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Abstract. Partial cubes are defined as isometric subgraphs of hypercubes. For a partial cube
G, its crossing graph G# is introduced as the graph whose vertices are the equivalence classes of
the Djoković–Winkler relation Θ, two vertices being adjacent if they cross on a common cycle. It
is shown that every graph is the crossing graph of some median graph and that a partial cube G

is 2-connected if and only if G# is connected. A partial cube G has a triangle-free crossing graph
if and only if G is a cube-free median graph. This result is used to characterize the partial cubes
having a tree or a forest as its crossing graph. An expansion theorem is given for the partial cubes
with complete crossing graphs. Cartesian products are also considered. In particular, it is proved
that G# is a complete bipartite graph if and only if G is the Cartesian product of two trees.
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1. Introduction. A partial cube is a connected graph that admits an isometric
embedding into a hypercube. Partial cubes have first been investigated in the 1970s
by Graham and Pollak [13], who used them as a model for a communication network.
By now, the structure of partial cubes is relatively well understood. Djoković [10]
characterized these graphs via convexity of certain vertex partitions. He also intro-
duced the relation Θ on the edge set of a graph. This relation was later used by
Winkler [28] to characterize the partial cubes as those bipartite graphs for which Θ is
transitive. Chepoi [8] followed with an expansion theorem for partial cubes. Another
characterization of partial cubes was obtained by Avis [4]; cf. also [27]. Partial cubes
have found several applications. See, for instance, [11] for connections with oriented
matroids and [9, 21] for recent applications to chemical graph theory. An important
subclass of the class of partial cubes is that of the median graphs (see [24, 25]); cf. [22].
Among the median graphs the cube-free median graphs stand out; see, for instance,
[5, 20, 23].

The fastest known recognition algorithm for partial cubes is of complexity O(mn),
where n and m are the number of vertices and edges of a given graph. Since for partial
cubes m ≤ (n log n)/2 (cf. [2, 3, 12, 19]), this complexity reduces to O(n2 log n). The
first such algorithm is due to Aurenhammer and Hagauer [2, 3]. Another more general
algorithm for recognizing partial Hamming graphs (isometric subgraphs of Cartesian
products of complete graphs) of complexity O(mn) is given in [1]. Applying the
canonical isometric embedding theory of Graham and Winkler [14], a simple algorithm
for recognizing partial Hamming graphs of the same complexity can be obtained; see
[17, 19]. However, only a trivial lower bound O(m) for recognizing partial cubes
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is known. This contrasts with the recognition problem for median graphs, where
the connection between median graphs and triangle-free graphs [20] provides strong
evidence that the fastest known recognition algorithms for median graphs [15, 19] are
close to being optimal.

In this paper we are interested in the structure of the Θ-classes of a partial cube
G. An important feature is whether two Θ-classes cross or not. We say that two
Θ-classes F1 and F2 cross in G if edges of F2 occur in both the components of G−F1.
The crossing graph G# of a partial cube G has the Θ-classes of G as its vertices, where
two vertices of G# are joined by an edge whenever they cross as Θ-classes in G.

In the next section we recall concepts needed later and collect basic properties of
the relation Θ. Our results are presented in sections 3–6. We start with a theorem
asserting that every connected graph is the crossing graph of some partial cube, even
the crossing graph of some median graph. Thus at first sight the notion of a crossing
graph may not seem very interesting. However, appearances are deceptive. There
is a nontrivial relationship between the structure of a partial cube and that of its
crossing graph. For instance, we prove the following results for partial cubes G: “G
is 2-connected if and only if its crossing graph is connected,” “the crossing graph of
G is triangle-free if and only if G is a cube-free median graph,” “the crossing graph
of G is a tree if and only if G is a 2-connected cube-free median graph with some
forbidden subgraphs,” and “the crossing graph of G is a complete bipartite graph if
and only if G is the Cartesian product of two trees.” Along the way some other types
of graphs, such as C4-trees and C4-cactoids, are considered. Moreover, we characterize
the partial cubes with a complete graph as crossing graph. We conclude this paper
with a number of open problems.

2. Preliminaries. For u, v ∈ V (G), let dG(u, v) denote the length of a shortest
path (also called geodesic) in G from u to v. A subgraph H of a graph G is an
isometric subgraph if dH(u, v) = dG(u, v) for all u, v ∈ V (H). The interval I(u, v)
between two vertices u and v in G is the set of all vertices on shortest paths between u
and v. A subgraph H of G is convex if we have I(u, v) ⊆ V (H) for any u, v ∈ V (H).

The Cartesian product G2H of two graphs G and H is the graph with vertex set
V (G) × V (H) and (a, x)(b, y) ∈ E(G2H) whenever either ab ∈ E(G) and x = y or
a = b and xy ∈ E(H). The n-cube Qn is the Cartesian product of n copies of the
complete graph on two vertices K2.

For a graph G = (V,E) and X ⊆ V , let 〈X〉 denote the subgraph induced by X.
For two vertices u and v on a path P , we denote the subpath of P between u and v
by u → · · ·P · · · → v.

The Djoković–Winkler relation Θ [10, 28] is defined on the edge set of a graph in
the following way. Edges e = xy and f = uv of a graph G are in relation Θ if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u) .

Relation Θ is reflexive and symmetric. If G is bipartite, then Θ can be defined as
follows: e = xy and f = uv are in relation Θ if

d(x, u) = d(y, v) and d(x, v) = d(y, u) .

Among bipartite graphs, Θ is transitive precisely for partial cubes (i.e., isometric
subgraphs of hypercubes), as has been proved by Winkler in [28].

Let G = (V,E) be a connected, bipartite graph. For any edge ab of G we write
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Wab = {w ∈ V | dG(a,w) < dG(b, w)},
Uab = {w ∈ Wab | w has a neighbor in Wba},
Fab = {e ∈ E | e is an edge between Wab and Wba},
Gab = 〈Wab〉.

Note that if G is bipartite, then we have V = Wab ∪Wba. For a bipartite graph G,
the sets Fab are called colors and the subgraphs Gab, Gba form the split of the color
Fab. The subgraph 〈Uab〉 is the side of color Fab in Gab, and 〈Uba〉 is the opposide of
〈Uab〉. Djoković [10] characterized the partial cubes as the connected bipartite graphs
in which all subgraphs Gab are convex.

We now state three well-known facts about the relation Θ; cf. [18].

Lemma 2.1. Let G be a connected, bipartite graph, and let ab be any edge of G.
Then Fab is the set of all edges in relation Θ with ab.

Note that for partial cubes Lemma 2.1 asserts that Θ-classes coincide with the
sets Fab, a fact that will be used implicitly in what follows.

We say that a color occurs in a subgraph H if there is an edge of that color in H.

Lemma 2.2. Let C be an isometric cycle of a partial cube G, and let Fab be a
color which occurs in C. Then Fab occurs in C exactly twice (in two antipodal edges).

Lemma 2.3. Suppose P is a path connecting the endpoints of an edge e. Then P
contains an edge f with eΘf .

The conclusion of Lemma 2.3 holds also if P is a walk, as every walk containing
the endpoints of e contains a path between the endpoints of e; cf. Lemma 2.4 of [19].

For our purposes it is convenient to have statements available that are slightly
stronger than the above lemmas. These may also be part of folklore, but to make the
paper self-contained we provide them with proofs.

Lemma 2.4. Let G be a partial cube. Then a path P in G is a geodesic if and
only if no color occurs twice on P .

Proof. If P is a geodesic, then, by the definition of Θ, all colors on P must be
distinct.

Conversely, let P = v0 → v1 → · · · → vn be a path on which all colors are
distinct. Assume that P is not a geodesic with n as small as possible. Note that
n ≥ 3. Then we have d(v0, vn−1) = d(v1, vn) = n − 1, d(v0, vn) = n − 2. Let Q be a
v0, vn-geodesic. By minimality, P and Q are internally disjoint. By Lemma 2.3, the
edge v0v1 is in relation Θ with an edge of the cycle composed of P and Q. Moreover,
v1 → v0 → · · ·Q · · · → vn is a path of length n− 1 and thus a geodesic; hence v0v1 is
not in relation Θ with any edge of Q. So P contains two edges of the same color, a
contradiction.

Let C be an even cycle of length 2k. We call two edges on C antipodal if their
endpoints are joined by two paths of length k − 1 on C.

Lemma 2.5. Let G be a partial cube. Then C is an isometric cycle in G if and
only if every color on C occurs only on antipodal edges.

Proof. Let C be an isometric cycle of length 2k in G. Then every path of length
at most k on C is a geodesic in G, so that, by Lemma 2.4, all colors on such paths
occur exactly once. Since each color on C occurs at least twice, it follows that each
color on C occurs precisely on antipodal edges.

Conversely, let C be a cycle of length 2k in G such that each color on C occurs
precisely on antipodal edges. Then, by Lemma 2.4, each path of length at most k
must be a geodesic in G. Hence C is isometric in G.

Lemma 2.6. Let G be a partial cube, and let Fab be a color of G. If uv, xy are
edges of Fab, with u, x on one side and v, y on the opposide, and if P is any u, x-
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geodesic and Q is any v, y-geodesic, then P and Q contain the same colors, and each
color occurs at most once on P and at most once on Q.

Proof. By definition of a color, a geodesic contains every color at most once.
Take any color on P , say, edge e is of that color. Then u → · · ·P · · · → x → y →
· · ·Q · · · → v → u is a cycle through e, whence constitutes a path between the ends
of e. Hence, by Lemma 2.3, it contains an edge f of the same color. Since f cannot
be on P , it is on Q. Conversely, every color on Q occurs on P .

A median graph is, by definition, a connected graph such that, for every triple of
its vertices, there is a unique vertex lying on a geodesic (i.e., shortest path) between
each pair of the triple. It follows immediately from the definition that median graphs
are bipartite. By now, the class of median graphs has been well investigated and
a rich structure theory is available; see the recent survey [22]. Median graphs are
partial cubes (see [24, 25]), whence relation Θ is transitive on median graphs. They
may be characterized as the connected bipartite graphs in which all subgraphs 〈Uab〉
are convex; cf. [6]. Another relevant feature of median graphs is that any isometric
cycle of length 2n is contained in an induced Qn. (This again can be deduced directly
from the definition.)

3. Crossing graphs. Let G be a partial cube. We say that two colors cross if
their splits G1, G2 and H1, H2 satisfy Gi ∩ Hj 6= ∅ for 1 ≤ i, j ≤ 2; see [23]. The
crossing graph G# of a partial cube G has the colors of G as its vertices, and two
vertices are adjacent if they cross as colors.

At first sight it is not clear which graphs are crossing graphs. However, using the
following concept, the answer is clear. For a graph G, the simplex graph S(G) of G
is the graph whose vertices are the complete subgraphs of G (including the empty
graph), two vertices being adjacent if, as complete subgraphs of G, they differ in
exactly one vertex; see [7]. It is easily seen that a simplex graph is a median graph,
and hence a partial cube, by checking that it satisfies the definition of a median graph.

Theorem 3.1. Every graph is a crossing graph of some median graph. More
precisely, for any graph G we have G = S(G)#.

Proof. Let V (G) = {1, 2, . . . , n}. Since vertex ∅ of S(G) is of degree n, we infer
that S(G)# has at least n vertices. Let uv be an arbitrary edge of S(G). Without loss
of generality we may assume that u = {1, 2, . . . , k} and v = {1, 2, . . . , k+1}. It is now
straightforward to check that the edge (∅, {k+1}) is in relation Θ with uv. It follows
that S(G)# has exactly n vertices and that vertex i of G corresponds to the color of
edge (∅, {i}) in S(G). Assume that vertices 1 and 2 are adjacent in G. Then ∅, {1},
{2}, and {1, 2} induce C4 in S(G), and so the corresponding colors cross. Finally, if
1 is not adjacent to 2, then they are not in the same complete subgraph of G, which
implies that the corresponding colors do not cross in S(G).

There is another (simplified) construction showing that every graph is the crossing

graph of some partial cube. For a graph G, let G̃ be the graph obtained from G by
subdividing all edges of G and adding a new vertex z joined to all the original vertices
of G; see [20]. Then we can argue similarly as above that for any graph G we have

G = G̃#.
To prove relations between properties of a partial cube and properties of its cross-

ing graph, we need some simple criteria for colors to determine whether they cross.
Lemma 3.2. Let G be a partial cube. Then any cycle of G contains two crossing

colors.
Proof. Let C be any cycle of G. Note that each color occurs an even number of

times on C. Choose two edges uv and xy of the same color F on C such that on the
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subpath P = u → v → · · · → x → y of C every color occurs at most once between u
and x. Since uv and xy cannot be adjacent, there is at least one other color on P . By
Lemma 2.3, color F crosses with each color on the subpath v → · · · → x of P .

We say that two colors alternate on a cycle C if they both occur in C and we
encounter them alternately while walking along C. Note that Lemma 2.5 in particular
implies that any two colors on an isometric cycle of a partial cube alternate.

Lemma 3.3. Let G be a partial cube G, and let Fab and Fuv be two different
colors of G. Then the following statements are equivalent:

(i) Fab and Fuv cross.
(ii) Fab and Fuv alternate on an isometric cycle of G.
(iii) Fab and Fuv occur on an isometric cycle of G.
(iv) Each of the colors Fab and Fuv appear exactly twice on a cycle of G and they

alternate.
Proof. (i) ⇒ (ii) Suppose that the colors Fab and Fuv cross. We may assume

that uv lies in Gab. As the colors cross, there is an edge u′v′ in Gba of color Fuv with
u and u′ on the one side of Fuv and v and v′ on the opposide, that is, dG(u, u′) =
dG(v, v′) = dG(u, v′) − 1. We choose the edges uv and u′v′ such that dG(u, u′) is as
small as possible. Let l(S) denote the length of the walk S in G.

Let P be a shortest u, u′-path, and let Q be a shortest v, v′-path, so that P lies
in Guv and Q lies in Gvu. The paths P and Q are disjoint and each of them contains
exactly one edge of Fab.

We claim that C = u → · · ·P · · · → u′ → v′ → · · ·Q · · · → v → u is an isometric
cycle. Assume the contrary, and let x and y be vertices of C such that dG(x, y) <
dC(x, y). Let R be a shortest x, y-path. We may select x and y such that R is internally
disjoint from C and that x lies on P and y on Q. Then C ′ = u → · · ·P · · · → x →
· · ·R · · · → y → · · ·Q · · · → v → u is a cycle of length l(C ′) < l(C). By Lemma 2.3,
there is an edge x′y′ of color Fuv on C ′ with u, x′, and u′ on the one side and v, y′,
and v′ on the opposide of Fuv. Write P ′ = u → · · ·P · · · → x → · · ·R · · · → x′ and
Q′ = v → · · ·Q · · · → y → · · ·R · · · → y′. Then we have

2dG(u, u′) = dG(u, u′) + dG(v, v′) = l(C) − 2

> l(C ′) − 2 = l(P ′) + l(Q′) ≥ dG(u, x′) + dG(v, y′) = 2dG(u, x′).

Hence we have dG(u, x′) < dG(u, u′), which contradicts the minimality of dG(u, u′).
Thus we conclude that C is an isometric cycle. By Lemma 2.5 each of the two colors
appears exactly twice on C and the colors alternate on C.

(ii) ⇒ (iii) This implication is trivial.

(iii) ⇒ (iv) This follows from Lemma 2.5.

(iv) ⇒ (i) Let C be a cycle of G on which the colors Fab and Fuv appear exactly
twice. Let a′b′ and u′v′ be the second edges of colors Fab and Fuv, respectively,
and let dG(a, a′) = dG(b, b′) = dG(a, b′) − 1. Then the cycle C can be written as
C = a → · · ·P · · · → a′ → b′ → · · · → Q · · · → b → a, where P and Q are the
corresponding paths on C connecting a with a′ and b′ with b. Since ab and a′b′ are
the only edges from Fab on C, we observe that P lies in Gab and Q lies in Gba.
Moreover, as the colors alternate on C, we may assume that uv lies on P and u′v′ lies
on Q. Without loss of generality we may assume that a ∈ Wuv and b ∈ Wu′v′ . Then
we have a ∈ Wab ∩Wuv, a

′ ∈ Wab ∩Wvu, b ∈ Wba ∩Wuv and b′ ∈ Wba ∩Wvu. Thus
the colors Fab and Fuv cross.
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Our first result that relates properties of the crossing graph G# to properties of
the partial cube G involves connectivity.

Theorem 3.4. Let G = (V,E) be a partial cube. Then G is 2-connected if and
only if G# is connected.

Proof. First assume that G is not 2-connected, and let x be a cutvertex in G. Let
A be a subgraph of G induced by x and one component of G − x, and let B be the
subgraph of G induced by x and the remaining part of G − x. Then A and B both
contain edges, and we have A∪B = G and A∩B = {x}, so that no color in A crosses
with a color in B. Hence, in G#, there is no path between any color in A and any
color in B; that is, G# is disconnected.

Conversely, let G be 2-connected and take any two incident edges uv and vw of
G, with, say, uv colored red and vw colored blue. Since G is 2-connected, there exists
a path between u and w in G not containing v. Let P be such a u,w-path of minimal
length k. Since P → v → u is a cycle, red and blue must occur on P . Now we walk
along P from u to w. Let xy be the first red or blue edge on P , where we traverse xy
from x to y.

Suppose the color of xy is blue, that is, the color of vw. Then x and v are on
the same side of color blue and y and w are on the opposide. Let Q be a geodesic
between x and v, and let Q′ be a geodesic between y and w. Then by Lemma 2.3 red
occurs on Q and, since Q is a geodesic, red occurs only once on Q.

By Lemma 2.6 red occurs exactly once also on Q′; so red and blue occur exactly
twice alternately on the cycle

v → · · ·Q · · · → x → y → · · ·Q′ · · · → w → v .

So, by Lemma 3.3 (iv), red and blue cross in G and are adjacent in G#.
Suppose the color of xy is red, that is, the color of uv. Now u and x are on one

side of red, and v and y are on the opposide. Let P1 be a geodesic between v and y,
and let u1 be the neighbor of v on P1. Note that the u, x-subpath of P is a geodesic
by minimality of P . Thus, using Lemma 2.3, red and the color of vu1 cross in G, and
so are adjacent in G#. Now,

u1 → · · ·P1 · · · → y → · · ·P · · · → w

is a walk between u1 and w not containing v of length k − 2. Hence there is a path
between u1 and w not containing v of length at most k − 2.

Repeating the above argument, we find neighbors u2, . . . , up of v such that the
colors of vui and vui+1 cross, for i = 1, . . . , p− 1, and also the color of vup and blue
cross. Thus we have constructed a path in G# between red and blue. Connectivity
of G# now follows from the connectivity of G.

Note that Pn2Pn is 2-connected but not 3-connected, since it contains a vertex
of degree 2. On the other hand, (Pn2Pn)# = Kn,n is n-connected. So there does not
exist an analogue of Theorem 3.4 for higher connectivities.

4. Complete crossing graphs. In this section we consider the partial cubes
that have complete crossing graphs. In [23] it was proved that in a median graph G
there are n pairwise crossing colors if and only if G contains an induced n-cube. We
restate this result in the next proposition and its corollary.

Proposition 4.1. A median graph is a hypercube if and only if its crossing graph
is complete. More precisely, if G is a median graph, then G = Qn, n ≥ 1 if and only
if G# = Kn.
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Fig. 4.1. Partial cubes with complete crossing graphs.

Recall that the clique number of a graph is the size of a largest complete subgraph
in the graph.

Corollary 4.2. Let G be a median graph. Then the clique number of G# is
equal to the dimension of the largest hypercube in G.

A simple consequence of the above cited result is the following corollary; see [23].

Corollary 4.3. Let G be a partial cube. Then G is a tree if and only if G# is
the complement of a complete graph.

For partial cubes the variety of graphs with complete crossing graphs is much
richer than for median graphs. Besides hypercubes one finds even cycles, Q3 minus
a vertex, and the graphs from Figure 4.1. Moreover, the Cartesian product preserves
this property (cf. Proposition 6.1).

In order to characterize the partial cubes with complete crossing graphs, we recall
the concept of expansion; see [24, 25, 26] or [19].

Let G′ be a connected graph. A proper cover G′
1, G

′
2 consists of two induced

subgraphs G′
1, G

′
2 of G′ such that G′ = G′

1 ∪ G′
2 and G′

0 = G′
1 ∩ G′

2 is a nonempty
subgraph, called the intersection of the cover. The cover is isometric (resp., convex)
if it consists of isometric (resp., convex) subgraphs.

Let G′ be a connected graph, and let G′
1, G

′
2 be a proper cover of G′ with G′

0 =
G′

1 ∩G′
2. The expansion of G′ with respect to G′

1, G
′
2 is the graph G constructed as

follows. Let Gi be an isomorphic copy of G′
i, for i = 1, 2, and, for any vertex u′ in

G′
0, let ui be the corresponding vertex in Gi for i = 1, 2. Then G is obtained from the

disjoint union G1 ∪G2, where for each u′ in G′
0 the vertices u1 and u2 are joined by

an edge. We denote the copy of G′
0 in Gi by G0i for i = 1, 2. Note that the set F of

edges between G01 and G02 is a Θ-class, i.e., a color, with sides G01 and G02. If the
cover G′

1, G
′
2 is isometric (resp., convex), then we call G an isometric (resp., convex)

expansion. Finally, G is an all-color expansion if any of the G′
1 and G′

2 contains at least
one edge of each Θ-class of G. The converse operation of expansion is contraction: G′

is the contraction of G with respect to the split G1, G2, or, equivalently, with respect
to the color F .

Chepoi [8] proved that a graph G is a partial cube if and only if G is obtained from
the one-vertex graph K1 by successive isometric expansions. Mulder [24, 25] proved
that G is a median graph if and only if G can be obtained from K1 by successive



242 SANDI KLAVŽAR AND HENRY MARTYN MULDER

convex expansions.
Let G be a partial cube with a complete crossing graph, and let H be an isometric

subgraph of G that meets all the Θ-classes of G. Then the expansion of G with
respect to H and G is an all-color expansion, and the expanded graph has a complete
crossing graph. (Note that the right-hand graph of Figure 4.1 is an expansion of Q3

with respect to Q3 and K1,3.) More generally, we have the following result.
Proposition 4.4. Let G be a partial cube. Then G# is a complete graph if and

only if G can be obtained from K1 by a sequence of all-color expansions.
Proof. Assume first that G# is a complete graph, and let Fab be an arbitrary but

fixed color of G. Let G′ be the contraction of G with respect to Fab, and let G′
1, G

′
2

be the corresponding cover of G′, so that G is the expansion of G′ with respect to the
cover G′

1, G
′
2. Let Fuv be any other color of G. Then, since G# is complete, we infer

from Lemma 3.3 (ii) (or (iv)) that both G1 and G2 contain an edge from Fuv. Hence
G′

1 and G′
2 both contain edges of this color. Induction completes the argument.

Conversely, suppose that G can be obtained from K1 by a sequence of all-color
expansions. Let G be an all-color expansion of G′ with respect to the cover G′

1, G
′
2,

and let Fab be the color of this expansion step. We need to show that Fab crosses
with any other color. Let Fuv be an arbitrary color different from Fab. Since G is
obtained by an all-color expansion, there is an edge xx′ from Fuv in G1 and an edge
yy′ from Fuv in G2 with x and y on the one side and x′ and y′ on the opposide. Let
P be a shortest x, y-path, and let Q be a shortest x′, y′-path. Then x′ → x → P
is a shortest path and thus no edge of P belongs to Fuv. Similarly, we see that no
edge of Q is in Fuv. Moreover, there are exactly two edges from Fab in the cycle
x′ → x → · · ·P · · · → y → y′ → · · ·Q · · · → x′ → x. Therefore, by Lemma 3.3 (iv)
the colors Fab and Fuv cross.

5. Triangle-free crossing graphs. Cube-free median graphs are median graphs
that do not contain Q3 as an induced subgraph. Note that a median graph is cube-free
if and only if it does not contain isometric cycles of length at least 6. Moreover, each
side of any color in a cube-free median graph must be a tree.

The class of cube-free median graphs may seem a rather special class of graphs.
However, in [20] it was proved that there exists a one-to-one correspondence between
the class of triangle-free graphs and a special subclass of cube-free median graphs.
Hence, in the universe of all graphs, the density of the triangle-free graphs is as large
as that of the cube-free median graphs (being triangle-free themselves). In [23] it was
shown that cube-free median graphs play a special role in the theory of consensus
functions on graphs. In our next result we show that the condition that the crossing
graph of a partial cube G is triangle-free turns out to be a rather strong condition—it
is equivalent to the fact that G is a cube-free median graph.

Theorem 5.1. Let G be a partial cube. Then G# is triangle-free if and only if
G is a cube-free median graph.

Proof. First let G be a cube-free median graph. Then, by Theorem 11 from
[23], we know that G does not contain three mutually crossing colors, so that G# is
triangle-free.

Conversely, let G# be triangle-free; that is, G does not contain three mutually
crossing colors. Take any color F in G, say between G1 and G2, with sides G01 and
G02, respectively. (Here and later we use the “expansion” notation introduced after
Corollary 4.3.) Every color in G01 crosses with F . Hence, to avoid a triangle in G#,
there are no cycles in G01, by Lemma 3.2. So G01 is a forest.

Suppose that G01 consists of more than one component. Let R and S be two
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components of G01, and choose uR in R and uS in S closest to each other. Since G1 is
an isometric subgraph of G, there is a geodesic P in G1 between uR and uS of length
at least two. Note that, by the choice of uR and uS , all internal vertices of P are in
G1 − G01. Let vR and vS be the neighbors in G02 of uR and uS , respectively, and
let Q be a geodesic between vR and vS . By Lemma 2.6, P and Q contain the same
colors, and each color occurs at most once on P and at most once on Q. So all colors
on P and Q cross color F . Let p be the vertex on P adjacent to uR and q the vertex
on Q adjacent to vR. Since p is in G1 − G01, it follows that p is not adjacent to q.
This implies that the edges uR → p and vR → q have different colors. So, by Lemma
3.3, they cross. Moreover, they both cross F , which is impossible. Hence we conclude
that G01 is connected, so that it is a tree, as is G02.

Assume that there is a color occurring twice in the tree G01. Then choose edges
uv and xy of the same color such that on the path P = u → v → · · · → x → y in G01

all colors on the subpath u → v → · · · → x are distinct. Note that this subpath must
be of length at least 3. Then v → · · ·P · · · → x is a geodesic on the one side of the
color. Let u → · · ·Q · · · → y be a geodesic on the opposide. By Lemmas 2.6 and 3.3,
the color of uv crosses with all other colors on P . Since all colors in G01 cross F we
would get three mutually crossing colors, which is impossible. So every color in G01

occurs exactly once. Hence, by Lemma 2.4, subgraph G01 is isometric.

Next we prove that G01 is convex. Assume the contrary, and let u, v be vertices in
G01, so that there is a u, v-geodesic P , all of whose internal vertices are in G1 −G01.
Note that P is of length at least 2. Let Q be the u, v-path in G01, which is, as observed
above, also a u, v-geodesic. Then u → · · ·P · · · → v → · · ·Q · · · → u is a cycle. This
implies that every color on P is also on Q, and vice versa. Since a cycle contains
crossing colors, these must both occur on Q, so that they both cross F as well. Since
this is impossible, G01 is convex in G.

Similarly, G02 is a convex subtree in G.

From the fact that G is bipartite and the sides of all colors are convex, we deduce
that G is a median graph (cf. Theorem 1 in [6]). Finally, since three mutually crossing
colors in a median graph necessarily force an induced Q3, we conclude that G is a
cube-free median graph.

Theorem 5.1 allows us to characterize several subclasses of partial cubes having
nice crossing graphs. The wheel Wn consists of the n-cycle Cn together with an extra
vertex joined to all the vertices of the cycle; cf. Figure 5.1. The cycle is called the
rim of the wheel, the extra vertex the center of the wheel. The edges incident with
the center are the spokes of the wheel.

The cogwheel Mn is obtained from the wheel Wn by subdividing all the edges on
the rim of the wheel; cf. Figure 5.1. Note that the cogwheel M3 is precisely the cube
Q3 minus a vertex. The center and the spokes of the cogwheel are inherited from the
wheel. The cogwheel Mn is a partial cube with Cn as its crossing graph.

The next proposition is a simple corollary of Theorem 4.4, but it is also straight-
forward to check it directly.

Proposition 5.2. Let G be a partial cube. Then G# = K3 if and only if G is
Q3, M3, or C6.

Theorem 5.3. Let G be a partial cube. Then G# is a cycle of length n ≥ 4 if
and only if G = Mn.

Proof. The “if” part of the theorem is obvious. So let G# = Cn with n ≥ 4. By
Theorems 3.4 and 5.1, G is a 2-connected cube-free median graph. This implies that
the only isometric cycles in G are 4-cycles. Hence any two colors of G cross on some
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Fig. 5.1. The wheel W6 and the cogwheel M6.

4-cycle. If the side of a color would contain a P4 or a K1,3, then G# would contain a
vertex of degree at least 3. Hence each side of any color of G must be a P2 or a P3.
(Note that P1 is impossible, since G is 2-connected.) If some side were a P2, say of
color F , then F would be a pendant vertex in G#. So we conclude that all sides in
G induce a P3.

Take a vertex z of maximum degree k in G. Take any edge zu incident with
z. If zu is on a 4-cycle with zw, then the colors Fzu and Fzw cross. On the other
hand, color Fzu crosses with exactly two other colors. Moreover, Fzu crosses with
each of these colors on a 4-cycle through z. Hence every edge incident with z is on a
4-cycle with exactly two other edges incident with z. This implies that the colors at
z form a 2-regular subgraph of G#, so that these are all the colors of G. Moreover,
the colors cross cycle-wise; that is, we may number the edges incident with z by
0, 1, . . . , n− 1, so that i is exactly on a 4-cycle with edges i− 1 and i + 1 modulo k.
In the subgraph consisting of all these 4-cycles, all sides already induce a P3. So this
subgraph comprises all of G, and G is the cogwheel Mn.

A C4-tree G is recursively defined as follows: G is a 4-cycle, or G is obtained from
a C4-tree G′ by gluing a 4-cycle along an edge to an edge of G′. It is straightforward
to prove that G is a C4-tree if and only if G can be obtained from two smaller C4-trees
by gluing them together along an edge (unless G = C4). In [16] it was shown that the
central vertices in a C4-tree are contained in some 4-cycle or induce a P4 such that
the middle edge of the path is a common edge of two 4-cycles, whereas the first edge
is on the one 4-cycle and the last edge is on the other 4-cycle.

Let G be a median graph. Let F be a color of G with split G1, G2. Then we
call the color, or the split, peripheral if G1 = G01 or G2 = G02. We call the side
Gi with Gi = G0i a peripheral side. In [26] peripheral colors and sides were called
extremal. There it was proved that, for any split G1, G2 of a median graph, there
exists a peripheral split H1, H2 such that H1 ⊆ G1 (and G2 ⊆ H2).

Theorem 5.4. Let G be a graph. Then the following statements are equivalent:

(i) G is a partial cube with G# a tree.
(ii) G is obtained from K2 by successive expansions, where the intersection of the

cover is always an edge.
(iii) G is K2 or a 2-connected cube-free median graph without induced cogwheels.
(iv) G is K2 or a C4-tree.

Proof. (i) ⇒ (ii) We prove the implication by induction on the number of vertices
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in G#. If G# = K1, then G = K2, and we are done. So let G# be a nontrivial tree
T , and let the color F of G be a vertex of degree 1 in T . By Theorems 3.4 and 5.1,
G is a 2-connected cube-free median graph. This implies that the sides of F cannot
consist of a single vertex. If the sides contain more than one edge, then F crosses
more than one other color of G. So the sides of F consist of a single edge. Let H be
the contraction of G with respect to color F . Then H# = T −F , which is a tree with
one vertex less than T . So, by induction, H is obtained by successive expansions,
where the intersection of the cover is always a single edge. Hence this also holds for
G.

(ii) ⇒ (iii) If G is not K2, then G is a 2-connected median graph. Cubes can arise
only in an expansion when the intersection of the cover contains a 4-cycle. Cogwheels
can arise only in an expansion when the intersection of the cover contains a P3. So
G does not contain Q3 or any cogwheel.

(iii) ⇒ (iv) We use induction on the number of colors in G. If G = K2, then we
are done. So let G contain at least two colors. Take a peripheral color F of G, and let
G1 = G01 be a peripheral side of F . Since G is a cube-free median graph, we know
that G1 is a tree. Let u be a vertex of degree 1 in G1 adjacent to w in G1. Let v be
the neighbor of u in G02 and x that of w in G02, so that C = u → v → x → w → u
is a 4-cycle in G. Note that u is a vertex of degree 2 in G.

If G1 consists of a single edge, then C is a “pendant” 4-cycle in G (or G = C), and
we are done by induction. So we may assume that G1 is a tree with more than two
vertices; that is, w has other neighbors in G1 besides u. Let z be any other neighbor
of w in G1, and let y be the neighbor of z in G02.

Consider the color Fuw. If the sides of Fuw consist of a single edge, then the edges
uw and vx are on C but not on any other 4-cycle. By deleting the edges uw and vx
from G, we obtain two components. Let H1 be the component containing wx, and
let H2 be the graph obtained from the other component by gluing the 4-cycle C to it
along the edge uv. Now G can be obtained from H1 and H2 by gluing them together
along the edge wx. By induction, H1 and H2 are two C4-trees. Hence G is one too.

Now consider the case where the sides of Fuw consist of more than an edge. Since
u is of degree 2, it follows that u is a pendant vertex in the tree S that constitutes
the side of Fuw in Guw. Let p be any other neighbor of v in the tree S, and let q be
its neighbor in Gvu. If there is a path between q and y not going through x or u,
then let R be a path of minimal length between q and y not going through x or u
such that the sum of the distances from x to the vertices on R is as small as possible.
Note that R does not use edges of the colors Fuv and Fuw. We claim that the vertices
on R are alternately at distance 2 and 1 from x. If not, then there exists a subpath
r1 → r2 → r3 of R with d(x, r1) = d(x, r2) − 1 = d(x, r3) = k > 1. The median of x,
r1, and r3 is a common neighbor s of r1 and r3 at distance k− 1 from x. Thus we get
another minimal path R′ between q and y closer to x, which contradicts the choice of
R. Now the vertices x, z, w, v, u, p together with the path R induce a cogwheel in G,
which is impossible. Thus we have shown that {u, x} is a cutset in G. Let Q1 and Q2

be the components of G−{u, x}, where Q1 contains p, q, v, and Q2 contains w, y, z.
Let H1 be the subgraph of G induced by Q1 and x, and let H2 be the subgraph of G
induced by Q2 and the vertices x, v, and u. By induction, H1 and H2 are C4-trees.
We can obtain G from H1 and H2 by gluing them together along the edge vx; so G
is a C4-tree as well.

(iv) ⇒ (i) We use induction on the number of 4-cycles that are used to construct
G. If G is K2 or a 4-cycle, then we are done. So assume that more than one 4-cycle
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is used to construct G, and let C = u → v → x → w → u be the last cycle used
in the construction, where the gluing was along the edge uv. Let G′ be the graph
obtained from G by deleting the vertices x and w together with their incident edges.
By induction, G′ is a partial cube with a tree T ′ as its crossing graph. Then G is a
partial cube as well, with one extra color. The crossing graph of G is obtained from
T ′ by adding the vertex Fuw adjacent to vertex Fuv. This completes the proof.

Recall that a block in a connected graph is a maximal 2-connected subgraph. A
C4-cactoid is a connected graph, each block of which is a K2 or a C4-tree. Loosely
speaking, a C4-cactoid can be obtained from K2’s and 4-cycles by gluing them together
along vertices or edges.

Theorem 5.5. Let G be a graph. Then the following statements are equivalent:
(i) G is a partial cube with G# a forest.
(ii) G is obtained from K2 by successive expansions, where the intersection of the

cover is always a vertex or an edge.
(iii) G is a cube-free median graph without induced cogwheels.
(iv) G is a C4-cactoid.
Proof. For each block of G we may apply Theorem 5.4. Just observe that for

statement (ii) we can always add an edge pending at a vertex u to G by an expansion
with respect to the cover G1 = G, G2 = 〈u〉. Then we can use this edge to construct
a new block.

6. Crossing graphs and Cartesian products. In this section we consider the
relation between crossing graphs and Cartesian products of graphs. As it will turn
out, there are several connections involving Cartesian products and joins of graphs.
Recall that the join G ⊕ H of the graphs G and H is the graph obtained from the
disjoint union of G ∪H by joining every vertex of G with every vertex of H.

In the previous section we have observed that, if G# and H# are complete, then
so is (G2H)#. This fact is a special case of our next result.

Proposition 6.1. Let G and H be partial cubes. Then (G2H)# = G# ⊕H#.
Proof. It is easy to see that the Θ-classes of G2H are in one-to-one correspondence

with the union of the Θ-classes of G and the Θ-classes of H. (Instead of proving
this fact directly, we refer to Lemma 4.3 of [19].) This means that V ((G2H)#) =
V (G#)∪V (H#). In addition, the Θ-classes of G2H corresponding to the Θ-classes of
G induce G#, and, analogously, the Θ-classes of G2H corresponding to the Θ-classes
of H induce H#. Finally, any Θ-class from the induced G# crosses with any Θ-class
from the induced H#; in fact, by the definition of the Cartesian product, they cross
on a 4-cycle.

For instance, Proposition 6.1 implies that the crossing graph of the Cartesian
product of n copies of P3 is the n-octahedron: (Pn

3 )# = K2,2,...,2.
Recall from section 3 that S(G) is the simplex graph of a graph G.
Proposition 6.2. Let G and H be two disjoint graphs. Then S(G ⊕ H) =

S(G)2S(H).
Proof. First note that S(G) and S(H) are subgraphs of S(G ⊕ H) having only

the vertex ∅ in common. For any complete subgraph K in G ⊕H, let KG = K ∩ G
and KH = K ∩H. Note that V (K) is the disjoint union of V (KG) and V (KH). Then
the mapping φ defined by φ(K) = (KG,KH) is a bijection between the vertex set of
S(G ⊕ H) and the vertex set of S(G)2S(H). Let K,L be two complete subgraphs
in G ⊕ H. Then K and L are adjacent in S(G ⊕ H) if and only if |K △ L| = 1
if and only if either |KH △ LH | = 0 and |KH △ LH | = 1 or |KG △ LG| = 1 and
|KH △ LH | = 0 if and only if (KG,KH) and (LG, LH) are adjacent in S(G)2S(H).



PARTIAL CUBES AND CROSSING GRAPHS 247

So φ is an isomorphism.
Lemma 6.3. Let G be a median graph, and let Fuv and Fuw be crossing colors.

Then v → u → w is in a 4-cycle.
Proof. Since Fuv and Fuw are crossing, there is a vertex y in Gvu ∩ Gwu. Then

we have

d(y, v) = d(y, u) − 1 and d(y, w) = d(y, u) − 1 .

Let x be the median of y, v, w; that is, x is on a geodesic between v and w, on a
geodesic between y and v, and on a geodesic between y and w. Then x is a common
neighbor of v and w distinct from u, so that v → u → w → x → v is a 4-cycle.

Let H be a subgraph of a connected graph G, and let z be a vertex of G outside
H. A vertex x in H is a gate for z in H if, for any vertex w in H, there is a geodesic
between z and w passing through x. For the proof of our next theorem we state the
following well-known fact.

Lemma 6.4. Let H be a subgraph of a connected graph G, and let z be a vertex
of V (G) \ V (H). Then z has at most one gate in H, which must then be the unique
vertex in H closest to z.

We also recall that it is easy to check that, in a median graph G, every vertex
outside a convex subgraph H has a gate in H.

Theorem 6.5. Let G be a partial cube. Then G# is a complete bipartite graph
if and only if G is the Cartesian product of two trees.

Proof. First let G = T12T2 be the Cartesian product of two trees T1 and T2.
Then the colors of Ti form an independent set in G#, for i = 1, 2, so G# is a complete
bipartite graph by Proposition 6.1.

Conversely, let G# be a complete bipartite graph with bipartition X,Y . Then,
by Theorem 5.1, G is a cube-free median graph, so that all sides in G are convex
subtrees. In particular, G does not have three mutually crossing colors, and any color
occurring in some side occurs only once in that side. Take any color F in G, say
between G1 and G2, with sides G01 and G02, respectively. Without loss of generality,
F is in X. Since each color in Y crosses with F on some 4-cycle, each color in Y
occurs in G01 as well as G02. Since F does not cross with any other color in X, no
color from X occurs in G01 of G02.

Similarly, if Φ is any color in Y , then the sides of Φ are convex subtrees of G, in
which each color from X occurs exactly once and no color from Y occurs.

Let z be any vertex of G. Note that the existence of three different neighbors of
z in I(u, z) would force three mutually crossing colors in G. (Just take the medians
of u and any two of these neighbors of z in I(u, z); these produce distinct 4-cycles
through z and its three neighbors.) Hence we conclude that there are at most two
neighbors of z that are closer to u for any z in G.

Now we are ready to find the appropriate subgraphs in G that will form the
factors in the Cartesian product. Let F be a peripheral color with split G1, G2 and
peripheral side G1 = G01. Without loss of generality, we may assume that F is in X.
Let u be a vertex of degree 1 in subtree G1 with neighbor w in G1, and let v be the
neighbor of u in G02, so that F = Fuv and G1 = Guv. Note that u has degree 2 in G.

First we will show that Fuw is a peripheral color with Guw as its peripheral side.
Let G′

uw be the side of Fuw in Guw. Since uv is in Guw and the color F of uv is in
X, it follows that G′

uw is a tree, in which all colors of X occur exactly once but no
color of Y occurs. Assume that some vertex p in G′

uw has a neighbor q in Guw−G′
uw.

Then Fpq is a color in Y ; so it crosses with all colors in G′
uw. By repeatedly applying
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Lemma 6.3, we proceed along a path from p to u in G′
uw finding an adjacent path in

Guw − G′
uw. Thus we find a neighbor s of u in Guw − G′

uw, which must be distinct
from v and w. This contradicts the fact that u has degree 2. So Guw = G′

uw, and
Guw is a subtree containing all colors of X but no color of Y .

Let H = Guv2Guw. We endow the copies of Guv and Guw in H with the same
coloring as Guv and Guw in G, respectively. We will prove that G is isomorphic to
H, where the isomorphism preserves the coloring.

Set |X| = m and |Y | = n. Then Guw is a tree of size m and order m+1, and Guv

is a tree of size n and order n+ 1. If G# = K2, then G is a 4-cycle, and we are done.
So we may assume that G# = Kn,m with m ≥ 2. First we show that G has the right
number of vertices by induction on n + m. Then we construct a coordinatization for
the product and check adjacencies.

If we delete Guv from G, then we get a partial cube with one less color and with
Kn,m−1 as its crossing graph. So, by induction, we may assume that G−Guv is the
Cartesian product of two trees of sizes n and m − 1, respectively, so that G − Guv

is of order (n + 1)m. Since Guv is a tree of size n, it follows that G is of order
(n + 1)m + (n + 1) = (n + 1)(m + 1). So G is of the right order.

Let G≤k be the subgraph of G induced by the vertices of distance at most k to
u, and let H≤k be the subgraph of H induced by the vertices of distance at most k
to (u, u). By induction on k, we will prove the following claim.

Claim. G≤k
∼= H≤k for k ≥ 0.

Let z be any vertex of G, let zw be its gate in Guv, and let zv be its gate in Guw.
Note that d(z, u) = d(z, zw) + d(zw, u) = d(z, zv) + d(zv, u). We set z = (zw, zv).
Then u = (u, u); so G≤0

∼= H≤0.

Let z be any vertex of Guv. Then we have z = (z, u). Since Guv is a convex
subtree of G, there is a unique neighbor y of z closer to u, and y is the neighbor of z
on the path from z to u in the tree Guv. Then we have y = (y, u). This implies that
the subgraph Guv of G is isomorphic to the subgraph Guv2{u} of H. Similarly, the
subgraph Guw of G is isomorphic to the subgraph {u}2Guw of H. In particular, we
have shown that the claim is true for k ≤ 1.

Now let z be a vertex of G outside Guv ∪ Guw with d(u, z) = k. Then we have
d(z, zw), d(zw, u), d(z, zv), d(zv, u) ≥ 1, so that k ≥ 2. Let p be a neighbor of z on a
geodesic from z to zw. Then we have pw = zw, so that p = (zw, pv). Moreover, we have
d(p, u) = d(p, zw)+d(zw, u) = d(z, u)−1 = k−1. By induction, we know the following
facts. There is a unique geodesic P between p and zw of length d(p, zw) = d(pv, u),
of which all the colors are in X. There is a unique geodesic Q between p and pv of
length d(p, pv) = d(zw, u), of which all the colors are in Y .

Since z → P is a geodesic between z and its gate zw in Guv and all colors of Y
occur in Guv, color Fzp must be in X. Hence Fzp crosses with every color on Q. So,
by repeatedly applying Lemma 6.3, we can construct a path Q′ along Q from z to a
neighbor r of pv of the same length and coloring as Q. Since the last color on Q is
Fuv, the last color on Q′ is also Fuv, so that r is in Guv. By the unicity of gates, we
have zv = r. Hence pv is the unique neighbor of zv in subtree Guw closer to u. Let q
be the neighbor of z on Q′. By a similar argument, we deduce that qw is the unique
neighbor of zw in subtree Guv closer to u.

Now p = (zw, pv) and q = (qw, zv) are two distinct neighbors of z closer to u.
Hence these are all neighbors of z closer to u in G. This settles the induction step in
the proof of the claim.
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Table 7.1

Summary of the results of the paper.

G# G

connected 2-connected
edgeless tree
complete obtained by

all-color expansion
triangle-free cube-free median

K3 Q3, M3, or C6

Cn, n ≥ 4 Mn

tree K2 or C4-tree
forest C4-cactoid

complete bipartite Cartesian product
of two trees

Fig. 7.1. A partial cube and its crossing graph.

Since G and H have the same number of vertices, we infer that

G = Gk
∼= Hk = H ,

for k = diameter(G), by which the proof is complete.

7. Concluding remarks. Most of the results of this paper can be summarized
in Table 7.1.

The last entry in the table, that is, Theorem 6.5, raises the following question.
Problem 7.1. What can be said about the partial cube G if its crossing graph

G# is the join of two other graphs that are not edgeless?
This seems to be a tough problem as the examples in Figures 7.1 and 7.2 show.

The graph in Figure 7.1 is a partial cube but not a median graph, whereas its crossing
graph is still the join of two smaller graphs. The graph in Figure 7.2 is a median graph
but not the Cartesian product of two smaller graphs, whereas its crossing graph is
still the join of two smaller graphs.

One may define an equivalence relation κ# on the family of all partial cubes as
follows: two partial cubes are in relation κ# to each other if they have isomorphic
crossing graphs. Theorem 6.5 and Proposition 4.4 may be considered as instances
of the characterization of two of the equivalence classes of this relation. A related
problem is the following.

Problem 7.2. Determine all C4-trees having the same tree as crossing graph.
Finally, Theorem 5.3 suggests the following question for a median graph G.
Problem 7.3. Does an induced cycle Cn in G# necessarily force an induced

cogwheel Mn in G?
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Fig. 7.2. A median graph and its crossing graph.
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[20] W. Imrich, S. Klavžar, and H. M. Mulder, Median graphs and triangle-free graphs, SIAM

J. Discrete Math., 12 (1999), pp. 111–118.
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