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Connectivity of Fibonacci cubes, Lucas cubes,
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If f is a binary word and d a positive integer, then the generalized Fibonacci cube Qd(f) is the graph obtained from
the d-cube Qd by removing all the vertices that contain f as a factor, while the generalized Lucas cube Qd(

↽Ð
f ) is the

graph obtained from Qd by removing all the vertices that have a circulation containing f as a factor. The Fibonacci
cube Γd and the Lucas cube Λd are the graphs Qd(11) and Qd(

↽Ð
11), respectively. It is proved that the connectivity and

the edge-connectivity of Γd as well as of Λd are equal to ⌊
d+2
3

⌋. Connected generalized Lucas cubes are characterized
and generalized Fibonacci cubes are proved to be 2-connected. It is asked whether the connectivity equals minimum
degree also for all generalized Fibonacci/Lucas cubes. It was checked by computer that the answer is positive for all
f and all d ≤ 9.

Keywords: Fibonacci cube; Lucas cube; generalized Fibonacci cube; generalized Lucas cube; connectivity; combi-
natorics on words

1 Introduction
Fibonacci cubes [4] and Lucas cubes [16] form hypercube-like classes of graphs that have found several
applications and were extensively studied so far, see the recent survey [9]. The topics studied include
different metric aspects [1, 10, 11, 13], a number of computer science issues [3, 18, 20, 21], applications
in chemistry [23, 24, 25], and a variety of additional topics [2, 15, 17]. It is hence quite surprising, that, to
the best of our knowledge, the connectivity of these cubes has not yet been established. This is even more
surprising after recalling that Fibonacci cubes were originally introduced as a model for interconnection
networks. Actually, in the seminal paper on the Fibonacci cubes it was stated without a proof that if d ≥ 3,
then ⌊d

8
⌋ ≤ κ(Γd) ≤ κ′(Γd) ≤ ⌊d−2

3
⌋ [4, Theorem 3]. Moreover, an exact value for the connectivity of
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Fibonacci cubes (in a more general framework) was asserted in [5, Theorem 2, point 3], but no proof was
provided and the stated result also does not appear to be correct (at least for Fibonacci cubes).

In this paper we fill this gap by determining the vertex- and the edge-connectivity of Fibonacci cubes
and of Lucas cubes, see Section 2. In the subsequent section we prove that the generalized Fibonacci cubes
are always 2-connected while in Section 4 we characterize connected generalized Lucas cubes. In the final
section we ask whether the connectivity of all generalized Fibonacci/Lucas cubes equals the minimum
degree. Using a computer, the answer turned out to be positive for all strings f and all dimensions d ≤ 9.

In the rest of this section we recall the basic concepts needed and notation used in this paper. The
d-cube Qd, d ≥ 0, is the graph whose vertices are the binary words (alias strings) of length d, two vertices
are adjacent if they differ in exactly one bit. In particular, Q0 = K1 and Q1 = K2. The vertex deleted
d-cube, that is, the graph obtained from Qd by removing one of its vertices, will be denoted by Q−

d .
The Fibonacci cube Γd, d ≥ 0, is the graph obtained from Qd by removing all vertices that contain two
consecutive 1s, while the Lucas cube Λd, d ≥ 0, is obtained from Γd by further removing the vertices that
start and end with 1. We will use the concatenation notation, in particular, for a string u, the notation
u = 1u′ means that u starts with 1, and 1d denotes the string consisting of d 1s. As usual, for a graph G,
its (vertex-)connectivity and edge-connectivity will be denoted by κ(G) and κ′(G), respectively, and its
minimum degree with δ(G). We will writeG ≅H to denote thatG andH are isomorphic graphs. Finally,
the Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2.

2 Fibonacci cubes and Lucas cubes
To determine the connectivity of Fibonacci cubes, we first recall the fundamental decomposition of Γd. If
d ≥ 1, then the vertex set of Γd naturally partitions into the sets

Ad = {b1 . . . bd ∣ b1 = 1} and Bd = {b1 . . . bd ∣ b1 = 0} .

Since a string of Ad, d ≥ 2, necessarily starts with 10, the set Ad induces a subgraph of Γd isomorphic to
Γd−2. Similarly, Bd induces a subgraph of Γd isomorphic to Γd−1. Moreover, each vertex 1u of Ad has
exactly one neighbor in Bd, namely the vertex 0u. In other words, the edges between Ad and Bd form a
matching from Ad to Bd.

Recall (cf. [9]) that ∣V (Γd)∣ = Fd+2. From [12] (cf. Corollary 3.3 and the last remark in Section 5) we
also recall:

Lemma 2.1 If d ≥ 1, then δ(Γd) = δ(Λd) = ⌊d+2
3

⌋.

Our first main result now reads as follows.

Theorem 2.2 If d ≥ 1, then

κ(Γd) = κ
′
(Γd) = ⌊

d + 2

3
⌋ .

Proof: The result can be checked for d ≤ 5 by inspection. Suppose now that the result is true for d ≤ 3k+2,
k ≥ 1. Continuing by induction we are going to prove the result for d = 3k + 3, d = 3k + 4, and d = 3k + 5.

Let d = 3k + 3. Then by the fundamental decomposition, Γ3k+3 decomposes into the sets A3k+3 and
B3k+3, and there is a matching from A3k+3 to B3k+3. Let X3k+1 ≅ Γ3k+1 and X3k+2 ≅ Γ3k+2 be the
subgraphs of Γ3k+3 induced on A3k+3 and B3k+3, respectively. By the induction hypothesis, κ(X3k+1) =
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κ(X3k+2) = k + 1. We claim that κ(Γ3k+3) ≥ k + 1 and suppose on the contrary that Γ3k+3 contains a
separating set S with ∣S∣ = k. If S ⊆ A3k+3, then X3k+1 ∖ S is connected and hence Γ3k+3 is connected.
Similarly Γ3k+3 is connected if S ⊆ B3k+3. So necessarily some vertices of S lie in A3k+3 and some in
B3k+3. But then both X3k+1 ∖ S and X3k+2 ∖ S are connected. Moreover, as k = ∣S∣ < ∣A3k+3∣ = F3k+3,
there exists an edge that connects a vertex of X3k+1 ∖S with a vertex of X3k+2 ∖S. We have thus proved
that κ(Γ3k+3) ≥ k + 1 holds. By Lemma 2.1 we conclude that κ(Γ3k+3) = k + 1.

Let d = 3k + 4. We need to show that κ(Γ3k+4) = k + 2 and using Lemma 2.1 we only need to prove
that κ(Γ3k+4) ≥ k + 2. Let X3k+2 ≅ Γ3k+2 and X3k+3 ≅ Γ3k+3 be the subgraphs of Γ3k+4 induced by the
fundamental decomposition A3k+4 and B3k+4, respectively. By the induction hypothesis and the already
proved case where d = 3k + 3, κ(X3k+2) = k + 1 and κ(X3k+3) = k + 1. Suppose that Γ3k+4 contains
a separating set S with ∣S∣ = k + 1. If S ⊆ A3k+4, then since any vertex of A3k+4 ∖ S has a neighbor in
B3k+4, the graph Γ3k+4 ∖ S is connected. Similarly, if both A3k+4 and B3k+4 contain some vertices of S,
then X3k+2∖S and X3k+3∖S are both connected and so is Γ3k+4∖S. Assume finally that S ⊆ B3k+4 and
consider the fundamental decomposition ofX3k+3 ≅ Γ3k+3. It decomposes into Y ≅ Γ3k+1 and Z ≅ Γ3k+2
that are (by induction) both of connectivity k+1. Since S disconnects X3k+3 and ∣S∣ = k+1, we infer that
S ⊆ V (Z), that is, every vertex of S, considered as a vertex of Z, begins with 0. It follows that any vertex
of S is considered as a vertex of X3k+3 and starts with 00. Now, the subgraph of X3k+3 induced by the
vertices starting with 01 is connected. Moreover, since there are ∣V (Γ3k+1)∣ = F3k+3 > k + 1 independent
edges between the vertices of X3k+3 starting with 010 and the vertices starting with 000, there is a vertex
of X3k+3 starting with 01 that has a neighbor starting with 00 in the graph Γ3k+4 ∖ S. This vertex has in
turn a neighbor in X3k+2. Recalling that A3k+4 ∩ S = ∅ and using the fact that any vertex of X3k+2 ∖ S
has a neighbor in X3k+3, we conclude that Γ3k+4 ∖ S is connected.

The last case to consider is d = 3k + 5. Let A3k+5, B3k+5, X3k+3 ≅ Γ3k+3, and X3k+4 ≅ Γ3k+4 have
the same meaning as in the previous cases. By the already proved previous cases, κ(X3k+3) = k + 1 and
κ(X3k+4) = k+2. We need to show that κ(Γ3k+5) ≥ k+2 and assume that Γ3k+5 contains a separating set
S with ∣S∣ = k + 1. But now S cannot lie completely in X3k+4 (as κ(X3k+4) = k + 2), while in the other
cases we can argue again as we did in the first paragraph to conclude that S cannot be a separating set.

Hence we have proved that κ(Γd) = δ(Γd). As for any graphG, the inequalities κ(G) ≤ κ′(G) ≤ δ(G)

hold, the result follows. ◻

Lucas cubes also admit a fundamental decomposition as follows. The vertex set of Λd, d ≥ 1, partitions
into the sets

Ad = {b1 . . . bd ∣ b1 = 1} and Bd = {b1 . . . bd ∣ b1 = 0} .

Since a string ofAd, d ≥ 3, necessarily starts with 10 and ends with 0, the setAd induces a subgraph of Λd

isomorphic to Γd−3. Similarly, Bd induces a subgraph of Λd isomorphic to Γd−1. Moreover, each vertex
1u of Ad has exactly one neighbor in Bd, namely the vertex 0u. Thus the edges between Ad and Bd form
a matching from Ad to Bd.

For the Lucas cubes we have a result parallel to Theorem 2.2 with a single exception: κ(Λ4) = 1 and
κ′(Λ4) = 2.

Theorem 2.3 If d ≥ 1, d ≠ 4, then

κ(Λd) = κ
′
(Λd) = ⌊

d + 2

3
⌋ .
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Proof: We proceed similarly as in the proof of Theorem 2.2, however not all arguments will be parallel.
Moreover, in the proof we will apply Theorem 2.2. First, we have checked the result for d ≤ 8 by computer.
Assuming that the result is true for d ≤ 3k + 2; k ≥ 2, we are going to prove it for d = 3k + 3, d = 3k + 4,
and d = 3k + 5.

Let d = 3k + 3. By the fundamental decomposition, Λ3k+3 is decomposed into the sets A3k+3 and
B3k+3, and there is a matching from A3k+3 to B3k+3. Let X3k ≅ Γ3k and X3k+2 ≅ Γ3k+2 be the subgraphs
of Γ3k+3 induced on A3k+3 and B3k+3, respectively. By Theorem 2.2, κ(X3k) = k and κ(X3k+2) = k + 1.
Then as in the proof of Theorem 2.2 we infer that Λ3k+3 does not contain a separating set of size k. Hence
κ(Λ3k+3) ≥ k + 1 and by Lemma 2.1, κ(Λ3k+3) = k + 1.

Let d = 3k + 4. We need to show that κ(Λ3k+4) = k + 2. By Lemma 2.1 we only need to prove that
κ(Λ3k+4) ≥ k + 2. Let X3k+1 ≅ Γ3k+1 and X3k+3 ≅ Γ3k+3 be the subgraphs of Λ3k+4 induced on the
fundamental decomposition, A3k+4 and B3k+4, respectively. By Theorem 2.2, κ(X3k+1) = k + 1 and
κ(X3k+3) = k + 1. Suppose that Λ3k+4 contains a separating set S with ∣S∣ = k + 1. If S ⊆ A3k+4, then
since any vertex in A3k+4 ∖ S has a neighbor in B3k+4, the graph Λ3k+4 ∖ S is connected. Similarly, if
both A3k+4 and B3k+4 contain some vertices of S, then X3k+1 ∖ S and X3k+3 ∖ S are both connected
and so is Λ3k+4 ∖ S. Assume finally that S ⊆ B3k+4 and consider the decomposition of X3k+3 into the
subgraphs Y and Z, whose vertices start with 01 and 00, respectively where each vertex in V (Y ) has a
neighbor in V (Z). Then Y ≅ Γ3k+1 and Z ≅ Γ3k+2 and they are both of connectivity k + 1 by Theorem
2.2. If S ⊆ V (Y ), then as any vertex in V (Y ∖ S) has a neighbor in V (Z), Λ3k+4 ∖ S is connected. If
both Y and Z contain some vertices of S, then Y ∖ S and Z ∖ S are both connected. Considering that
∣S∣ < ∣V (Y )∣ < ∣V (Z)∣, we conclude that X3k+3∖S is connected and so is Λ3k+4∖S. Assume S ⊆ V (Z).
DecomposeZ into the subgraphsC andD, whose vertices end with 0 and 1, respectively. ThenC ≅ Γ3k+1
andD ≅ Γ3k that are of connectivity k+1 and k, respectively by Theorem 2.2. Also decompose Y into the
subgraphs E and H , whose vertices end with 0 and 1, respectively. Then E ≅ Γ3k and H ≅ Γ3k−1 are of
connectivity k by Theorem 2.2. Note that every vertex in V (Y ) has a neighbor in V (Z). Also each vertex
in V (D) has a neighbor in V (C) and each vertex in V (H) has a neighbor in V (E). As ∣S∣ < ∣V (E)∣,
there is a vertex x ∈ V (C ∖ S) which has a neighbor x′ in V (E) ⊆ V (Y ). Also x has a neighbor x′′ in
A3k+4. Considering that X3k+1 and Y are both connected, V (X3k+1) ∪ V (Y ) ∪ V (C ∖ S) is connected.
To show that Λ3k+4 ∖ S with its vertex set A3k+4 ∪ V (Y ) ∪ V (C ∖ S) ∪ V (D ∖ S) is connected, we
only need to show that all the vertices in V (D ∖ S) are connected to some vertex in V (Y ) ∪ V (C ∖ S).
As ∣S∣ < ∣V (H)∣, there is a vertex y in V (D ∖ S) which has a neighbor in V (H) ⊆ V (Y ). As long as
∣S ∩ V (C)∣ ≥ 2, we have ∣S ∩ V (D)∣ ≤ k − 1 and hence D ∖ S is connected. Therefore in this case all
the vertices in V (D ∖ S) are connected to y and hence to the vertices in V (Y ) ∪ V (C ∖ S). Note that
any vertex in V (D) has a neighbor in V (C). Therefore if S ∩ V (C) = ∅, then Λ3k+4 ∖ S is connected.
Assume ∣S ∩ V (C)∣ = 1 and D ∖ S is disconnected. Choose a vertex u in D ∖ S. If all the neighbors of u
are in S, then ∣S∣ = k + 1 ≥ δ(Λ3k+4) and hence k + 1 ≥ κ(Λ3k+4). If u has a neighbor u′ in V (C ∖ S),
then it is connected all the vertices in V (Y ) ∪ V (C ∖ S). If not, then u has a neighbor v in V (D ∖ S).
Considering that ∣S ∩V (C)∣ = 1 and hence S ∩V (C) = {u′}, v has a neighbor v′ in V (C ∖S). Therefore
v and hence u is connected to all the vertices in V (Y ) ∪ (C ∖ S).

Finally let d = 3k+5, and letA3k+5,B3k+5,X3k+2 ≅ Γ3k+2, andX3k+4 ≅ Γ3k+4 have the same meaning
as before. By the already proved previous cases, κ(X3k+2) = k + 1 and κ(X3k+4) = k + 2. We can now
proceed as in the last part of the proof of Theorem 2.2. ◻
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3 Generalized Fibonacci cubes
Fibonacci cubes and Lucas cubes were recently extended to generalized Fibonacci cubes [6] and to gen-
eralized Lucas cubes [7] as follows. If f is an arbitrary binary word and d is a positive integer, then the
generalized Fibonacci cubeQd(f) is the graph obtained fromQd by removing all the vertices that contain
f as a factor. We should point out that earlier the term generalized Fibonacci cubes was used in [14, 22]
for the special classes Qd(1

n). Similarly, the generalized Lucas cube Qd(
↽Ð
f ) is the graph obtained from

Qd by removing all the vertices that have a circulation containing f as a factor. Using these notations,
Γd ≅ Qd(11) and Λd ≅ Qd(

↽Ð
11).

For a binary string b = b1 . . . bd, let b be the binary complement of b and let bR = bd . . . b1 be the reverse
of b. The following basic result helps to significantly reduce the number of cases to be considered.

Lemma 3.1 [6, Lemmas 2.2 and 2.3] If f be a binary string and d ≥ 1, then Qd(f) ≅ Qd(f) ≅ Qd(f
R).

It was observed in [8, p.2] that every generalized Fibonacci cube is connected. The caseQd(10) ≅ Pd+1
is not interesting and we have treated the case Qd(11) = Γd in the previous section. For any other
forbidden string f we have the following general result.

Theorem 3.2 If f is a binary string with ∣f ∣ ≥ 3, and d ≥ 3, then Qd(f) is 2-connected.

Proof: Due to Lemma 3.1 we may assume throughout the proof that f begins with 0. In addition, we
may also assume that d > ∣f ∣, where ∣f ∣ denotes the cardinality of f . Indeed, if d = ∣f ∣, then Qd(f) ≅ Q

−
d ,

while if d < ∣f ∣, then Qd(f) ≅ Qd. Since d ≥ 3, both Q−
d and Qd are 2-connected.

Let now u be an arbitrary vertex of Qd(f) containing at least one 0. Let P1(u) be the path in Qd

between u and 1d that is obtained by changing from left to right one by one the bits 0 of u. This path lies
completely in Qd(f). Indeed, if f would be a substring of a vertex w that lies on P1(u), then since f
starts with 0, only the bits left of this 0 would be changed. This would in turn imply that f would already
be a substring of u ∈ V (Qd(f)). We now distinguish the following cases.

Case 1: f = 0f ′0.

Subcase 1.1: u = x0y0z, ∣x∣, ∣y∣, ∣z∣ ≥ 0, ∣x∣ + ∣y∣ + ∣z∣ = d − 2.
Let P2(u) be the path between u and 1d that is obtained by changing from right to left one by one the
bits 0 of u. Since f ends with 0, an argument parallel to the above implies that P2(u) lies completely in
Qd(f). By the construction, P1(u) and P2(u) are different, internally disjoint paths.

Subcase 1.2: u = 1r01s, r, s ≥ 0, r + s = d − 1.
Since d ≥ 4, we may assume by the symmetry that s ≥ 2. Let now P2(u) be the path u → 1r001s−1 →
1r+101s−1 → 1d. Note that P2(u) lies in Qd(f) and that it is internally disjoint from P1(u); the latter
path in this case is u→ 1d.

In any of the two subcases, for any vertex u of Qd(f) there exist two different, internally disjoint u,1d-
paths. It follows that if w is any fixed vertex of Qd(f), then any vertex of Qd(f) −w is connected with a
path to 1d. Consequently, w is not a cut-vertex and hence Qd(f) is 2-connected.

We still need to consider the forbidden strings f that finish with 1, and first consider the strings that
start with two zeros.
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Case 2: f = 00f ′1.
Suppose first that u contains at least two zeros. Then set P2(u) be the path in Qd between u and 1d that
is obtained by changing from left to right, but starting with the second bit of 0, one by one the bits 0 of u,
and finally by changing the first bit of 0. It is again straightforward to see that P2(u) is a path of Qd(f).
Suppose next that u = 1r01s, r, s ≥ 0, r + s = d − 1, and assume without loss of generality that s ≥ 2.
Now let P2(u) be the path u → 1r0101s−2 → 1r+201s−2 → 1d. So in any case we have constructed two
different, internally disjoint u,1d-paths in Qd(f) which in turn implies that Qd(f) is 2-connected.

The last case to consider is when f = 01f ′1. In the subcase when f is of the form 01f ′′11, Lemma 3.1
implies that Qd(01f ′′11) ≅ Qd(00f ′′′01). Since this situation was already treated in Case 2, it remains
to consider the following:

Case 3: f = 01f ′01.
Let P ′

2(u) be the path in Qd between u and 0d obtained from u by changing from right to left one by
one the bits 1 of u. We observe, having in mind that f ends with 1, that P ′

2(u) lies in Qd(f). If u = 0d,
then P ′

2(u) consists of a single vertex, hence V (P ′
2(u)) ∩ V (P1(u)) = {u}. Otherwise, considering the

last coordinate of u which is equal 1, we infer that also V (P ′
2(u)) ∩ V (P1(u)) = {u}. Let in addition

P ′′
2 (u) be the path in Qd between 0d and 1d obtained by changing from right to left one by one the bits

0 of 0d. Considering the first coordinate of the vertices we find that V (P ′′
2 (u)) ∩ V (P1(u)) = {1d}. The

concatenation of P ′
2(u) and P ′′

2 (u) is a walk between u and 1d. Let P2(u) be a u,1d-path contained in
the concatenation. Then by the above, V (P2(u)) ∩ V (P1(u)) = {u,1d}. Hence we can again conclude
that Qd(f) is 2-connected. ◻

Theorem 3.2 is best possible in the following sense.

Corollary 3.3 If d ≥ 3 and f ∈ {001,010}, then κ(Qd(f)) = κ
′(Qd(f)) = 2.

Proof: By Theorem 3.2, κ(Qd(001)) ≥ 2 and κ(Qd(010)) ≥ 2. On the other hand, the only neighbors
of 0d in Qd(001) are 10d−1 and 010d−2, while the only neighbors of 0d in Qd(010) are 10d−1 and 0d−11.
Hence δ(Qd(001)) = δ(Qd(010)) = 2 and the result follows. ◻

4 Generalized Lucas cubes
It is not difficult to observe that every generalized Fibonacci cube is connected and, as proved in the
previous section, it is also 2-connected. On the other hand, the connectedness of generalized Lucas cubes
is not straightforward. In this section we characterize connected generalized Lucas cubes. Again, the next
result helps to reduce the number of cases to be considered.

Lemma 4.1 [7, Lemma 1] If f is a binary string and d ≥ 1, then Qd(
↽Ð
f ) ≅ Qd(

↽Ð
f ) ≅ Qd(

↽Ð
fR).

Before presenting the result(s) of this section, we need to fix some additional notation. For n ∈ N we
will use [n] to denote the set {1, . . . , n}. The weight w(f) of a binary string f is the number of 1s in f .
For d ≥ 1 and 1 ≤ i ≤ d, let ei be the binary string of length d with 1 in the i-th position and 0 elsewhere.
By a block of a binary string we mean a substring consisting of the same bit, maximal with respect to
inclusion.
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Lemma 4.2 Let f be a binary string with w(f) ∈ [∣f ∣ − 1], and d an integer such that d ≥ ∣f ∣ ≥ 2.
Then the vertices 0d and 1d of Qd(

↽Ð
f ) are in the same connected component if and only if w(f) ∈

[∣f ∣ − 1] ∖ {1, ∣f ∣ − 1}.

Proof: Since Qd(
↽Ð
f ) ≅ Qd(

↽Ð
f ) holds for any d ≥ 1 by Lemma 4.1(i), we may without loss of generality

assume that w(f) ≤ ∣f ∣/2. If w(f) = 1, then it is clear that the vertex 0d is an isolated vertex of Qd(
↽Ð
f ).

Hence assume in the rest that 1 < w(f) ≤ ∣f ∣/2. Then since w(f) ≥ 2 and w(f) ≤ ∣f ∣/2 we infer that
∣f ∣ ≥ 4. We now distinguish the following cases.

Case 1: f has two blocks.
We may without loss of generality assume that f = 1i0k−i. Let v = 0101⋯10 or v = 0101⋯01 depending
on whether d is odd or even. Note that v ∈ Qd(

↽Ð
f ). Consider the following path from 0d to v which we

obtain by changing from left to right the bits at even coordinates one by one:

0d → 010d−2 → 01010d−4 → ⋯→ v .

Each vertex of this path does not have a circulation which contains 11 as a substring and hence it does
not have a circulation which contains f as a substring either. In other words, this path lies completely in
Qd(

↽Ð
f ). Next consider the path from v to 1d which we obtain by changing from left to right the 0 bits to

1 bits one by one. Certainly each vertex of this path does not have a circulation which contains 00 as a
substring and hence it does not have a circulation which contains f as a substring either. Hence also this
path lies in Qd(

↽Ð
f ). Therefore by concatenating the above two paths we obtain a path from 0d to 1d in

Qd(
↽Ð
f ).

Case 2: f has three blocks.
We distinguish two subcases. Assume first that f = 0k1`0m. Then ` ≥ 2 and k,m ≥ 1. If ∣f ∣ = 4, then
f = 0110 is the unique forbidden string. Because Qd(

↽ÐÐ
0110) ≅ Qd(

↽ÐÐ
1001) and w(0110) = w(1001) we

may consider f = 1001 instead. Consider now the path

0d → 10d−1 → 110d−2 → ⋯→ 1d−303 → 1d−3010→ 1d−3011→ 1d

to see that there is a 0d,1d-path in Qd(
↽ÐÐ
1001). If ∣f ∣ ≥ 5, then we can use the 0d,1d-path constructed in

Case 1.
In the second subcase let f = 1p0q1r, where q ≥ 2 and p, r ≥ 1. Then first construct the path

0d → 10d−1 → 110d−2 → ⋯→ 1d−`−10`+1 → 1d−`−1010`−1 = v .

Since d−q−1 ≥ 1 we can change in v all 0 bits one by one (in any order) to complete the above path from
0d to 1d.

Case 3: f has more than three blocks.
Consider the following path 0d → 10d−1 → ⋯ → 1d obtained by changing from left to right the 0 bits to
1 bits one by one. Each vertex in this path has only two blocks and hence it does not have a circulation
which contains f as a substring. ◻

We can now characterize the connected generalized Lucas cubes as follows.
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Theorem 4.3 Let f be a binary string and d an integer such that d ≥ ∣f ∣ ≥ 2. Then Qd(
↽Ð
f ) is connected

if and only if w(f) ∈ [∣f ∣] ∖ {1, ∣f ∣ − 1}. Moreover, if w(f) ∈ {1, ∣f ∣ − 1}, then Qd(
↽Ð
f ) consists of an

isolated vertex and a connected component containing all the other vertices.

Proof: Suppose first that w(f) = 0, that is, f = 0k. Let u be an arbitrary vertex of Qd(
↽Ð
0 k). Then

changing one by one the 0 bits of u to 1, we stay in Qd(
↽Ð
0 k) and reach the vertex 1d. Hence every vertex

is connected with a path to 1d and so Qd(
↽Ð
0 k) is connected. The case when w(f) = 1 was done in [7,

Proposition 10]. Hence, having in mind Lemma 4.1(i), we can assume in the rest that 2 ≤ w(f) ≤ ∣f ∣ − 2.
Using Lemma 4.1 again we may without loss of generality assume that f starts with 0. For a string u

let b(u) denote the length of its longest block of 1’s in a circular manner. For instance, b(101110) = 3 and
b(1100111011) = 4. We are going to show that each vertex in Qd(

↽Ð
f ) is connected to 1d by a path. Take

any string v ∈ Qd(
↽Ð
f ). We distinguish the following two cases.

Case 1: b(v) < b(f).
Consider a path from v to 0d we obtain by changing one by one the bits 1 to 0. For any vertex u in this
path we have b(u) ≤ b(v) < b(f) and hence it does not have a circulation which contains f as a substring.
We have therefore shown that any vertex of Qd(

↽Ð
f ) is connected with a path to 1d. By Lemma 4.2 this

case is done.

Case 2: b(v) ≥ b(f).
Let vi = 1, . . . , vi+b(v)−1 = 1 be a substring of v of length b(v) consisting of only 1s. Set v′ = v +

ei+b(v). We claim that v′ ∈ Qd(
↽Ð
f ). Suppose on the contrary that it contains a copy f̃ of f as a (circular)

substring. Then, as f̃ starts with 0, f̃ is contained in vi+b(v)+1vi+b(v)+2 . . . vi+b(v)−1. But this means that f̃
is contained in a circulation of v as a substring also, a contradiction. Hence the claim is proved. We now
proceed by changing one by one the bits 0 that appear after the position i + b(v). Again, all the obtained
vertices lie in Qd(

↽Ð
f ). Indeed, if at some point the bit vj , j ≥ i + b(v) + 1, was changed, and if the

obtained word would contain a copy f̃ of f , then, using the fact that b(f) ≤ b(v), f̃ would be contained
in vj+1vj+2 . . . vi+b(v)−1. So again v would contain f , the final contradiction. ◻

5 Concluding remarks
Theorem 4.3 thus asserts that for all practical purposes, each generalized cube can be considered as con-
nected (by neglecting an isolated vertex). Confronting Theorem 4.3 with Theorem 3.2, a question arises
whether all connected generalized Lucas cubes are actually 2-connected. More generally, we pose the
following question:

Question 5.1 Is it true that κ(Qd(
↽Ð
f )) = δ(Qd(

↽Ð
f )) holds for all f and d, except for Q4(

↽Ð
11))?

The same kind of question can be asked for generalized Fibonacci cubes.

Question 5.2 Is it true that κ(Qd(f)) = δ(Qd(f)) for all f and d?

The answers to the above questions are likely to be positive. In both cases, using computer, the con-
nectivity was confirmed to be equal to the minimum degree for all forbidden strings f and for dimensions
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4 ≤ d ≤ 9. The computations were performed using the Sage program [19]. The same program was used
for the computations to verify the base cases of Theorem 2.3.

If the answers to the above questions are indeed positive, an approach different from the one that we
used for Fibonacci cubes and for Lucas cubes (that is, using their fundamental decompositions) will be
needed in order to prove the corresponding theorems.
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[9] S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim. 25 (2013) 505–522.
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