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Abstract

If x € V(G), then S C V(G) \ {z} is an x-visibility set if for any y € S
there exists a shortest x,y-path avoiding S. The z-visibility number v,(G) is
the maximum cardinality of an z-visibility set, and the maximum value of v, (G)
among all vertices x of G is the vertex visibility number vv(G) of G. It is proved
that vv(G) is equal to the largest possible number of leaves of a shortest-path
tree of G. Deciding whether v, (G) > k holds for given G, a vertex x € V(G),
and a positive integer k is NP-complete even for graphs of diameter 2. Several
general sharp lower and upper bounds on the vertex visibility number are proved.
The vertex visibility number of Cartesian products is also bounded from below
and above, and the exact value of the vertex visibility number is determined for
square grids, square prisms, and square toruses.

*dhanyaroyku@gmail.com, dhanyaroyku@cusat.ac.in
Tgabriele .distefano@univaq.it
isandi.klavzar@fmf.uni-1j.si

§aparnaren@gmail .com, aparnals@cusat.ac.in


https://arxiv.org/abs/2510.19452v1

Keywords: vertex visibility; mutual-visibility; shortest-path tree; computational com-
plexity; Cartesian product

AMS Subj. Class. (2020): 05C12, 68Q17, 05C76

1 Introduction

General position and mutual-visibility are very active areas of metric and algorithmic
graph theory. The concepts are complementary to each other, and a progress in one of
the areas typically has an impact on the other area. The general position problem has
been recently surveyed in [5], see also [1, 16, 19, 23|. For the mutual-visibility problem
we refer to the seminal paper [10] and the following selection of studies [3, 4, 7, 9, 13,
14, 15, 17, 19, 24.

In [22], the general position version was investigated from a vertex’s point of view.
Among the many motivations for this research, let us highlight the following. In [11,
Chapter III] it is shown how to place a set of points with integer positive coordinates
(1,7), j < i, such that each point is in mutual-visibility with (0,0) and such that the
number of points with the same abscissa is maximized. The problem turns out to be
very interesting, as the solution has links with the Farey series and the Euler’s totient
function ¢: the number of points with abscissa n is exactly ¢(n).

Due to the above motivation (and more), the paper [22] gives the following defini-
tions. If x is a vertex of a graph G, then S C V(@) is said to be an z-position set if
for any y € S, no vertex of S\ {y} lies on any shortest x, y-path. The vertex position
number vp(G) of G is the maximum cardinality of an z-position set among all vertices
x of G. The paper [22| yields numerous results dealing with the largest and smallest
orders of maximum z-position sets, in particular giving bounds in terms of the girth,
vertex degrees, diameter and radius.

In this paper, we complement the investigation from [22] by considering the mutual-
visibility problem from a vertex’s point of view. If x is a vertex of a graph G, then
S C V(G)\{z} is an z-visibility set if for any y € S there exists a shortest z, y-path P,
such that V(P)NS = {y}. The z-visibility number v,(G) is the maximum cardinality of
an x-visibility set, we also say that v,(G) is the wvisibility number of . An z-visibility
set of cardinality v,(G) is called a v,-set. The maximum value of v,(G) among all
vertices = of G is called the vertex visibility number vv(G) of G, and a corresponding
vz-set is a vv-set. For instance, if n > 3, then v,(C,,) = 2 for any z € V(C,), hence
vv(Cy) = 2. Similarly, if n > 3, then v,(P,) = degp (), hence vv(P,) = 2. It is worth
mentioning the following fact.

Lemma 1.1 Ifz is a leaf of a connected graph G with n(G) > 3, then v,(G) < vv(QG).



Proof. If G is a path graph on at least three vertices, then v,(G) = 1 and vv(G) = 2.
Assume next that G is not a path, let y be the support vertex of x, and S be a v -set
of G. Then S" = SU {x} is a y-visibility set, hence vv(G) > |S'| > |S]| = v.(G). O

The paper is organized as follows. In the following subsection, further definitions
needed are listed. In Section 2 we first prove the fundamental reason for the computa-
tional difficulty of the vertex visibility number: vv(G) is equal to the largest possible
number of leaves of a shortest-path tree of G. This builds a bridge between the new in-
troduced concepts and the Dijkstra’s algorithm, the result of which is precisely a tree of
shortest-paths. In the second main result of the section we prove that the z-VISIBILITY
problem is NP-complete even for graphs of diameter 2, where the x-VISIBILITY problem
asks whether v,(G) > k holds for given G, a vertex = € V(G), and a positive integer
k. In Section 3 we deduce some general sharp lower and upper bounds on the vertex
visibility number in terms of the order, the maximum degree, and the eccentricity.
The vertex visibility number of Cartesian products is investigated in Section 4. After
establishing a general sharp lower bound and an upper bound, the focus is on square
grids, square prisms, and square toruses. For each of these Cartesian products the
exact value of the vertex visibility number is obtained. We conclude the paper with
some problems for future investigation.

1.1 Concepts and notation

Here we provide further necessary definitions.

Let G = (V(G), E(G)) be a graph. The order of G is denoted by n(G), its maximum
degree by A(G), and the (open) neighborhood of z € V(G) by Ng(z). A vertex x of G
is simplicial if the subgraph induced by Ng(x) is complete. A vertex of G is universal
if it is adjacent to all other vertices of G. A double star is a tree in which exactly two
vertices are not leaves.

The distance function dg(-,-) is the standard shortest-path distance. The eccen-
tricity eccg(x) of a vertex x is the maximum distance between x and the other vertices
of G. A vertex z is an eccentric vertex of x if dg(x,z) = eccg(x). The open interval
I(x,y) between vertices x and y is the set of all vertices that lie on shortest z, y-paths
other than z and y. When every two vertices x and y of G are connected by a unique
shortest x,y-path, G is called geodetic. A vertex y is mazimally distant from x if
de(x,y) > dg(z, 2), for every z € Ng(y). (This notion was introduced in [18] as a tool
to study the strong metric dimension.) The collection of all maximally distant vertices
from z is denoted by MDg(x).

If S C V(G), then we say that x,y € V(G) are S-visible, if there exists a shortest
z,y-path P such that V(P)NS C {z,y}. The set S is a mutual-visibility set if any two



vertices from S are S-visible. The cardinality of a largest mutual-visibility set of G is
the mutual-visibility number u(G) of G. A mutual-visibility set of cardinality u(G) is a
p-set. We also say that a vertex y is S-visible from x if there exists a shortest y, z-path
P such that V(P)N S C {z,y}.

The Cartesian product G H of graphs G and H has the vertex set V(G) x V(H),
vertices (g, h) and (¢',h') of GO H are adjacent if either g¢' € E(G) and h = 1/, or
g=¢ and hh' € E(H). A G-layer is a subgraph of GO H induced by V(G) x {h} for
some h € V(H), denoted by G". Analogously, for g € V(G) we have the H-layer YH.

Finally, for a positive integer k, the set {1,...,k} is denoted by [k].

2 Shortest-path trees and computational complexity

To study the computational complexity of finding the z-visibility number v,(G) for a
fixed vertex x of a graph GG, we introduce the following decision problem.

Definition 2.1 z-VISIBILITY problem:
INSTANCE: A graph G, a vertex x € V(G), a positive integer k < n(G).
QUESTION: v,(G) > k?

In this section we prove that the z-VISIBILITY problem is NP-complete even for
graphs of diameter 2, so that finding vv(G) is an NP-hard problem. This result is
in sharp contrast with the computational complexity of the vertex position problem,
which is solvable in O(n*log(n)) time, as shown in [22].

The intrinsic difficulty of the z-VISIBILITY problem lies in the fact that the value
vv(G) is equal to the largest possible number of leaves of a shortest-path tree of G.
These trees are defined as follows. Let G be a graph and = € V(G). Then a tree rooted
in x constructed by the BFS search is called a shortest-path tree of G. That is, it is a
rooted spanning tree T', such that dp(z,y) = dg(z,y) for every y € V(G).

Theorem 2.2 If G is a connected graph, then vv(G) is equal to the largest possible
number of leaves of a shortest-path tree of G.

Proof. Let S = {x1,..., 2} be a vv-set of G, and let x be a vertex with v,(G) =
vv(G). Then, if n(G) > 3,  is not a leaf because v,/(G) > v,(G), where 2’ is the
(support) vertex adjacent to z.

Denoting the largest possible number of leaves of a shortest-path tree of G' by 4,
it is clear that vv(G) > tg.

To prove that tg > vv(G), we first claim that there exist shortest x, x;-paths P,
i € [k], such that V(F;) NS = {z;} and the edges from U;c E(F;) induce a tree



T in G. Since S is a v,-set, there exist shortest x,x;-paths P;, i € [k], such that
V(P;)NS = {x;}. Assume that the paths P; are selected such that the union U;c E(F;)
induces the smallest number of cycles possible. Suppose that this number is not zero.
Then there exist s,t € [k] such that the union of edges E(P;) U E(F;) induces a cycle.
Let y be a vertex from V(Ps) N V(P;) such that dg(z,y) is as large as possible among
all vertices from V' (P;) N V(F;). Let P! and P/ be the subpaths of P and P, between
x and y, respectively. Since P; and P; are shortest paths, P! and P/ are shortest paths
as well. Then in our collection {P; : i € [k]} of shortest paths, replace P, with the
concatenation of P! and the y, z;-subpath of P,. In this way the union of the edges
from the new collections of shortest x, x;-paths induces at least one cycle less. This
contradicts the selection of the paths P;. We can conclude that the union U;e E(F)
induces no cycle, thus proving the claim.

Let T be the tree induced by the edges from U;cp E(F;). If T' is a spanning tree,
then we are done. Hence assume that T" does not span GG. Let y be an arbitrary vertex
from V(G) \ V(T). Then every shortest z, y-path contains at least one vertex from S,
for otherwise S U {y} would be an z-position set larger than S, which is not possible.
Moreover, there exists a shortest x,y-path P such that V(P) NS = {z,} for some
j € [k], for otherwise S would not be an z-position set. Then replace x; by y in S
and in the collection of our shortest paths, replace the current shortest x,z;-path by
P. Proceeding in this way, we end with an x-position set of the same cardinality as
S, and with a collection of paths whose edges induce a spanning tree 7" of G. We can
conclude that tg > vv(G). O

In view of Theorem 2.2, we first recall that the problem of finding a spanning tree
with maximum number of leaves has been heavily researched and is computationally
difficult. For instance, the problem is NP-hard as well as APX-hard for cubic graphs,
see [2]. On the other hand, a 2-approximation algorithm is known for this problem [21].
We now demonstrate that the difference between the maximum number of leaves in a
spanning tree of G and vv(G) can be arbitrarily large.

Let /(G) denote the maximum number of leaves in a spanning tree of a graph G.
Let G, denote the graph obtained by taking n copies of the graph G in Figure 1 and
identifying the vertex z. Then ¢(G,) = 11ln. By Lemma 3.2, it is straight forward
to check that v,(G,) = v,(G,) = v,(G,) = 10n while v,(G,) = 9, v»(G,) = 8 and
ve(Gp) = 8. Thus by the symmetry of the graph and by Lemma 1.1, we can conclude
that vv(G),) = 10n. Hence the difference ¢(G,,) — vv(G,,) is n, which we summarize in
the following result.

Proposition 2.3 Given a graph G, the difference between ((G) and vv(G) can be
arbitrarily large.



Figure 1: A graph G with ¢(G) = 11 but vv(G) = p,(G) = 10 (also attained at y and
z).

We are now ready to prove that the x-VISIBILITY problem is hard to solve.

Theorem 2.4 The x-VISIBILITY problem is NP-complete even for graphs of diameter
2.

Proof. Given a set X C V(G) \ {z} of G, it is possible to test in polynomial time
whether it is a z-visibility set or not. Consequently, the problem is in NP.

We will now prove that the INDEPENDENT SET problem (equivalent to the CLIQUE
problem in the complement graph and shown as NP-complete in [12]), polynomially
reduces to the x-VISIBILITY problem. The INDEPENDENT SET problem asks if the
independence number «(G) of a graph G, that is the cardinality of a largest edgeless
set of vertices of (G, is at least a given integer t. Here we assume that G does not
contain any isolated vertices. Clearly, this assumption does not affect the hardness
of the problem. We consider an arbitrary instance (G,t) of the INDEPENDENT SET
problem where G has no isolated vertices and will construct an instance(G’, k) of the
2-VISIBILITY problem as follows.

Let V(G) = [n] and add a universal vertex = to V(G). Now for each edge e = ij of G,
we add a new vertex v, = v;; and the edges iv, and jv.. Also, let S = {v. : e € E(G)}
induce a clique. An example of the graph G’, for G = Ps, is given in Figure 2.

Let (G, t) be an instance of the INDEPENDENT SET problem, we show that o(G) > ¢
if and only if the x-VISIBILITY problem has z-visibility number greater than k, where
k = E(G) +t, that is v.(G") > k.

Let I be an independent set of GG, and consider the set X = I U S in G'. For each
ve € S, where e = ij, either ¢ or j is not present in I and hence all vertices in S are

x-visible. Also, all vertices in I are adjacent to  and hence are z-visible. Therefore,
v:(G") > k.



Figure 2: The graph G’ for G = Ps.

On the contrary, let X be a z-visibility set of G’ of cardinality at least k. By Lemma
3.2, we can assume that all vertices of S are in X. Then the vertices in X \ S must
form an independent set of G, as, otherwise, there would be an edge e = 75 such that
both vertices ¢ and j are in X, but then v, would not be in visibility with x. Since the
number of vertices in S is |E(G)|, the number of vertices in the independent set of G
is | X\ S| >k —|E(G)| =t. Hence, a(G) > t.

Finally, the diameter of G’ is two as x is adjacent to all vertices of G and at distance
2 from the vertices in S. All pairs of vertices u,v in G are at distance at most two as
u,z,v is a path in G’. Each vertex in S is adjacent to all other vertices in S and, since
GG has no isolated vertices, it is at distance at most two from the vertices in G. O

The above Theorem 2.4 clearly implies that also finding vv(G) is an NP-hard prob-
lem.

3 General lower and upper bounds

In view of the hardness of the problem studied, as established in Section 2, in this
section we prove general lower and upper bounds for the vertex visibility numbers.
Along the way, several exact values are also determined.

If S bea p-set of G and x € S, then S\ {z} is an z-visibility set of G. Also,
if x € V(G), then Ng(x) is an a-visibility set. Thus we have the following general
bounds:

max{u(G) — 1,A(G)} < v (G) <n(G) —1. (1)

The difference vv(G) — (u(G) — 1) can be arbitrarily large. For instance, it can
be deduced from [6, Theorem 3.2.(i)| that if n > 6, then pu(K>,OC,) = 6, while on



the other hand vv(K,OC,) > n. The first assertion of the following result follows
from (1), while the second is also straightforward to verify, hence we omit the proof.

Proposition 3.1 If G is a connected graph with n(G) > 2, then the following proper-
ties hold.

1. vww(G) =n(G) — 1 if and only if G has a universal vertex.

2. vw(@G) = n(G) — 2 if and only if G contains no universal vertex and contains a
spanning double star.

We now say that a vertex y is a stress vertex for x if there exists a maximally
distant vertex z of x such that y lies on every x, z-shortest path in G. Note that, every
cut vertex y, y # z, is a stress vertex for x. Let strg(z) denote the number of stress
vertices for x.

Lemma 3.2 If x is a vertex of a connected graph G, then there exists a v,-set S with
the following properties:

1. everyy € V(G) \ {z} is S-visible from x;
2. MD¢g(z) C S;
3. S contains no stress vertex for x.
In addition, | MDg(z)| < v,(G) < n(G) — strg(z) — 1.

Proof. Let R be a v,-set of G such that it contains as many vertices from MDg(x) as
possible. Suppose there exists a vertex y € MDg(x) \ (RU {x}). Then every shortest
x,y-path intersects R. Also, there exists a shortest z,y-path that contains exactly
one vertex from R, say z, for otherwise R would not be an x-visibility set. But then
(R\ {z}) U{y} is an an z-visibility set of the same cardinality as R containing more
vertices from MD¢ (), a contradiction.

By the above we have MD¢g(z) C R. If follows from here by the definition of the
stress vertex that R contains no stress vertex for = as well as that every y € V(G)\ {z}
is R-visible from z. The set R is thus a a v,-set with the three required properties.
Finally, the second property yields the claimed lower bound, while the third property
gives the upper bound. O

Note that Lemma 3.2 implies that if G is a geodetic graph, then v,(G) = | MDg(z)|
for every x € V(G). For the block graphs, which form a special case of geodetic graph,
more specific result can be stated. In fact, this is an example where the lower and
the upper bound in Lemma 3.2 coincide. Denoting by s(G) the number of simplicial
vertices of a graph G, the result for block graphs reads as follows.
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Proposition 3.3 If G is a block graph different from a complete graph then,
vw(G) = s(G).

Proof. Since G is not complete, it contains a cut vertex z. Then MD¢(z) consists of
the simplicial vertices of G. By the lower bound of Lemma 3.2 we thus get vv(G) >
s(G). On the other hand, as already mentioned, cut vertices are stress vertices, hence
by the upper bound of Lemma 3.2 we also get vv(G) < s(G). O

We continue with the next upper bound depending on the order and the maximum
degree.

Theorem 3.4 If G has no universal vertex, then

@ =[S

and the bound is sharp.

Proof. Let S be a vv-set of G and set n = n(G) and A = A(G) for the rest of the
proof.
Assume first that vv(G) = A. Then we have

A—1
VV(G):ASTLAT,

where the above inequality holds since A < n — 2 by the theorem’s assumption.

Assume second that vv(G) > A. Let = be a vertex such v,(G) = vv(G) and let S
be a v,-set. Then |S| = vv(G). Let S’ = S\ Ng(z) and let s’ = |S’|. Since vv(G) > A
we have s’ > 1. This in turn implies that at least one neighbor of x does not belong to
S. Consequently,

s > vv(G) — (degg(x) — 1) > vw(G) — A+ 1. (2)

Since S is an z-visibility set, each vertex from S’ has a neighbor in V/(G) \ (S U {z}).
It follows that
s <(n—v(G)—-1)A. (3)

Combining (2) with (3) we get
w(G)—A+1< (n—vv(G)—1)A.

Rearranging this inequality and using the fact that vv(G) is a positive integer, the
claimed inequality follows.



To show sharpness of the bound, consider the cocktail party graph Kjys, (the
complete k-partite graph where each partite set is of cardinality 2) of order 2k, where
k> 2. Then A(Kyx2) = 2k — 2 = vv(Kjx2) = 2k — 2. Since

1
{2k(2k—2)—1J _ {2/{—2:%J i
(2k—2) +1 1— L

the equality holds for Kjyo, k > 2. O
We next bound the z-visibility number using the eccentricity of x.

Proposition 3.5 If G is a graph and x € V(G), then

n(G) —1

< v, (G) < n(G) — eccg(x),
ecca ()

and the bounds are sharp.

Proof. Let S be a v,-set, and let y be an eccentric vertex of z in GG. Let P : z =
To,Z1,...,T; = y be a shortest x,y-path selected such that |V(P) N S| is smallest
possible. Suppose that S contains more than one vertex from P, say x; and z;, where
i < j. Since S is an z-visibility set, there exists a shortest x,z;-path @) such that
V(Q) NS = {x;}. This in turn implies that the path @ followed by the x;, y-subpath
of P is a shortest x, y-path which contains fewer vertices from S than P, a contradiction
to the choice of P. Hence |V(P)N S| < 1 which in turn yields v,(G) < n(G) —eccg(x).
For the lower bound, let N;(z), ¢ € [eccg(x)], be the the set of all vertices at distance
exactly ¢ from x. Then each of these is an z-visibility set, and one of them must have
order at least (n(G) — 1)/ ecca(z).

If x is the universal vertex in a star graph, then the lower and the upper bound
coincide. O

4 Cartesian products

In this section, we consider the Cartesian product graphs and first prove general lower
and upper bounds on their vertex visibility number. Next, we focus on square grids
(P, O P,), square prisms (P, dC,), and square toruses (C,, ] C,,), and determine exact
values for the vertex visibility number in all three cases. The general bounds read as
follows.
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Proposition 4.1 If G and H are graphs with n(G) > n(H), then
max{A(G)n(H),A(H)n(G)} <vww(GOH) < (n(G) — 1)n(H).
Both bounds are sharp, in particular, vv(K,, O K,) = mn —m form >n > 2.

Proof. Let g € V(G) be such that degn(9) = A(G) and let h be an arbitrary
vertex of H. Then Ng(z) x V(H) is a (g, h)-visibility set of GO H with cardinality
A(G)n(H). By the commutativity of the Cartesian product operation, there also
exists a (¢, h')-visibility set of GO H with cardinality A(H)n(G). Thus, vw(GO H) >
max{A(G)n(H), A(H)n(G)}.

To prove that vw(GOH) < (n(G) — 1)n(H) suppose on the contrary that GO H
contains a (g, h)-visibility set S with |S| > (n(G)—1)n(H). Then there exist ¢’ € V(G)
and b’ € V(H) such that V(G") C S and V(9 H) C S. But then the vertex (¢/, h') € S
is not S-visible from (g, k), a contradiction.

If G has a universal vertex, then the lower and the upper bound coincide. A
particular case of this situation is the product K, [ K,,. O

Next, we will cover each of square grids, square prisms, and square toruses in their
own subsections.

4.1 Square grids

In this subsection we determine the vertex visibility number of square grids.

Theorem 4.2 Ifn > 4, then

n?+n—2

vw(P,0P,) = 5

Proof. Let V(P,0P,) = {(ux,v;) : k,l € [n]}. Consider an arbitrary vertex = =
(wis1,vj41) € V(P,OP,), where we may assume without loss of generality that 0 <
i <j<[®] Let X =V(“+P,) and Y = V(P,”""). Set further

Q1= {(ug,v) : k<i+1,1<j+1},
Qo = {(ug,vy) : k<i+1,1>j+1},
Qs = {(ug,v) : k>i+1,1>7+1},
Qs = {(ug,v) : k>i+1,1<j+1}.

Let S be a v,-set in P, [ P, that satisfies the properties given in Lemma 3.2 and has
. . 4 . .
the maximum number of vertices from (J,_, @, among its choices.
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For (u,v;) € Qn, ashortest (u;11,v;41), (ug, v;)-path passes through either (uy, vj41)
or (ugi1,v;), and hence these two vertices cannot be simultaneously in S. A similar
argument is valid for (ug,v;) € Qy, t € [4]. Now, partition each @); into diagonals D,,,
where p,q € @)y are its end vertices, as illustrated in Figure 3. The rectangles indicate
the sets @), ¢ € [4], and the doted lines indicate the diagonals D,,.

Ue

Uus

Ugq

Uus

u2

V1 V2 V3 V4 Vs Vg V1 V2 V3 (] Vs Vg v7

Figure 3: vv-sets of Ps [ Py and P; [ Px.

By the above argument, we can have at most (‘DQ—’”‘]W vertices in S N D,,. The
diagonals D, in ()1 can be explicitly represented as D, = {(uy,v;) : k +1 = a},
a € [i+ 7]\ {1}. Thus if ¢ is even, then

1—1 L 1
1SNQy = Z \SmDa|§4(1+2+---+ 5 )+(j—2—|—3) ik
a€li+7\{1} B -
and if 7 is odd,
1—1 L 1]
ERCTENDS \sta|g4(1+z+---+ : )+<y—z+1> :
a€li+j\{1} B -
On simplification we get,
G+,
5 1 even,
B0 < {(”;)j, i odd.



A similar computation can be done for each Qy,t € [4]. It may be noted that by
our choice of 7 and j we have, 1 < j<n—j—1<n—1—1. Consequently we obtain
the following inequalities:

i(n—j).

SN Qe < {(flxn_—a—n
2 ’

1 even,
1 odd,

(n—j—1)(n—1).

D) )
5N @s] < {((n—j)(n—i—l).

2 ?

n— 7 — 1 even,
n— 7 — 1 odd,

J(n=i).

SN Qs < {(jfn(é—i—l).

2 Y

J even,

7 odd.

By the choice of S, every vertex must be S-visible from (u;;1,v;4+1) and hence
SN(XUY) C {(w1,v1), (Wix1,n), (U1,0j41), (Un,vj41)}. But, (w41,v1) can be in
S only if both (u;,v2) and (u;y9,v2) are not in S since (u;,v;) and (u;i2,v) must
be S-visible from (u;41,v;4+1). A similar argument holds for (u;y1,v,), (u1,v;41), and
(Un,vj+1). Also, note that in @, at least one end vertex of D, must be in S if |D,,|
is even, and both end vertices of D,,, must be in S if |D,,| is odd for S N Q; to attain
the maximum cardinality. Since ¢ < 7 we get that

in Q : |Dp(u27vj)| =i — 1 and | Dy, u)q| = {2’; P
A similar computation can be done in ()2, V3, and ()4, to obtain the following respective
cardinalities:

. 1—1; i=n—7—1,
|Dp(u2,vj+2)| =14 —1 and |D(ui,vn71)q| - {i; i<n—j—1.

| Dpuswne)| =1 =3 =2 and | D,y 0,40)q] = {n —J—=1 i<y

. j—1 j7=n—1—1,
|Dp(ui+2,v2)| =Jj—1 and "D(un—lﬂ)j)q| - {]’ j<n—i—1.

Then, since we have assumed that S has the maximum number of vertices from Ule @,
we infer that |S N (X UY)| equals 0, 1, or 2, according to n, i, and j being even or
odd. Considering all possible combinations, we get the maximum possible cardinality
as % Therefore, vv(P, 0 P,) < %

13



Now, choose = = (us,v9) and let
S ={(ug,v1): ke n}PuU{(u,v):len\{2}}Uus,

where S” C Q3 is chosen by taking ['D—;W alternate vertices from each diagonal D, there;

see Figure 3 which illustrates this construction on Py FPs and on P; 1 P;. Then S is
o a1 a7 . . 2 2

an z-visibility set of cardinality “—£*=2. We can conclude that vv(P, 0 P,) = =2=2,

O

4.2 Square prisms

The proof technique used in Theorem 4.2 can be used to determine the vertex visibility
number of square prisms.

Theorem 4.3 Ifn > 4, then

n243.

5 n =1 mod 4,

n24n—2 _

=z n =3 mod 4,
w(P,0C,) = anin_ — 0mod 4

N n =0 mod 4,

mAn=2. p =2mod 4.

Proof. Let V(P,0C,) = {(ug,v;) : k,l € [n]}. By the symmetry, a vertex x €
V(P,0C,) has the same z-visibility number as some vertex from {(uy,vrn01) @ k €
[[n/2]]}, hence we may without loss of generality assume that @ = (w41, vn/21), where
0<i<|[%2] Let X =V (“+C,) and Y = V(P,™"). Set further

{( ) k<i+1,01<[n/2]
o ={(ug,v): k<i+1,01>[n/2]
{( ) k>i+1,1> [n/2]
{( ) k>i+1,1<[n/2]

9

¥
2
2
}.
Let S be a v,-set in P, [JC), that satisfies the properties given in Lemma 3.2 and has
the maximum number of vertices from Ule (); among its choices.

First assume n is odd and = = (qu,vnTH), where 0 < i < "T’l For (ug,v;) € Q1,
a shortest x, (uy, v;)-path passes through either (ug,v;41) or (ugy1,v;), hence these
two vertices cannot be simultaneously in S. A similar argument is valid for each
(ug, v1) € Q¢, t € [4]. Now, partition each @), into diagonals D,,, where p, ¢ € Q; are its

14
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Figure 4: vv-sets of P;[JCys and P; C.

end vertices as in Theorem 4.2. Then we can have at most [‘DQ—W'W vertices in S N D,,.
Hence we get that

dntl). 1 even
fort € {1,2}: |SNQy < {(i+41)(r:—1) . 7
——r—; todd,
and (n=1)(n—3)
n—1)(n—:
: n =1mod 4
fort € {3,4} : |[SN Q| < {(n+1;1(n—7§—71) 7
" n=3mod4
Thus we obtain,
4 2_1 _
2. n =1mod 4
SU << 2 ’
| H Ol < {—n2+2n_4; n = 3 mod 4.

By the choice of S, every vertex must be S-visible from = and hence SN (X UY) C
{(wiy1,01), (Wiv1,Vn), (Ul,'UnTJrl)7 (Un,'UnTJrl)}. But, (u;t1,v1) can be in S only if both
(u;,v2) and (w42, v9) are not in S since (u;, v1) and (u;42, v1) must be S-visible from z.
Similar argument holds for (ui11,va), (u1, vag1) and (un, vas1). Also, since i < -l <

15



n —1 — 1 we have,

i O - . i= L=
in @ : |Dp(u2,vnT4)| =t¢—1and |D(uz-,v2)q| = i i < nT_17
) , i—1; 1= ",
1 Q2 : |Dp(u2,vnT+3)| =1 — 1 and |D(Ui7'Un—1)q| = i i< nT_la
) n—3 @; j = n_*17
in Q3 | Dpusvnsn)| = and |D(un—1,vnT+3)q| = {é . é
2 2
) n—3 n_—?’; j = n_—l’
in Qq: |Dp(uz'+2,v2)| = and |D(un—1,vnT—1)q| = {é i < é
2 2
4
Then, since we have assumed that S has the maximum number of vertices from U Q¢
t=1
we get,
2; n=1mod4
ISN(XuUY)=<¢" ’
1; n =3 mod4.
Thus,

n?+3. —
|S|§{ 5 n =1 mod 4,

NI
%’12; n = 3 mod 4.

Now, assume n is even and x = (uiﬂ,v%), where 0 < i < "T_z For each (ug,v;) €
Q:, we know that the set N((ug,v;)) N I(x, (ug, v;)) has cardinality at most three and
has a vertex which is not in S. Particularly for (ug,v;) € @4, this vertex is either
(wk, vi1) or (ugy1,v;). Now, partition each @) into diagonals D,,, where p,q € Q; are
its end vertices. Then we can have at most . [|D,y[/2] vertices in SN U,_, Q. Since

we have , .
(t+1)(n—2) N (i+1)n

4 4

SN Q1+ [SNQsf <

we obtain that for n = 0 mod 4,

4
1SUlJ @i = 1SN Q1] + 1SN Qaf + 1S N Qs| +|S N Qyl

t=1

(it+1)(n—=2) (+1)n nn—i) nnh—i-1)
4 i 4 - 4 + 4
2n* 4+ n—4
4 ?

<

16
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o

and for n = 2 mod 4,

4
[SUl @i =1SN@i+ 1SN Qaf + 1SN Qs + SN Q4

B (t+1)(n-2) (+1)n +2)n—i-1) (n—2)(n—1)
= 4 + 4 + 4 * 4
24 n—6
_T.

Again, by the choice of S, every vertex must be S-visible from = and hence, S N (X U
Y) g {<ui+17 Ul)? (ui+17vn—1)7 (ui+17v7z)7 (Ul,’U%), (un, U%)} Since 7 S an2 S n—i1—1
we have

|Dp(u2uv%)‘ = |Dp(u2,vnT+2)| =i—1

and

|D(ui,v2)q| - |D(ui,vn_2)q| - {Z

D | 1—1; 1= g,
(wiyvn—1)ql — . .
o i i <5
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n—2 n=2. ,_ n=2
_ _J 2 2
‘Dp(“iyanrl)‘ - and ’D(u’ﬂflvvnTH)q‘ - {%’ Z< n772’
n — n-d. ,_n
Dp(u, = | Dp(u, = and |D ={ 27 2
| p(uz+27un—2)| | p(uz+2,vz)| 9 | (Un—ly'UnT—Q)ql nT_Q; i< %
4
Then, since we have assumed that S has the maximum number of vertices from U Q:,
t=1
we get,
|ISN(XUY)| =1.
Thus,

24y
W; n = 2 mod 4.

5] < {2”24+”; n = 0 mod 4,
Now, choose z = (ug, vrn7) and let

R={(ur,w): L€ m\{[I}}URUR",

where R’ C Q3 and R” C Q4 are chosen by taking [‘Df‘} alternate vertices from each

diagonal D,, there; see Figures 4 and 5 which illustrates this construction on P Cs,
PsOCs, P,OC; and Py Ps. Then RU {(uy, 'UnT-H), (U, 'UnT-&-l)} is an z-visibility set of

n’43
2

% for n = 3 mod 4. Also, RU{(uy, Ung1 )} is an z-visibility set of cardinality

cardinality for n =1 mod 4 and RU{(uy, Unt )} is an z-visibility set of cardinality

2n24n
4

for n = 0 mod 4 and of cardinality 2”2Jf+_2 for n = 2 mod 4. Hence proved. 0J

4.3 Square toruses

Theorem 4.4 Ifn > 4, then

5= n=1mod 4,
w(C,O0C,) = @; n =3 mod 4,
w42 even.

2 9

Proof. Let V(C,0C,) = {(ux,v) : i,j € [n]}. By the symmetry, all vertices of
C, 0C, have the same visibility number, and hence we may without loss of generality

18



). Let X =V (“m/21C,) and Y = V(C,""*"). Set further
{(ug,vy) : k, 1 < [n/2]},

{(ug,v;) : k < [n/2],1 > [n/2]},

{(ug,v) : k, 1> [n/2]},

Q4 = {(ug,v;) : k> [n/2],1 < [n/2]}.

Let S be a v,-set in C), 1, that satisfies the properties given in Lemma 3.2 and has
. . 4 . .
the maximum number of vertices from (J,_, @ among its choices.

assume that x = (U[n/g Vn/2]

Uy P
us | ( / @ I/ ® D)
Us Us @ @ /'

Uy

*—
uZlh
| =

us us ‘ .
U2 uz | ( \ @ \ | )
U Ui & M

<
w

A
hd
s | TFO—to—O—+o—|o—T0
a
\I/
'S

>4
ot

U1 Vo Ve Clrg

Figure 6: vv-sets of C5 [ C5 and C; 1 CY.

First assume n is odd and = = (unTH, UnTJrl). For (ux,v;) € @1, a shortest z, (ux, v;)-
path contains either (uy,v;41) or (uxs1,v;), hence these two vertices cannot simultane-
ously belong to S. A similar argument is valid for each (ug,v;) € Qq, t € [4]. Now,
partition each (); into diagonals D,,, where p,q € (), are its end vertices as in Theo-

rem 4.2. Then we can have at most [‘Dg‘ﬂ vertices in S N D,,. Thus we get,

2
—1
1SNQ <™

for each t € [4] and hence,

4 2
[sulJel <
t=1
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By the choice of S, every vertex must be S-visible from x and hence S N (X U
Y) C {(UnTH,'Ul),(UnTH,Un)7(Ul,UnTH),(Un,’UnTH)}. But, (UnTJrl7'U1) can be in S only
if both (UnT—l,UQ) and (UnT-‘rS7 vg) are not in S since (u%, v1) and (u%, v1) must be S-
visible from x. Similar argument holds for (unTH,vn), (ug, UHTH), and (un,vnTH). Also,

each of the diagonals Dy, | w)(uswn_1), D
2 2

Diuy 1001 )(uwnys ve) 18 Of cardinality “>2. Then, since we have assumed that S has the
2 2

(u n-1 Wn—1)(u2,v nt3 ) D(unflyvn;S ) (u nt3 WUn—1)1 and

. . 4
maximum number of vertices from (J,_, Q:, we get,

0; n=1modA4,

|ISN(XUY)| =
2; n =3 mod 4.

Thus,

2

n°—1. =
|S]§{ 5 n=1mod 4,

2
8. p =3 mod 4.

us

—®

Ur

OO
.

'

18b
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oo (O10—0—
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Figure 7: vv-sets of Cs [ Cs and Cg [ Cy.

Next assume that n is even and x = (un,vn). For each (uy,v;) € Q¢, we know that
the set N((ug,v;)) N I(x, (ux,v;)) has cardinality at most four and has a vertex which
is not in S. Particularly for (ug,v;) € Q, this vertex is either (ug,vi41) or (ugi1,v;).
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As in the previous two proofs, partition each @) into diagonals D,,, where p,q € @
are its end vertices. Then we can have at most > [|Dy,|/2] vertices in SN Ui, Qi
Thus, for n = 0 mod 4 we get

4
ISUlJ QI =1SNQi| + 19N Qa| + S N Q5] + 5N Qul

=1
(n—=2n n?* nn+2) n?
P L T S e AT
- 8 +8+ 8 8
n?
:?’

and for n = 2 mod 4 we get

4
ISUlJ QI =1SNQi| + 1SN Qo] + S N Q5] + 5N Qul
t=1

(n—2n n*—4 nn+2) n*—4
<
- 8 + 8 + 8 + 8
n? —2

2

Again, by the choice of S, every vertex must be S-visible from = and hence, S N (X U
Y) C {(U%, Ul); (U%, Unfl)a (ugavn)y (ula U%), (unfla U%)? (un7 U%)} A1S07

. n—4
m Ql : |D(unT_2,v2)(u2,vnT_2)| - 9 5
. n— n—2
Q2 Dz wn-a)wwng)| = 5= A0 [ Dy s wnn)mwnsa)| = =5
2 2 2 2
) n—4 n—2
in Q3 : |D(un_2,vL_~_2)(uL+2,vn_2)| = and |D(un_1,vn+2)(un7+2,vn—1)| = 9
2 2 2 2
. n—4 n—2
m Q4 : |‘D(un72ﬂ)n72)(un+2 ,U3)| - and |D(un71,vn72)(un+2 ,’U2)| = 9
R R B R

Then, since we have assumed that S has the maximum number of vertices from Ule Q+,
we get

1; n=0mod 4,

|SN(XUY)| =
2; n =2mod 4.

Thus for n = 0 mod 4,
n?+2

< .
S| < 5

21



To prove the required lower bound, let R be the set of [|D,,|/2] alternate vertices
from each D,,; see Figures 6 and 7 which illustrate the construction on P; L C5, Py 1 Cs,

P;0OC;, and P3O Ps. Then R is an z-visibility set of cardinality ”22’ L for n =1 mod 4

and RU{(unTH, V1), (UnT-H ,Up) } is an a-visibility set of cardinality @ for n = 3 mod 4.

Also, R U {(u%ﬂ,vl)} is an z-visibility set of cardinality # for n = 0 mod 4 and

RU {(u%ﬂ,vn), (U, 'UnT-H)} is an x-visibility set of cardinality "2;2 for n = 2 mod 4. [J

The results of Theorems 4.2, 4.3 and 4.4 are summarized in Table 1.

n=1mod4 | n=3mod4 | n=0mod4 | n=2mod 4
n24n—2 n24n—2 n24n—2 n24n—2
P” O P" 2 2 2 2
n?43 n24n—2 2n2+4n 2n24+n—2
P” u O” 2 2 4 4
n?—1 n%+3 n242 n242
O” [ C” 2 2 2 2

Table 1: The vertex visibility number of square grids, prisms, and toruses

5 Concluding remarks

We conclude the paper with some problems that deserve attention in the future.
Related to the sharp example of Proposition 4.1 we pose:

Problem 5.1 Determine the vertex visibility number of the Cartesian product of an
arbitrary product of finitely many complete graphs.

Having studied the vertex visibility problem in the context of the Cartesian product,
it is also worthwhile to explore it in other graph products. In particular, mutual-
visibility has already been studied on strong products [8], hence we pose:

Problem 5.2 Study the vertex visibility in the strong product of two graphs.

The variety of mutual-visibility problems and the variety of the general position
problems have been studied in [20] on Sierpinski graphs S}, n > 3. Therefore, investi-
gating the vertex visibility problem in these graphs may also be of interest.
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Problem 5.3 Determine the vertex visibility number of the Sierpiriski graphs S5, n >
3.

Declaration of interests

The authors declare that they have no conflict of interest.

Data availability

Our manuscript has no associated data.

Acknowledgments

The authors thank Ullas Chandran S V for the initial idea for this research, which
greatly influenced the direction of this project. We also thank Manoj Changat for
some initial discussions. Dhanya Roy thank Cochin University of Science and Technol-
ogy for providing financial support under University JRF Scheme. Sandi Klavzar was
supported by the Slovenian Research and Innovation Agency (ARIS) under the grants
P1-0297, N1-0285, N1-0355, N1-0431. Gabriele Di Stefano was supported by the Ital-
ian National Group for Scientific Computation (GNCS-INAAM) and by the academic
project “Monet” of the University of L’Aquila.

References

[1] J. Araujo, M.C. Dourado, F. Protti, R. Sampaio, The iteration time and the
general position number in graph convexities, Appl. Math. Comput. 487 (2025)
Paper 129084.

[2] P. Bonsma, Max-leaves spanning tree is APX-hard for cubic graphs, J. Discrete
Algorithms 12 (2012) 14-23.

[3] B. Bresar, I.G. Yero, Lower (total) mutual-visibility number in graphs, Appl.
Math. Comput. 465 (2024) Paper 128411.

[4] Cs. Bujtas, S. Klavzar, J. Tian, Visibility polynomials, dual visibility spectrum,
and characterization of total mutual-visibility sets, Aequat. Math. 99 (2025) 1883—
1901.

23



[5] U. Chandran S.V., S. Klavzar, J. Tuite, The general position problem: a survey,
arXiv:2501.19385 (2025).

[6] S. Cicerone, G. Di Stefano, S. Klavzar, On the mutual visibility in Cartesian
products and triangle-free graphs, Appl. Math. Comput. 438 (2023) 127619.

[7] S. Cicerone, G. Di Stefano, L. Drozdek, J. Hedzet, S. Klavzar, I.G. Yero, Variety
of mutual-visibility problems in graphs, Theoret. Comput. Sci. 974 (2023) Paper
114096.

[8] S. Cicerone, G. Di Stefano, S. Klavzar, I.G. Yero, Mutual-visibility in strong
products of graphs via total mutual-visibility, Discrete Appl. Math. 358 (2024)
136-146.

[9] S. Cicerone, G. Di Stefano, S. Klavzar, I.G. Yero, Mutual-visibility problems on
graphs of diameter two, European J. Combin. 120 (2024) Paper 103995.

[10] G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022) Paper
126850.

[11] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, 2008.

[12] R.M. Karp, Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, York-
town Heights, N.Y. 1972) 85-103.

[13] S. Klavzar, D. Kuziak, J.C. Valenzuela Tripodoro, I.G. Yero, Coloring the vertices
of a graph with mutual-visibility property, Open Math. 23 (2025) Paper 20250193.

[14] S. Klavzar, A.S. Lakshmanan, D. Roy, Counting Largest Mutual-Visibility and
General Position Sets of Glued t-ary Trees, Results Math. 80 (2025) Paper 207.

[15] D. Korze, A. Vesel, Mutual-visibility sets in Cartesian products of paths and cycles,
Results Math. 79 (2024) Paper 116.

[16] D. Korze, A. Vesel, Mutual-visibility and general position sets in Sierpinski triangle
graphs, Bull. Malays. Math. Sci. Soc. 48 (2025) Paper 106.

[17] D. Kuziak, J.A. Rodriguez-Velazquez, Total mutual-visibility in graphs with em-
phasis on lexicographic and Cartesian products, Bull. Malays. Math. Sci. Soc. 46
(2023) Paper 197.

24



[18] O.R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and
digraphs, Discrete Appl. Math. 155 (2007) 356-364.

[19] D. Roy, S. Klavzar, A.S. Lakshmanan, Mutual-visibility and general position
in double graphs and in Mycielskians, Appl. Math. Comput. 488 (2025) Paper
129131.

[20] D. Roy, S. Klavzar, A.S. Lakshmanan, J. Tian, Varieties of mutual-visibility and
general position on Sierpinski graphs, arXiv:2504.19671 (2025).

[21] R. Solis-Oba, P. Bonsma, S. Lowski, A 2-approximation algorithm for finding a
spanning tree with maximum number of leaves, Algorithmica 77 (2017) 374-388.

[22] M.G.S. Thankachy, U. Chandran S.V., J. Tuite, E.J. Thomas, G. Di Stefano,
G. Erskine, On the vertex position number of graphs, Discuss. Math. Graph The-
ory 44 (2024) 1169-1188.

[23] E.J. Thomas, U. Chandran S.V., J. Tuite, G. Di Stefano, On the general position
number of Mycielskian graphs, Discrete Appl. Math. 353 (2024) 29-43.

[24] J. Tian, S. Klavzar, Graphs with total mutual-visibility number zero and total
mutual-visibility in Cartesian products, Discuss. Math. Graph Theory 44 (2024)
1277-1291.

25



