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ALMOST-PERIPHERAL GRAPHS

Sandi Klavžar, Kishori P. Narayankar, H. B. Walikar and S. B. Lokesh

Abstract. The center C(G) and the periphery P (G) of a connected graph G con-
sist of the vertices of minimum and maximum eccentricity, respectively. Almost-
peripheral (AP) graphs are introduced as graphs G with |P (G)| = |V (G)|−1 (and
|C(G)| = 1). AP graph of radius r is called an r-AP graph. Several constructions
of AP graph are given, in particular implying that for any r ≥ 1, any graph can
be embedded as an induced subgraph into some r-AP graph. A decomposition of
AP-graphs that contain cut-vertices is presented. The r-embedding index Φr(G)
of a graph G is introduced as the minimum number of vertices which have to
be added to G such that the obtained graph is an r-AP graph. It is proved that
Φ2(G) ≤ 5 holds for any non-trivial graphs and that equality holds if and only if
G is a complete graph.

1. INTRODUCTION

Graphs considered in this paper are finite, simple, and, unless stated otherwise,
also connected. If G is a graph, then the distance dG(u, v) between vertices u
and v is the usual shortest-path distance. The eccentricity eG(u) of the vertex u

is max{dG(u, v) : v ∈ V (G)}. The radius rad(G) and the diameter diam(G) are the
minimum eccentricity and the maximum eccentricity, respectively. The center C(G)
and the periphery P (G) consist of the vertices of minimum and maximum eccentric-
ity, respectively. Vertices within C(G) and P (G) are called central and peripheral,
respectively.

The above centrality notions are utmost important in location theory because it is
frequently required that a network has the property that the maximum eccentricity of
any vertex is as small as possible in order to efficiently locate facilities (at central
locations). In the case when C(G) = V (G) holds, the graph G is called self-centered
or eccentric. These graphs were extensively studied by now, see the survey [4] on the
early investigations and a selection of more recent papers [5, 8, 12].
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If a graph is not self-centered, then it contains at least two vertices that do not belong
to its center. Therefore almost self-centered graphs were recently introduced in [9] as
the graphs with exactly two non-central vertices. The paper [9] brings constructions of
almost self-centered graphs and also investigates embeddings of graphs into smallest
almost self-centered graphs. The study of almost self-centered graphs was continued
in [2], where in particular almost self-centered graphs are characterized among median
graphs and among chordal graphs. For instance, it is proved that a graph is an almost
self-centered chordal graph if and only if it is an edge-removed complete graph or
belongs to a relatively rich family of graphs that in particular includes joins of a
complete graph and a totally disconnected graph, to which two simplicial vertices are
added whose neighborhoods are disjoint subcliques of the complete graph.

The other extreme is when almost none of the vertices lies in the center. Such
networks could be of interest when it is required that most of the resources do not lie
in the center. We hence say that a graph G is almost-peripheral, AP for short, if all
but one of its vertices lie in the periphery, that is, if |P (G)| = |V (G)| − 1 holds. If G
is an AP graph and if the eccentricity of the unique vertex from C(G) is r, we will
more precisely say that G is an r-almost-peripheral graph, or r-AP graph for short.

The paper is organized as follows. In the rest of this section some additional
definitions are given. Then, in Section 2, we consider general properties of AP-graphs.
Several constructions of such graphs are given and it is shown that these graphs are
universal in the sense that for any r ≥ 1, any graph can be embedded as an induced
subgraph into some r-AP graph. We also prove that if an AP-graph contains a cut-
vertex then it admits a natural decomposition. In Section 3 the r-embedding index
Φr(G) of a graph G is introduced as the minimum number of vertices to be added
to G such that the obtained graph is an r-AP graph and it is proved that Φ2(G) ≤ 5
holds for any non-trivial graph. Interestingly, the equality holds if and only if G is a
complete graph which can be understood as a non-trivial characterization of complete
graphs.

If u is a vertex of a graph G, then NG(u) is the open neighborhood of u and
NG[u] its closed neighborhood. If H is a subgraph of G, then NH(u) (resp. NH [u])
is NG(u) ∩ V (H) (resp. NG[u] ∩ V (H). A (connected) subgraph H of a (connected)
graph G is isometric if dH(u, v) = dG(u, v) holds for all u, v ∈ V (H).

2. GENERAL PROPERTIES

Clearly, a graph G is a 1-AP graph if and only if it has exactly one universal vertex,
that is, a vertex of degree |V (G)| −1. Examples of 2-, 3-, and 4-AP graphs are shown
in Fig. 1, where in each case the unique central vertex is drawn with a filled circle.

Recall that the d-cube Qd, d ≥ 1, is the graph whose vertices are all binary vectors
of length d, two vertices being adjacent if they differ in precisely one position. With
Q−

d we denote the graph obtained from Qd by removing one of its vertices. (Note that
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by the symmetry of Qd we get the same graph no matter which vertex is removed.)
The first example from Fig. 1 is actually Q−

3 which leads to:

Fig. 1. 2-, 3-, and 4-AP graphs.

Proposition 2.1. If d ≥ 3, then Q−
d is a (d − 1)-AP graph.

Proof. We may assume without loss of generality that Q−
d is obtained from

Qd by removing the vertex 00 . . .0. It is well-known that Q−
d embeds isometrically

into Qd (cf. [10, p. 1211]), which implies that the distance between two vertices of
Q−

d is the number of position in which they differ. It then follows easily that the
eQ−

d
(11 . . .1) = d − 1 while for any other vertex u, eQ−

d
(u) = d.

The number of vertices in Q−
d grows exponentially with respect to d. We next

show that AP graphs with their order being a linear function of their eccentricity can
be constructed. The idea comes from the third example of Fig. 1.

Proposition 2.2. For any integer r ≥ 2 there exists an r-AP graph of order 4r+1.

Proof. Let Gr be the graph as shown in Fig. 2.

Fig. 2. r-AP graph.

Clearly, |V (Gr)| = 4r + 1 and eGr (u00) = r. Consider now the cycles

C1 : u00, u11, . . . , ur1, ur2, ur3, ur−1,3, . . . , u13, u00
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and
C2 : u00, u12, . . . , ur2, ur3, ur4, ur−1,4, . . . , u14, u00 .

Note that both C1 and C2 are of length 2r + 2 and that the distances along C1 are the
same as in Gr except that dGr(u00, ur2) = r while dC1(u00, ur2) = r + 1. Similarly,
the only non-isometricity on C2 is due to dGr (u00, ur3)=r and dC2(u00, ur3)=r+1.
It now readily follows that any vertex of Gr different from u00 has eccentricity r+1.

The 2- and 3-AP graphs from Fig. 1 are smaller than the graphs constructed in
Proposition 2.2. We have no such examples for k ≥ 4 and hence pose the following
question: do there exist r-AP graphs of order n < 4r + 1 for r ≥ 4?

In order to construct additional AP graphs, we introduce the following operation.
If G and H are arbitrary graphs and u ∈ V (G), then let

G ⊕u H

be the graph obtained from the disjoint union of G and H by joining u to every vertex
of H .

Theorem 2.3. If G is an r-AP graph, r ≥ 1, and u is the center vertex of G, then
G⊕u H is an r-AP graph for any graph H .

Proof. Set X = G ⊕u H . Clearly, eX(u) = eG(u) = r. Let x �= u be a vertex of
V (X)∩V (G). Since G is r-AP graph and x /∈ C(G), there exists y ∈ V (X)∩V (G)
such that dG(x, y) = dX(x, y) = r + 1. Moreover, if z ∈ V (X) ∩ V (H), then
dX(x, z) = dX(x, u)+dX(u, z) = dX(x, u)+1 ≤ r+1. We conclude that eX(x)=r+1.
We similarly infer that eX(z)=r+1 holds for any vertex z∈V (X) ∩ V (H).

Corollary 2.4. Let r ≥ 1. Then any graph G can be embedded as an induced
subgraph into some r-AP graph.

Proof. Combine Theorem 2.3 with the existence of r-AP graphs for any r ≥ 1.
For related embeddings of arbitrary graphs into host graphs such that the embed-

dings have required properties see [1, 3, 7, 11].
Each AP graph constructed in Corollary 2.4 contains a cut-vertex. In fact, AP-

graphs that contain a cut-vertex can be described using the ⊕u operation as follows:

Theorem 2.5. If G is an AP-graph with a cut-vertex u, then there exists graphs
G′ and G′′, where G′′ need not be connected, such that

G = G′ ⊕u G′′ .

Proof. Since u is a cut-vertex and G is an AP-graph, we infer that C(G) = {u}.
(This can also be deduced from [6, Corollary 5.4].) Hence e(u) = r. Let v be a vertex
of G with dG(u, v) = r and let G′ be the block of G containing v. Then, because
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u is the unique cut-vertex, we also have u ∈ G′. Let x ∈ V (G) − V (G′). Then
d(v, x) ≥ d(v, u) + d(u, x) ≥ r + 1. Since e(v) = r + 1 we infer that d(u, x) = 1,
that is, x is adjacent to u. Setting G′′ to be the subgraph of G induced by the vertices
V (G)− V (G′) we conclude that G = G′ ⊕u G′′.

3. EMBEDDING INDEX

Recall from Corollary 2.4 that if r is an arbitrary positive integer, then a graph G

can be embedded as an induced subgraph into some r-AP graph. From optimization
point of view it is desirable that the host graph is as small as possible. Hence, if G is
a graph and r a positive integer, let

Φr(G) = min{|V (H)| − |V (G)| : H is r−AP graph, G is induced in H} .

We call Φr(G) the r-embedding index of G.
Clearly, Φr(G) = 0 if and only if G is an r-AP graph. Note also that for any graph

G, Φ1(G) ≤ 1. Indeed, if G does not contain a (unique) universal vertex (equivalently
Φ1(G) > 0), then let H be the graph obtained from G by adding a new vertex and
joining it to all vertices of G. Then H is a 1-AP graph.

If r ≥ 2, then combining Proposition 2.2 with Theorem 2.3 we get Φr ≤ 4r + 1.
For r = 2 we can improve this bound as follows:

Theorem 3.1. If G is an arbitrary graph on at least two vertices, then Φ2(G) ≤ 5.
Moreover, equality holds if and only if G is a complete graph.

Proof. Suppose first that G is not complete. Then G contain an induced path
on three vertices v1v2v3. Define the graph H as follows. Let V (H) = V (G) ∪
{u1, u2, u3, u4} and E(H) = E(G) ∪ {u1u2, u2u3, u3u4, u1u4, v1u1, v2u4, v3u3} ∪
{xu4 : x ∈ V (G), x �= v1, v2, v3}, see Fig. 3.

Fig. 3. Construction from the proof.
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It is straightforward to verify that eH(u4) = 2 and that eH(x) = 3 for any vertex
x �= u4. While verifying the distances note that it is essential that v1v3 /∈ E(G),
for otherwise the eccentricity of u3 in H would be 2. We therefore conclude that
Φ2(G) ≤ 4 holds for any non-complete graph G.

We are left with the problem to determine Φ2(Kn) for n ≥ 2. That Φ2(K2) ≤ 5
holds, follows from the left graph of Fig. 1. Consider next Kn, n ≥ 3. Let x and
y be arbitrary vertices of Kn and construct a graph H with the vertex set V (H) =
V (G) ∪ {ui : 1 ≤ i ≤ 5} and the edge set as shown in Fig. 4.

Fig. 4. Kn, n ≥ 3, embedded into H .

Since n ≥ 3, Kn contains at least one vertex different from x and y. It is then
straightforward to check that eH(u4) = 2 and eH(w) = 3 for any vertex w �= u4.
Hence Φ2(Kn) ≤ 5 holds for any n ≥ 3.

Clearly, Φ2(Kn) > 0. Likewise, Φ2(Kn) cannot be 1, because any (connected)
graph of order n + 1 which contains Kn has diameter at most 2. Suppose next that
Φ2(Kn) = 2 and let H be a 2-AP graph that contains Kn. Let u and v be vertices
of V (H)− V (Kn). If both u and v have neighbors in Kn, then eH(x) ≤ 2 holds for
any vertex x of Kn, but this is clearly not possible because H is a 2-AP graph and
hence contains a unique central vertex x, that is, a unique vertex x with eH(x) = 2.
Therefore assume without loss of generality that u has no neighbor in Kn, so that
then u is necessarily adjacent to v which has in turn some neighbors in Kn. But now
eH(v) ≤ 2 as well as eH(x) = 2 for any neighbor x �= u of v which is the same
contradiction as above.

We have shown by now that Φ2(Kn) ≥ 3. Assume that Φ2(Kn) = 3 and let H

be a 2-AP graph that contains Kn, where V (H) − V (Kn) = {u, v, w}. Again, if
each of u, v, and w has at least one neighbor in Kn, the eccentricity of any vertex
of Kn is at most 2, a contradiction. Assume therefore that u has no neighbor in Kn.
If d(u, Kn) = 3, let u − v − w − x be a path from u to a vertex x ∈ Kn. Since
d(u, Kn) = 3, v has no neighbor in Kn. Hence w is adjacent to all vertices of Kn,
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for otherwise eH(u) = 4. But then eH(v) = eH(w) = 2. As this is not possible we
conclude that d(u, Kn) = 2.

Let u − v − x be a path of length 2, where x ∈ V (Kn). Consider now the
vertex w. If w is adjacent to v, then v, x ∈ C(H), a contradiction. If w is adjacent
to a neighbor x′ of v in Kn (where it is possible that x′ = x), then v, x′ ∈ C(H).
Therefore NKn(w)∩NKn(v) = ∅. If also wu /∈ E(H), that is, if NH(w)∩NH(v) = ∅,
then dH(u, w) = 4, a contradiction. So w must necessarily be adjacent to u. Then
NKn(w) �= ∅, for otherwise dH(w, Kn) = 3, which is a possibility we have already
ruled out. Hence let x′ ∈ NKn(w). Then eH(x′) = 2 and because also eH(x) = 2 and
x �= x′ we have the final contradiction for the assumption Φ2(Kn) = 3. We conclude
that Φ2(Kn) > 3.

The last part of the proof is to exclude the possibility Φ2(Kn) = 4. For this
sake assume on the contrary that H is a 2-AP graph that contains Kn, where Y =
{u, v, w, z} is the set of vertices of H not in Kn. As above we first infer that not every
vertex from Y can have a neighbor in Kn. Clearly, a vertex from Y is at distance at
most 3 from Kn. Suppose dH(u, Kn) = 3 and let u − v − w − x be a shortest path
with x ∈ Kn. Then NKn(w) = V (Kn). But then in any of the possibilities for the
adjacencies of z we have that eH(v) = 2 = eH(w), a contradiction. It follows that
dH(y, Kn) ≤ 2 for any y ∈ Y and hence there is at least one vertex from Y , say u,
with dH(u, Kn) = 2. Let u − v − x be an induced path with x ∈ V (Kn). We now
distinguish the following two cases.

Case 1. dH(w, Kn) = 1 = dH(z, Kn).
Note first that x is the unique neighbor of v in Kn, since any other of its neighbors
in Kn would also be in the center of H . Suppose next that wx ∈ E(H). Then
zx /∈ E(H) for otherwise x, v ∈ C(H). Now, the only possibility that dH(z, u) = 4
does not happen is that there exists a z, u-shortest path that passes v or w. But in the
first case v ∈ C(H) and in the other case w ∈ C(H) none of which is possible. We
have thus proved that wx /∈ E(H). Analogously, zx /∈ E(H). Since dH(w, u) ≤ 3
and dH(z, u) ≤ 3, it follows that no w, u-shortest path uses a vertex of Kn, and
also no shortest z, u-path uses such a vertex. Now we have the following cases. If
zw, wv ∈ E(H), then w ∈ C(H). Similarly, if zw, wu ∈ E(H), then w ∈ C(H).
And if zw, zu ∈ E(H), then z ∈ C(H). Hence we conclude that zw /∈ E(H). If
zu, wu ∈ E(H), then w, z ∈ C(H). If zv, wv ∈ E(H), then v ∈ C(H). Hence
it must be that wv, zu ∈ E(H) (or vice versa). But then v ∈ C(H), the final
contradiction.

Case 2. dH(w, Kn) = 1, dH(z, Kn) = 2.
Note that in this case z must be adjacent to at least one of the vertices v and w. This
observation now leads to several subcases that can be considered analogously as the
analysis was done in Case 1. Not to repeat tedious analysis we leave out the details.
In any case, however, a contradiction is reached.
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We conclude the paper with three additional examples of 2-AP graphs presented
in Fig. 5. They respectively contain K3, K4, and K5 and are of orders 8, 9, and
10. Hence these examples are optimal with respect to the 2-embedding index of the
corresponding complete graphs. Note that none of these embeddings is the one from
the proof of Theorem 3.1 (in which a pendant vertex is present, see Fig. 4). Hence
these examples show that a minimum embedding is not unique.

Fig. 5. Three 2-AP graphs.
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