain strong

toruses also reach the upper bound, for example, if n ≡ 0 (mod 2d + 1), then γp
d (Cm ⊠

Cn) = γp
d (Cm) γp

d (Cn). In the concluding section we present another general non-sharpness
example of the general upper bound, pose some problems, and show that our findings
imply that most of the main results from [2] are fundamentally wrong.

2 Preliminaries and a general bound
In this section, we first provide additional definitions needed in this article. After that
we recall some earlier results that will be useful later and give an upper bound on the
d-distance p-packing domination number of arbitrary strong products.

For two integers a ≤ b, the interval of integers is defined and denoted as [a, b] =
{a, . . . , b}. If a = b, then [a, b] = {a}. The interval [1, a] will be abbreviated to [a].

Let G be a connected graph. The eccentricity eccG(u) of the vertex u ∈ V(G) is the
maximum distance between u and the remaining vertices of G. The minimum and the
maximum eccentricity of the vertices of G are, respectively, the radius rad(G) and the
diameter diam(G) of G. A pendant path of order k in G is a path subgraph v1 . . . vk so that
degG(v1) = 1 and degG(vi) = 2 for i ∈ [2, k]. If u ∈ V(G) and d ≥ 1, then by Nd

G[u] we
denote the d-neighborhood of u in G, that is, the set of vertices which are at distance at
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most d from u. Further, for S ⊆ V(G) let Nd
G[S ] =

⋃
u∈S Nd

G[u]. Unless stated otherwise,
we will assume that V(Pn) = V(Cn) = [n], with the natural adjacency.

From the stock of known facts, let us first recall the following.

Proposition 2.1. [7, Proposition 1.1] If 0 ≤ d′ ≤ d and 0 ≤ p ≤ p′, then γp′

d′ (G) ≥ γp
d (G).

As it was explicitly or implicitly observed in previous papers, the definition of a d-
distance p-packing dominating set implies the following properties. To be self-sufficient,
we also provide arguments for them.

Observation 2.2. For every graph G and every two nonnegative integers d and p, the
following statements are true.

(i) If rad(G) ≤ d, then γp
d (G) = 1.

(ii) If rad(G) > d and p ≥ 2d + 1, then γp
d (G) = ∞.

(iii) If p ≤ d, then γp
d (G) < ∞.

Proof. (i) A vertex u with ecc(u) = rad(G) forms a d-distance dominating set and a p-
packing set.

(ii) Suppose S is a d-distance dominating set and a p-packing set. Let x ∈ S . Since
rad(G) > d, there exists a vertex y with dG(x, y) = d + 1. As S is a d-distance dominating
set, there exists z ∈ S such that dG(z, y) ≤ d. But then dG(x, z) ≤ 2d + 1, a contradiction.

(iii) First set S = {u}, where u is an arbitrary vertex of G. Then, inductively, if there
exists a vertex x which is at distance at least d + 1 to every vertex of S , then add x to S .
After no such addition is possible, the condition p ≤ d implies that the constructed set is
a d-distance dominating set and a p-packing set. □

For a path Pn, Observation 2.2 (i) and (ii) imply that γp
d (Pn) = ∞ when p ≥ 2d + 1

and n ≥ 2d + 2, while γp
d (Pn) = 1 when n ≤ 2d + 1. In the remaining cases we have the

following result for paths.

Proposition 2.3. [7, Proposition 3.3] For every three integers d, p, and n with 0 ≤ p ≤ 2d,
it holds that γp

d (Pn) =
⌈

n
2d+1

⌉
.

The corresponding known result for cycles reads as follows.

Theorem 2.4. [7, Theorem 3.1] If d, p, and n ≥ 3 are integers with 0 ≤ p ≤ 2d and
n ≥ 2d + 2, then

γ
p
d (Cn) =


⌈

n
2d+1

⌉
; n

p+1 ≥
⌈

n
2d+1

⌉
,

∞; otherwise.
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We conclude this section with the following announced bound.

Theorem 2.5. If G and H are graphs, and d and p are integers, then

γ
p
d (G ⊠ H) ≤ γp

d (G)γp
d (H) .

Proof. If γp
d (G) = ∞ or γp

d (H) = ∞, then there is nothing to prove. Hence assume in the
rest that γp

d (G) < ∞ and γp
d (H) < ∞.

Let S G be a γp
d -set of G and S H a γp

d -set of H. To prove the inequality it suffices to
verify that S = S G × S H is a d-distance p-packing set of G ⊠ H. If (g, h) and (g′, h′) are
two vertices from S , then having in mind that S G and S H are p-packings, we have

dG⊠H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)} ≥ max{p + 1, p + 1} = p + 1 ,

hence S is a p-packing. Let now (x, y) be an arbitrary vertex from V(G⊠H) \S . Since S G

is a d-distance dominating set of G, there exists g ∈ S G such that dG(x, g) ≤ d. Similarly,
there exists a vertex h ∈ S H such that dH(y, h) ≤ d. Therefore,

dG⊠H((x, y), (g, h)) = max{dG(x, g), dH(y, h)} ≤ max{d, d} = d ,

which implies that S is a d-distance dominating set. □

3 A conjecture and supporting results
In this section we investigate the question how the assumption γp

d (G) = ∞ affects the
strong product with G being its factor. In this regard, we make the following:

Conjecture 3.1. If G is a graph, and d and p are integers such that γp
d (G) = ∞, then

γ
p
d (G ⊠ H) = ∞ for every graph H.

Remark 3.2. By Theorem 2.5 we know that the reverse of the implication in the conjecture
is true. That is, if γp

d (G ⊠ H) = ∞, then γp
d (G) = ∞ or γp

d (H) = ∞. If Conjecture 3.1 is
true, then for any n-fold strong product F = G1 ⊠ · · · ⊠Gn it holds that γp

d (F) = ∞ if and
only if γp

d (Gi) = ∞ is true for at least one factor.

A perfect r-code of a graph G is a set X ⊆ V(G) such that the sets Nr
G[u], u ∈ X, form

a partition of V(G). By definition, the existence of a perfect r-code in G is equivalent to
the fact that γ2r

r (G) < ∞. It is proved in [1] that the n-fold strong product of simple graphs
has a perfect r-code if and only if each factor has a perfect r-code. This result implies that
Conjecture 3.1 is true for p = 2d. By Observation 2.2 (i) and (ii), the statement is true
when p ≥ 2d + 1. Further, the condition γp

d (G) = ∞ does not hold if p ≤ d. Therefore, it
is enough to consider Conjecture 3.1 for d < p < 2d.

A vertex u of a graph G is (d, p)-close if dG(x, y) ≤ p holds for every x, y ∈ Nd
G[u]. We

next verify that Conjecture 3.1 holds if H contains a (d, p)-close vertex.
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Theorem 3.3. Let d and p be two nonnegative integers with p < 2d and let G and H be
two graphs. If γp

d (G) = ∞ and H contains a (d, p)-close vertex, then γp
d (G ⊠ H) = ∞.

Proof. Let γp
d (G) = ∞. Observation 2.2 (iii) then implies d < p. Let u ∈ V(H) be a

(d, p)-close vertex. Suppose, to the contrary of the statement, that γp
d (G ⊠ H) < ∞ and S

is a γp
d -set in G ⊠ H.

Consider the layer Gu in G ⊠ H and let X = Nd
H[u]. Then, V(G) × X is the set of

vertices in the strong product that can d-distance dominate Gu. Projecting the vertices
in S ∩ (V(G) × X) to the layer Gu, we obtain a d-distance dominating set of Gu. By
assumption, γp

d (Gu) = ∞ and hence, the projected vertices cannot form a p-packing. It
means that there exist two vertices (x, y) and (x′, y′) in S ∩ (V(G) × X) such that the
projected vertices (x, u) and (x′, u) satisfy

p ≥ dG⊠H((x, u), (x′, u)) = dG(x, x′). (1)

Since S is a p-packing, we have

p + 1 ≤ dG⊠H((x, y), (x′, y′)) = max{dG(x, x′), dH(y, y′)}. (2)

Since y and y′ belong to X = Nd
H[u], and u is a (d, p)-close vertex, we have dH(y, y′) ≤ p.

This inequality, together with (1), contradicts (2). We may conclude γp
d (G ⊠ H) = ∞. □

Complete graphs and graphs with diameter at most p ≥ 1 contain (d, p)-close vertices.
If p = 2d − 1 and H contains a simplicial vertex (i.e., a vertex with a complete neighbor-
hood), then again, γp

d (G) = ∞ implies γp
d (G ⊠ H) = ∞. In addition, if H : z1 . . . zn is a

path, then the leaf z1 is a (d, p)-close vertex. Indeed, if dH(z1, zi) ≤ d and dH(z1, z j) ≤ d,
then dH(zi, z j) ≤ d ≤ p. Theorem 3.3 then directly implies the following statement:

Corollary 3.4. Let G be a graph and d, p, n three nonnegative integers with p < 2d and
2 ≤ n. If γp

d (G) = ∞, then γp
d (G ⊠ Pn) = ∞.

Assuming that H contains a pendant path that is long enough, a more general conse-
quence of Theorem 3.3 can be proved.

Corollary 3.5. Let d and p be two nonnegative integers with p < 2d and let G and H be
two graphs. If γp

d (G) = ∞ and H contains a pendant path on at least 2d−p
2 vertices, then

γ
p
d (G ⊠ H) = ∞.

Proof. Let k = ⌈ 2d−p
2 ⌉ and let z1z2 . . . zk be a pendant path in H such that zk is adjacent

to a vertex z ∈ V(H) different from zk−1. Observe that dH(z1, z) = k ≥ 2d−p
2 . In light of

Theorem 3.3 it suffices to prove that z1 is a (d, p)-close vertex.
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If vi lies on a shortest path between z1 and v3−i, for i ∈ {1, 2}, then dH(v1, v2) ≤
dH(z1, v3−i) ≤ d < p proves the statement. Otherwise, neither v1 nor v2 belongs to the
pendant path z1 . . . zk, and the distance can be estimated as

dH(v1, v2) ≤ dH(z, v1) + dH(z, v2) = (dH(z1, v1) − k) + (dH(z1, v2) − k)
≤ (d − k) + (d − k) ≤ 2d − (2d − p) = p.

This finishes the proof of the statement. □

To further support Conjecture 3.1, we prove the following result.

Theorem 3.6. For every two nonnegative integers d and p and for every two cycles Cm

and Cn, if γp
d (Cm) = ∞, then γp

d (Cm ⊠Cn) = ∞.

Proof. If p ≥ 2d + 1, the statement follows by Observation 2.2 (ii). If p = 2d then, under
the present conditions, the nonexistence of a perfect d-code in Cm ⊠ Cn follows by [1].
By Observation 2.2 (iii), the condition γp

d (Cm) = ∞ does not hold if p ≤ d. Therefore, it
suffices to consider the cases with d < p < 2d.

The vertex set of the layer (Cm)i is denoted by Ri, for i ∈ [n]; that is Ri = {(x, i) : x ∈
[m]}. Sometimes the m-cycle induced by Ri is also referred to as Ri.

By Theorem 2.4, the condition γp
d (Cm) = ∞ implies m

p+1 < ⌈
m

2d+1⌉. Since the assump-
tion p < 2d gives m

p+1 >
m

2d+1 , we may infer that⌊
m

p + 1

⌋
=

⌊ m
2d + 1

⌋
<

m
2d + 1

. (3)

The inequality m
p+1 −

m
2d+1 < 1 also follows and it is equivalent to the following inequality

to be applied later:
m

2d + 1
<

p + 1
2d − p

. (4)

Consider a row Ri in Cm ⊠ Cn and define Ai =
⋃i+d

j=i−d R j and Bi =
⋃i−d+p

j=i−d R j for every
i ∈ [n]. Thus Ai, Bi, and Ai \ Bi are the union of 2d + 1 rows, p+ 1 rows, and 2d − p rows,
respectively. See Fig. 1.

Suppose for a contradiction that γp
d (Cm ⊠Cn) is finite and let S be a γp

d -set in Cm ⊠Cn.
First observe that for every two vertices v = (x, y) and v′ = (x′, y′) from Bi ∩ S , the
difference |y − y′| is at most p. Since S is a p-packing, |x − x′| ≥ p + 1 follows. Then,
projecting the vertices in Bi ∩ S to Ri, the obtained set is a p-packing in the cycle Ri.
Consequently, |Bi ∩ S | ≤ ⌊ m

p+1⌋ holds for each i ∈ [n]. Count now the pairs (i, v) with
i ∈ [n] and v ∈ Bi ∩ S . Since each v ∈ S belongs to exactly p + 1 different sets Bi, the
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1 2 m − 1 m
Cm. . . . . .

1

2

n − 1

n

i

Cn

...

...

Cm ⊠Cn

. . . . . . 2d + 1

p + 1

2d − p Ai

Bi

Ri

Figure 1: Sets Ri, Ai, and Bi in Cm ⊠Cn with respect to given d and p, where d < p < 2d.

number of such pairs is |S | (p + 1). On the other hand, we know that every i ∈ [n] is
contained in at most ⌊ m

p+1⌋ pairs. Therefore,

|S | (p + 1) ≤ n
⌊

m
p + 1

⌋
. (5)

Since S is supposed to be a γp
d -set in the strong torus, every vertex in Ri is d-distance

dominated by a vertex in Ai. If we project the vertices in Ai ∩ S to the row Ri, we get a
d-distance dominating set in the cycle Ri. As γp

d (Cm) = ∞, this set of projected vertices is
not a p-packing in Ri and hence, not all vertices in Ai ∩ S belong to Bi. We conclude that
Ai \ Bi contains at least one vertex from S , for every i ∈ [n]. We now count the pairs (i, u)
with i ∈ [n] and u ∈ (Ai \Bi)∩S . Since every u ∈ S belongs to 2d− p different sets Ai \Bi,
the number of such pairs is |S | (2d − p). As we also know that every i ∈ [n] belongs to at
least one such pair, we conclude

|S | (2d − p) ≥ n. (6)
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As p < 2d, inequalities (5) and (6) imply

n
2d − p

≤ |S | ≤
n

p + 1

⌊
m

p + 1

⌋
. (7)

The above findings can be combined as follows to arrive at a contradiction:

m
2d + 1

(4)
<

p + 1
2d − p

(7)
≤

⌊
m

p + 1

⌋
(3)
=

⌊ m
2d + 1

⌋
.

This proves that no γp
d -set exists in Cm ⊠Cn and therefore γp

d (Cm ⊠Cn) = ∞ as stated. □

4 Strong grids and prisms
In this section we determine the d-distance p-packing domination number of strong grids
and of strong prisms. These results demonstrate sharpness of bound of Theorem 2.5.

Theorem 4.1. If p ≤ 2d, then γp
d (Pm ⊠ Pn) =

⌈
m

2d+1

⌉ ⌈
n

2d+1

⌉
, and if γp

d (Cn) < ∞, then

γ
p
d (Pm ⊠Cn) =

⌈
m

2d+1

⌉ ⌈
n

2d+1

⌉
.

Proof. Let n,m ≥ 2 and set G = Pm ⊠ Pn for the rest of the proof. We claim that
γ

p
d (G) ≥ γp

d (Pm)γp
d (Pn) = ⌈ m

2d+1⌉ · ⌈
n

2d+1⌉. (The other inequality follows from Theorem 2.5.)
By Proposition 2.1, γp

d (G) ≥ γ0
d(G), thus γp

d (G) ≥ γd(G). Therefore it suffices to prove
γd(G) ≥

⌈
m

2d+1

⌉ ⌈
n

2d+1

⌉
. Recall that γd(G) = γ0

d(G).
We proceed by induction on m. If m ≤ 2d + 1, then the projection of a minimum

d-distance dominating set of G to the first layer of Pn is a d-distance dominating set of Pn.
Hence γd(G) ≥ γd(Pn) when m ≤ 2d + 1.

Assume in the rest that m ≥ 2d + 2. Let S be a minimum d-distance dominating
set of G, and let G1, G2, and G3 be subgraphs of G induced by [d + 1] × V(Pn), by
[d+2, 2d+1]×V(Pn), and by [2d+2,m]×V(Pn), respectively. Note first that |S ∩V(G1)| ≥⌈

n
2d+1

⌉
. Indeed, otherwise there would exist a vertex in {1}×V(Pn) at distance at least d+1

from every vertex of S , which is not possible as S is a d-distance dominating set. We now
distinguish two cases.

Case 1: S ∩ V(G2) = ∅.
In this case, S ∩ V(G3) is a d-distance dominating set of G3. Indeed, dG(x3, x1) ≥ d + 1
for every x1 ∈ V(G1) and x3 ∈ V(G3), thus vertices from S ∩ V(G1) cannot d-distance
dominate any vertex in G3. Hence, using the induction hypothesis, we get |S ∩ V(G3)| ≥

9



γd(G3) =
⌈

n
2d+1

⌉
·
⌈

m−(2d+1)
2d+1

⌉
. Therefore,

|S | = |S ∩ V(G1)| + |S ∩ (G3)|

≥

⌈ n
2d + 1

⌉
+

⌈ n
2d + 1

⌉
·

⌈
m − (2d + 1)

2d + 1

⌉
=

⌈ n
2d + 1

⌉
·

⌈ m
2d + 1

⌉
,

which settles this case.

Case 2: S ∩ V(G2) , ∅.
The idea in this case is to bound the size of S by constructing a d-distance dominating set
of G3 of size |S ∩ V(G2)| + |S ∩ V(G3)|. Suppose that S ∩ V(G2) = {v1, . . . , vℓ}. First, set
Z0 = S ∩ V(G3) and consider those vertices (g, h) in G3 which satisfy dG((g, h), v1) ≤ d
but dG((g, h), (g′, h′)) ≥ d + 1 holds for each vertex (g′, h′) ∈ Z0. Let Y1 be the set of
these vertices. If (g, h) ∈ Y1, then g ∈ [2d + 2, 3d + 1]. Moreover, if (g, h) ∈ Y1 for some
g ∈ [2d + 2, 3d + 1], then (2d + 2, h) ∈ Y1.

We claim that there is a vertex v∗1 = (2d + 2, h∗) in Y1 such that Nd
G[v∗1] covers Y1.

Indeed, suppose that {(2d + 2, x), (2d + 2, x + 1)} ⊆ Nd
G[v1], (2d + 2, x) ∈ Y1, and (2d +

2, x + 1) < Y1. Then, there exists a vertex (g, h) ∈ Z0 such that Nd
G[(g, h)] covers only

(2d+2, x+1). Therefore, we have 2d+2 ≤ g ≤ 3d+2 and h = x+d+1, and consequently,
Nd

G[(g, h)] covers all vertices from Y1 with second entry at least x + 1. Similarly, if {(2d +
2, y), (2d+ 2, y− 1)} ⊆ Nd

G[v1], (2d+ 2, y) ∈ Y1, and (2d+ 2, y− 1) < Y1, then Z0 contains a
vertex (g, h) with 2d + 2 ≤ g ≤ 3d + 2 and h = y− d− 1. We may infer that Y1 ∩V(2d+2Pn)
contains consecutive vertices from the layer 2d+2Pn and therefore, we can choose a middle
vertex v∗1 from this intersection such that Nd

G[v∗1] covers Y1 ∩ V(2d+2Pn). Then, in turn,
Nd

G[v∗1] covers the entire Y1. Let us now define Z1 = Z0 ∪ {v∗1}. By the choice of v∗1,
Y1 ∪ Nd

G[Z0] ⊆ Nd
G[Z1] holds.

After a set Zi is obtained, for 1 ≤ i < ℓ, we repeat the process with vi+1 ∈ S ∩ V(G2)
and Zi. That is, we define Yi+1 = (Nd

G[vi+1] \ Nd
G[Zi]) ∩ V(G3) and determine a vertex

v∗i+1 = (2d + 2, h) in Yi+1 such that Zi+1 = Zi ∪ {v∗i+1} and Yi+1 ∪ Nd
G[Zi] ⊆ Nd

G[Zi+1]. If Y j

is empty in a step, we may proceed with Z j = Z j−1, but the occurrence of this situation
would contradict the minimality of S .

At the end of the process, we have a set Zℓ in G3 that contains at most |S ∩V(G2)|+ |S ∩
V(G3)| vertices. Moreover, Zℓ is a d-distance dominating set of G3 as any vertex u from
G3 was either covered by a vertex from Z0 = S ∩ V(G3) or by a vertex v j ∈ S ∩ V(G2). In
the latter case, u ∈ Nd

G[v∗j] and hence, u ∈ Nd
G[Zℓ] in both cases. By applying the induction

hypothesis to G3, we obtain

|S ∩ V(G2)| + |S ∩ V(G3)| ≥ |Zℓ| ≥ γd(G3) =
⌈ n
2d + 1

⌉
·

⌈
m − (2d + 1)

2d + 1

⌉
.

To finish the proof, we recall that |S ∩ V(G1)| ≥
⌈

n
2d+1

⌉
, henceforth the conclusion for
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Case 2 is obtained as

γd(G) = |S | = |S ∩ V(G1)| + |S ∩ V(G2)| + |S ∩ V(G3)|

≥

⌈ n
2d + 1

⌉
+

⌈ n
2d + 1

⌉
·

⌈
m − (2d + 1)

2d + 1

⌉
=

⌈ n
2d + 1

⌉
·

⌈ m
2d + 1

⌉
.

This completes the proof for strong grids. An analogous argument shows that γp
d (Pm ⊠

Cn) = γp
d (Pm) γp

d (Cn) holds for all m ≥ 1 and n ≥ 3 provided that γp
d (Cn) is finite. That is,

for a fixed cycle Cn, we proceed by induction on m just as above, counting is considered
modulo n when v∗i is determined, and taking account of the fact that γp

d (Cn) =
⌈

n
2d+1

⌉
. □

5 Strong toruses
In the previous section we have seen that the upper bound of Theorem 2.5 is sharp for
strong grids and strong prisms. In this section we demonstrate that the equality does not
hold in general and a bit surprisingly this happens already from strong products of cycles.
Our first related result reads as follows.

Theorem 5.1. If t = 0 or t ≥ 2, and d =
⌊

5
2 (t + 1)

⌋
, p = 3t + 2, then

γ
p
d

(
C11(t+1) ⊠C11(t+1)

)
≤ 7 = γp

d

(
C11(t+1)

)
γ

p
d

(
C11(t+1)

)
− 2.

Proof. For a simpler discussion, here we consider every n-cycle with the vertex set V(Cn) =
[0, n − 1] instead of [n]. We also define Gt = C11(t+1) ⊠C11(t+1), for t = 0 and t ≥ 2.

Consider first G0, and let X = {(2, 0), (3, 3), (4, 6), (7, 9), (8, 1), (9, 4), (10, 7)}, see Fig. 2.
If t = 0, then d = p = 2 and it can be checked that X forms a 2-distance 2-packing set

of G0. It follows that the inequality holds true for t = 0. For t ≥ 2, set

Xt = {(t + 1)i, (t + 1) j) : (i, j) ∈ X} ,

and consider Xt as a subset of vertices of Gt.
Intuitively, we can think of Xt as a set of vertices obtained from X by adding t ad-

ditional layers cyclically between each two consecutive horizontal layers and each two
vertical consecutive layers of G0. From this description we infer that if (i, j), (i′, j′) ∈ X,
and dG0((i, j), (i′, j′)) = ℓ, then

dGt((t + 1)i, (t + 1) j), ((t + 1)i′, (t + 1) j′)) = (t + 1)ℓ .

Since dG0((i, j), (i′, j′)) ≥ 3, it follows that

dGt((t + 1)i, (t + 1) j), ((t + 1)i′, (t + 1) j′)) ≥ 3(t + 1) = p + 1 .

11



Figure 2: A schematic representation of C11 ⊠C11; vertices from X are marked with black
squares. For clarity, not all edges are drawn. From left to right, the vertices which are
2-distance dominated by the first three vertices from X are marked with vertical black
strips, the vertices which are 2-distance dominated by the next three with horizontal black
strips, and the vertices which are 2-distance dominated by the final one with color gray.

We can conclude that Xt is a p-packing of Gt.
Let (i′′, j′′) be an arbitrary vertex of G0. Then there exists (i, j) ∈ X such that

dG0((i, j), (i′′, j′′)) ≤ 2. If follows that

dGt((t + 1)i, (t + 1) j), ((t + 1)i′′, (t + 1) j′′)) ≤ 2(t + 1) .

Since every vertex of Gt is at distance at most ⌊ t+1
2 ⌋ from a vertex of the form ((t +

1)i′′, (t + 1) j′′)), we get that every vertex of Gt is at distance at most 2(t + 1) + ⌊ t+1
2 ⌋ = d

from some vertex of Xt. Hence Xt is a d-distance dominating set, and since |Xt| = 7, we
conclude

γ
p
d

(
C11(t+1) ⊠C11(t+1)

)
≤ |Xt| = 7.

For the second part of the statement, we can make the following observations for every
t , 1. If t is odd, then t ≥ 3 and⌈

11t + 11
2d + 1

⌉
=

⌈
11t + 11

5(t + 1) + 1

⌉
= 3.

Therefore,
11t + 11

p + 1
=

11t + 11
3t + 3

>

⌈
11t + 11
2d + 1

⌉
= 3, (8)
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and Theorem 2.4 implies γp
d (C11(t+1)) = 3.

Similarly, if t is even, then⌈
11t + 11
2d + 1

⌉
=

⌈
11t + 11

(5t + 4) + 1

⌉
= 3,

and inequality (8) holds true again. Theorem 2.4 then implies γp
d (C11(t+1)) = 3 as before,

which finishes the proof of the theorem. □

We would like to make the following comments on Theorem 5.1.

Remark 5.2. The case t = 1 is special and hence excluded from the theorem because in
this case we have γ5

5(C22) = 2.
By Theorem 5.1, γ2

2(C11 ⊠ C11) ≤ 7. On the other hand, we have checked by com-
puter that no smaller 2-distance 2-packing set of C11 ⊠C11 exists, hence we actually have
γ2

2(C11 ⊠C11) = 7.
Our conclusion, by Theorem 5.1, is that the strong products γp

d

(
C11(t+1) ⊠C11(t+1)

)
with

t , 1, d =
⌊

5
2 (t + 1)

⌋
, and p = 3t + 2 form an infinite family of cases for which the upper

bound of Theorem 2.5 is not sharp and the difference is at least two.

Moreover, we have the following infinite family of graphs that shows that the differ-
ence γ2

2(G)γ2
2(H)−γ2

2(G⊠H) can be 2. Again, we take V(Cn) = [0, n−1]. Let N = 55k+11,
k ≥ 0. For CN ⊠C11, Theorem 2.5 gives

γ2
2(CN ⊠C11) ≤

⌈
11
5

⌉ ⌈
55k + 11

5

⌉
= 3(11k + 3) = 33k + 9.

But it turns out that this bound is not attained. Consider

S =
11k+2⋃

i=1

{(5i − 3, 9i − 9), (5i − 2, 9i − 6), (5i − 1, 9i − 3)} ∪ {(N − 1, 7)}.

It is not difficult to see that S is a 2-distance dominating set and also a 2-packing of
CN ⊠C11 (see Fig. 3), thus

γ2
2(CN ⊠C11) ≤ 3(11k + 1) + 4 = 33k + 7.

The next proposition shows that, for every d and p with p ≤ d, there is an infinite
class of strong toruses such that γp

d (Cm ⊠Cn) < γp
d (Cm) γp

d (Cm).

Theorem 5.3. Let m, n, d, and p be positive integers such that d ≥ p, m ≥ 2d + 2, and
n ≥ 4d + 3. If both m (mod 2d + 1) and n (mod 2d + 1) are from [d], then

γ
p
d (Cm ⊠Cn) ≤ γp

d (Cm) γp
d (Cn) − 1.

13
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3: A schematic representation of CN ⊠C11; vertices from S are marked with black
squares. For clarity, not all edges are drawn. Vertices which are 2-distance dominated
by the first triple are marked with horizontal black strips, vertices which are 2-distance
dominated by the last triple with vertical black strips, and vertices which are 2-distance
dominated by the final vertex with gray color. The remaining white vertices are 2-distance
dominated by the remaining triples.

Proof. Under the conditions in the theorem, we can write m and n in the form

m = m1(2d + 1) + q and n = n1(2d + 1) + r,

where m1 = ⌊
m

2d+1⌋, n1 = ⌊
n

2d+1⌋, and q, r ∈ [d].
The conditions m ≥ 2d + 2 and n ≥ 4d + 3 imply m1 ≥ 1 and n1 ≥ 2. By Theorem 2.4,

γ
p
d (Cm) = m1+1 and γp

d (Cn) = n1+1 for all p ≤ d. As Proposition 2.1 shows γp
d (Cm⊠Cn) ≤

γd
d(Cm ⊠Cn) whenever p ≤ d, it is enough to prove the statement for p = d. So our aim is

to construct a d-distance d-packing set S in Cm ⊠Cn that contains m1n1 +m1 + n1 vertices.

We define the following vertices and vertex sets, for i ∈ [m1] and j ∈ [n1]:

• z(i, j) = (i(2d + 1) − d, j(2d + 1) − d),

• a(i) = (i(2d + 1) − 2d, n) and b( j) = (m, j(2d + 1)),

• c∗ = (m − d, n − r);

• z∗ = (m1(2d + 1) − d, n1(2d + 1) − d − 1) = (m − q − d, n − r − d − 1),

• Z = {z(i, j) : i ∈ [m1], j ∈ [n1]},

14



• A = {a(i) : i ∈ [m1]}, and B = {b( j) : j ∈ [n1 − 1]}.

For example, see Fig. 4. It can be readily checked that A ∪ B ∪ Z is a d-packing. The set
Z clearly d-distance dominates the vertices in [1,m − q] × [1, n − r]. For the remaining
vertices, we first observe that the set

([1,m − q − d] × [n − r + 1, n]) ∪ ([m − q + 1,m] × [1, n − r − d − 1])

is d-distance dominated by A∪B. In particular, the part [m−q+1,m]× [1, d] is dominated
by a(1). The vertices that remain undominated by Z ∪ A ∪ B are all contained in Y =
[m−q−d+1,m]×[n−r−d, n]. Since q ≤ d and r ≤ d, we have Y ⊆ [m−2d,m]×[n−r−d, n]
and c∗ can d-distance dominate the entire Y . We infer that S ′ = Z ∪ A ∪ B ∪ {c∗} is a d-
distance dominating set in Cm ⊠Cn and its size is |S ′| = m1n1 + m1 + n1.

We have already observed that S ′ \ {c∗} is a p-packing. Further, for every v ∈ S ′ \
{z(m1, n1)}, the distance dCm⊠Cn(c

∗, v) is at least d + 1. However,

dCm⊠Cn(c
∗, z(m1, n1)) = (n − r) − (n1(2d + 1) − d) = d

that is not large enough for a d-packing. Therefore, we finish the construction by replacing
z(m1, n1) with the neighbor z∗ in the set. Let S = S ′ \ {z(m1, n1)} ∪ {z∗}. This way [m]× [n]
remains d-distance dominated, dCm⊠Cn(c

∗, z∗) = d + 1, and the distance of z∗ and any other
vertex in S is at least d + 1. Observe that the condition n1 ≥ 2 ensures dCm⊠Cn(a(m1), z∗) >
d + 1. Thus S is a d-distance d-packing set with |S | = |S ′| = (m1 + 1)(n1 + 1) − 1, and the
statement follows. □

At the end of this section, we prove a lower bound on γp
d (Cm ⊠ Cn) and identify some

cases when Theorem 2.5 holds with equality for strong toruses that is, γp
d (Cm ⊠ Cn) =

γ
p
d (Cm) γp

d (Cn).

Theorem 5.4. For every two nonnegative integers d and p and for every two cycles Cm

and Cn, the following statements hold.

(i)
⌈

m
2d+1

⌉
n

2d+1 ≤ γ
p
d (Cm ⊠Cn).

(ii) If n ≡ 0 (mod 2d + 1), then γp
d (Cm ⊠Cn) = γp

d (Cm) γp
d (Cn).

(iii) If n ≡ r (mod 2d + 1) and (1− r
2d+1 )

⌈
m

2d+1

⌉
< 1, then γp

d (Cm ⊠Cn) = γp
d (Cm) γp

d (Cn).
In particular, the equality holds if n ≡ 2d (mod 2d+ 1) and m ≤ 4d2 + 2d, and also
if n ≡ 2d − 1 (mod 2d + 1) and m ≤ 2d2 + d.

Proof. By Theorems 2.5 and 3.6, the statements are valid when γp
d (Cm⊠Cn) = ∞. Hence,

we may assume that Cm⊠Cn has a γp
d -set S and further that γp

d (Cm) = ⌈ m
2d+1⌉ and γp

d (Cn) =
⌈ n

2d+1⌉.
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z(1, 1) z(2, 1)

z(1, 2) z(2, 2)
z∗

a(1) a(2)

b(1)

c∗

Figure 4: A schematic representation of C16 ⊠ C16, i.e. m = n = 16, d = p = 3, q = r = 2
and m1 = n1 = 2. Vertices from Z ∪ A ∪ B ∪ {z∗, c∗} are marked with black squares and
their labels are written on the side of the graph. For clarity, not all edges are drawn. The
vertices d-distance dominated by a(1) and by c∗ are marked with color gray.

(i) Let Ri = {(x, i) : x ∈ [m]} and define Ai =
⋃i+d

j=i−d R j for every i ∈ [n], as in the proof
of Theorem 3.6 (see Fig. 1). Since the vertices in Ri are all d-distance dominated by the
vertices in S ∩ Ai, we observe that |S ∩ Ai| ≥ ⌈

m
2d+1⌉ for every i ∈ [n]. Counting the pairs

(i, v) complying with i ∈ [n] and v ∈ Ai, we then infer that this number a is not smaller
than n⌈ m

2d+1⌉. On the other hand, every vertex v from S occurs in exactly 2d+ 1 such pairs
and then a = |S | (2d + 1). These observations result in the desired inequality

γ
p
d (Cm ⊠Cn) = |S | =

a
2d + 1

≥
n

2d + 1

⌈ m
2d + 1

⌉
.

(ii) If n ≡ 0 (mod 2d + 1), then n
2d+1 = ⌈

n
2d+1⌉ and therefore, the lower bound in part

(i) and the upper bound in Theorem 2.5 coincide. This implies the statement.

(iii) The condition (1− r
2d+1 )

⌈
m

2d+1

⌉
< 1 implies r , 0 and therefore, ⌈ n

2d+1⌉ =
n+2d+1−r

2d+1 .
Since γp

d (Cm ⊠Cn) and ⌈ m
2d+1⌉⌈

n
2d+1⌉ are integers, they are equal whenever the lower bound
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from (i) and the upper bound from Theorem 2.5 satisfy

1 >
⌈ n
2d + 1

⌉ ⌈ m
2d + 1

⌉
−

n
2d + 1

⌈ m
2d + 1

⌉
=

(
n + 2d + 1 − r

2d + 1
−

n
2d + 1

) ⌈ m
2d + 1

⌉
=

(
1 −

r
2d + 1

) ⌈ m
2d + 1

⌉
.

As our condition in (iii) corresponds to this inequality, γp
d (Cm⊠Cn) = ⌈ m

2d+1⌉⌈
n

2d+1⌉ follows.
For r = 2d, the condition gives 1

2d+1⌈
m

2d+1⌉ < 1 which is equivalent to ⌈ m
2d+1⌉ ≤ 2d and

hence to m ≤ 4d2 + 2d. A similar reasoning proves the statement for r = 2d − 1. □

6 Concluding results and problems
By Theorem 5.1, the difference γp

d (G)γp
d (H)− γp

d (G ⊠H) over all connected graphs G can
be equal to 2. We next prove that the difference can be arbitrary.

Theorem 6.1. The difference γ2
2(G)γ2

2(H)− γ2
2(G⊠H) can be an arbitrarily large integer,

even if G and H are connected graphs. In particular, this also holds when one factor is
required to be a cycle.

Proof. Let Gk be obtained from k ≥ 2 vertex disjoint 11-cycles by gluing them together
at two adjacent vertices. Formally, Gk is defined on the vertex set

V(Gk) = {v1, v2} ∪ {v
j
i : i ∈ [3, 11], j ∈ [k]}

such that v1v2v j
3 . . . v

j
11v1 is an 11-cycle for each j ∈ [k]. We state first that γ2

2(Gk) = 2k.
Indeed, every cycle C j

11 contains five consecutive vertices, namely v j
5, . . . , v

j
9, which can be

2-distance dominated only by vertices that belong to C j
11 and no other cycles. Supposing

that V(C j
11) \ {v1, v2} contains only one vertex from a 2-distance 2-packing set of Gk, this

vertex must be v j
7. However, in this case, v j

4 and v j
10 would be 2-distance dominated by

v1 and v2, respectively, and the set would not be a 2-packing. This contradiction proves
γ2

2(Gk) ≥ 2k. For the other direction, observe that

S = {v1
5, v

1
10} ∪ {v

j
4, v

j
9 : j ∈ [2, k]}

is a 2-distance 2-packing set in Gk and contains 2k vertices. Thus γ2
2(Gk) = 2k for every

k ≥ 2. We also know that γ2
2(C11) = 3.

Consider now the product Fk = Gk ⊠ C11. For each cycle C j
11 in Gk, take the strong

torus C j
11 ⊠ C11 and apply the construction described in the proof of Theorem 5.3 to get
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a 2-distance 2-packing set S j of size 8 in C j
11 ⊠ C11. We can rotate it such that the layers

v1C11 and v2C11 together contain three vertices from S . Formally, for every j ∈ [k], let

S j = {(v1, 3), (v1, 7), (v2, 10), (v j
4, 5), (v j

5, 11), (v j
7, 3), (v j

7, 8), (v j
10, 11)}.

It is clear that S ′ =
⋃k

j=1 S j is a 2-distance dominating set in Fk. The distance between
any two different vertices x, y ∈ S j is dFk(x, y) ≥ 3. It can also be checked directly that
for every vertex x ∈ S j \ {(v1, 3), (v1, 7), (v2, 10)}, the distance between x and the layers
v1C11 and v2C11 is at least two. We conclude that if x ∈ S j \ S j′ and y ∈ S j′ \ S j, then
dFk(x, y) ≥ 4. Therefore, S ′ is a 2-packing.

Since S j ∩ S j′ = {(v1, 3), (v1, 7), (v2, 10)} for every j , j′, we have |S ′| = 3 + 5k.
Consequently,

γ2
2(Gk ⊠C11) ≤ 5k + 3,

while γ2
2(Gk)γ2

2(C11) = 3 · 2k = 6k. Therefore, the difference is not smaller than k − 3,
which proves the statement. □

Remark 6.2. The statement of Theorem 6.1 can be extended by proving that γd
d(G)γd

d(H)−
γd

d(G ⊠ H) can be arbitrarily large for each d ≥ 2. In this more general proof we as-
sume that d is fixed and define the graph Gk, for k ≥ 2, which is obtained from k cycles
C j

4d+3 : v1v2v j
3 . . . v

j
4d+3v1 ( j ∈ [k]) such that V(C j

4d+3)∩V(C j′

4d+3) = {v1, v2} whenever j , j′.
One can show, analogously to the proof of Theorem 6.1, that γd

d(Gk) = 2k, for k ≥ 2. Then,
for every j ∈ [k], we consider the set

S j = {(v1, d + 1), (v1, 3d + 1), (v2, 4d + 2), (v j
d+2, 2d + 1), (v j

d+3, 4d + 3)}

∪ {(v j
2d+3, d + 1), (v j

2d+3, 3d + 2), (v j
3d+4, 4d + 3)}.

Then S ′ =
⋃k

j=1 S j is a d-distance d-packing set in Gk ⊠ C4d+3, and the proof can be
finished with

γd
d(Gk ⊠C4k+3) ≤ |S ′| = 3 + 5k = 3 · 2k − (k − 3) = γd

d(Gk)γd
d(C4k+3) − (k − 3).

In view of Theorem 6.1 and Remark 6.2, one may ask whether there are graphs such
that γp

d (G)γp
d (H) = ∞ and γp

d (G⊠H) is finite. Conjecture 3.1 posed in Section 3 claims the
non-existence of such graphs. Here we recall this conjecture, which may be considered
the most important open problem related to our topic.

Conjecture 3.1. If G is a graph, and d and p are integers such that γp
d (G) = ∞, then

γ
p
d (G ⊠ H) = ∞ for every graph H.

The results of Section 5 suggest our next open problem:
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Problem 1. (i) For exactly which values of d, p, m, and n, the equality γp
d (Cm ⊠Cn) =

γ
p
d (Cm) γp

d (Cn) holds?

(ii) Is the difference γp
d (Cm) γp

d (Cn) − γp
d (Cm ⊠ Cn) bounded by a constant (possibly 2)

over all values of d, p, m, and n?

In view of Theorem 4.1 we also pose:

Problem 2. Investigate the behavior of γp
d (T ⊠ T ′) where T and T ′ are arbitrary trees.

We conclude the paper with the following unfortunate situation. Since γk(G) ≤ γp
k (G),

p ≥ 0 by Proposition 2.1, we infer that Theorems 5.1 and 5.3 form counterexamples to [2,
Theorem 3.3] which wrongly claims that γk(G ⊠ H) = γk(G)γk(H). The fundamental
error made in the “proof” is the claim that if S 1 ⊆ V(G), S 2 ⊆ V(H), and S ⊆ V(G ⊠
H) is a set with |S | < |S 1 × S 2|, then |pG(S )| < |S 1| or |pH(S )| < |S 2|. The paper [2]
makes the same error for the Cartesian product, [2, Theorem 2.5] gives a short “proof”
of γk(G □H) ≥ γk(G)γk(H). If the “proof” worked, then this would mean (by selecting
k = 1) the solution of the celebrated Vizing’s conjecture [5, 22]. Further, [2, Theorem
4.3] claims that γk(G ◦ H) = γk(G), where ◦ is the lexicographic product. This result is
again wrong, for instance, γ(P6 ◦ P4) = 4, cf. [21].
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