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THE CONJECTURE ON DISTANCE-BALANCEDNESS OF

GENERALIZED PETERSEN GRAPHS HOLDS WHEN

INTERNAL EDGES HAVE JUMPS 3 OR 4

GANG MA, JIANFENG WANG, AND SANDI KLAVŽAR

Abstract. A connected graph G with diam(G) ≥ ℓ is ℓ-distance-balanced if

|Wxy | = |Wyx| for every x, y ∈ V (G) with dG(x, y) = ℓ, where Wxy is the set

of vertices of G that are closer to x than to y. Miklavič and Šparl (Discrete

Appl. Math. 244 (2018) 143–154) conjectured that if n > nk where nk = 11
if k = 2, nk = (k + 1)2 if k is odd, and nk = k(k + 2) if k ≥ 4 is even, then

the generalized Petersen graph GP (n, k) is not ℓ-distance-balanced for any

1 ≤ ℓ < diam(GP (n, k)). In the seminal paper, the conjecture was verified
for k = 2. In this paper we prove that the conjecture holds for k = 3 and for

k = 4.

1. Introduction

LetG = (V (G), E(G)) be a connected graph and u, v ∈ V (G). The set of vertices
that are closer to u than to v (with respect to the standard shortest-path distance
dG(u, v)) is denoted by Wuv. When |Wuv| = |Wvu| holds, the pair of vertices u
and v is called balanced, and when every pair of adjacent vertices is balanced, G
is called distance-balanced. Distance-balanced graphs were first considered in [11],
the term “distance-balanced” was coined in [13]. For a number of reasons, both
theoretical and applied, the distance-balanced graphs received a lot of attention,
see [1, 3–8, 12, 15–17, 19, 21]. We should also mention in passing that distance-
balanced graphs can be equivalently described as the graphs whose Mostar index
(see [2]) equals 0.

More generally, let ℓ ∈ [diam(G)] = {1, 2, . . . ,diam(G)}, where diam(G) is the
diameter of G. Then G is called ℓ-distance-balanced [9] if each pair of vertices
u, v ∈ V (G) with dG(u, v) = ℓ is balanced. For a study of 2-distance-balanced
graphs see [10] and for several results on ℓ-distance-balanced graphs see [14,20].

This paper is about the distance-balancedeness of the generalized Petersen graphs.
The interest in these graphs was already shown in [13] where it was conjectured that
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Youth Innovative Talents. Sandi Klavžar is supported by the Slovenian Research Agency (ARIS)
under the grants P1-0297, J1-2452, N1-0285.

1

https://doi.org/10.33044/revuma.4824
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for any integer k ≥ 2, there exists a positive integer n0 such that GP (n, k) is not
distance-balanced for every n ≥ n0. The validity of the conjecture has been demon-
strated in [21]. Interest in the distance-balancedeness of the generalized Petersen
graphs continued in [18,20]. In [18] it was proved that GP (n, k) is diam(GP (n, k))-
distance-balanced as soon as n is large relative to k, more precisely, the following
theorem was proved.

Theorem 1.1. [18] If n and k are integers, where 3 ≤ k < n/2, and

n ≥


8; k = 3,
10; k = 4,
k(k+1)

2 ; k is odd and k ≥ 5,
k2

2 ; k is even and k ≥ 6,

then GP (n, k) is diam(GP (n, k))-distance-balanced.

On the other hand, Miklavič and Špar posed the following:

Conjecture 1.2. [20] Let k ≥ 2 be an integer and let

nk =

 11; k = 2,
(k + 1)2; k odd,
k(k + 2); k ≥ 4 even.

Then for any n > nk, the graph GP (n, k) is not ℓ-distance-balanced for any 1 ≤
ℓ < diam(GP (n, k)). Moreover, nk is the smallest integer with this property.

In [20], Conjecture 1.2 was verified for k = 2. In this paper, we prove that
Conjecture 1.2 holds true for k = 3 and for k = 4 by establishing the following
results.

Theorem 1.3. For any n > 16, the generalized Petersen graph GP (n, 3) is not
ℓ-distance-balanced for any 1 ≤ ℓ < diam(GP (n, 3)). Moreover, 16 is the smallest
integer with this property.

Theorem 1.4. For any n > 24, the generalized Petersen graph GP (n, 4) is not
ℓ-distance-balanced for any 1 ≤ ℓ < diam(GP (n, 4)). Moreover, 24 is the smallest
integer with this property.

To prove these two theorems, it suffices to prove the first assertion of each
of them. With these results in hand, the facts that 16 is the smallest integer in
Theorem 1.3 and that 24 is the smallest integer in Theorem 1.4, follow by computer
experiments presented in [20, Table 1].

Full proofs of Theorems 1.3 and 1.4 are very long and repetitive. We therefore
present in the next two sections only selected, representative cases. The other cases
of the proofs however can be found in Appendix A and Appendix B. We conclude
the paper by suggesting a problem in Section 4.

To conclude the introduction recall that the generalized Petersen graphGP (n, k),
n ≥ 3, 1 ≤ k < n/2, is defined by

V (GP (n, k)) = {ui : i ∈ Zn} ∪ {vi : i ∈ Zn},
E(GP (n, k)) = {uiui+1 : i ∈ Zn} ∪ {vivi+k : i ∈ Zn} ∪ {uivi : i ∈ Zn}.
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2. Sketch proof of Theorem 1.3

As mentioned in the introduction, it suffices to prove that for any n > 16,
the generalized Petersen graph GP (n, 3) is not ℓ-distance-balanced for any 1 ≤
ℓ < diam(GP (n, 3)). We split the argument into the cases ℓ = 1, ℓ = 2, and
3 ≤ ℓ < diam(GP (n, 3)) to be respectively covered by Propositions 2.1, 2.2, and 2.3.

Proposition 2.1. For any n > 16, the generalized Petersen graph GP (n, 3) is not
1-distance-balanced.

Proof. Since dGP (n,3)(u0, v0) = 1, it suffices to prove that |Wu0v0 | < |Wv0u0
|. We

divide the discussion into six cases based on n mod 6, and for transparency and
non-replication purposes, present only the first case in detail. Details for the other
five cases are given in Appendix A.

Let n = 6m, where m ≥ 3. By symmetry, it suffices to consider vertices ui and
vi where 1 ≤ i ≤ n

2 . Then the following holds.

• If 1 ≤ t ≤ m, then d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t.
• If 1 ≤ t ≤ m, then d(u0, v3t) = 1 + t and d(v0, v3t) = t.
• If 1 ≤ t < m, then d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t.
• If 0 ≤ t < m, then d(u0, v3t+1) = 2 + t and d(v0, v3t+1) = 3 + t.
• If 1 ≤ t < m, then d(u0, u3t+2) = 4 + t and d(v0, u3t+2) = 3 + t.
• If 0 ≤ t < m, then d(u0, v3t+2) = 3 + t and d(v0, v3t+2) = 4 + t.
• d(u0, u1) = 1 and d(v0, u1) = 2.
• d(u0, u2) = 2 and d(v0, u2) = 3.

In the above consideration, we have 2m+2 vertices from Wu0v0 and 4m−2 vertices
from Wv0u0 . Since we have considered only the vertices ui and vi with 1 ≤ i ≤ n

2 ,
there are in total twice as many vertices, except that u3m and v3m are considered
twice (and they lie in Wv0u0

). Since clearly u0 ∈ Wu0v0 and v0 ∈ Wv0u0
, we

conclude that

|Wu0v0 | = 2(2m+ 2) + 1 = 4m+ 5,

|Wv0u0
| = 2(4m− 2) + 1− 2 = 8m− 5.

Because m ≥ 3, we indeed have |Wu0v0 | < |Wv0u0 |.
The conclusions in the remaining cases are as follows:

• If n = 6m+ 1, m ≥ 3, then |Wu0v0 | = 4m+ 3 and |Wv0u0
| = 8m− 3.

• If n = 6m+ 2, m ≥ 3, then |Wu0v0 | = 4m+ 4 and |Wv0u0
| = 8m.

• If n = 6m+ 3, m ≥ 3, then |Wu0v0 | = 4m+ 7 and |Wv0u0 | = 8m− 1.
• If n = 6m+ 4, m ≥ 3, then |Wu0v0 | = 4m+ 6 and |Wv0u0 | = 8m+ 2.
• If n = 6m+ 5, m ≥ 2, then |Wu0v0 | = 4m+ 5 and |Wv0u0

| = 8m+ 3.

Note that in some cases there may be vertices which are of equal distance to u0

and v0. Anyhow, in each case we have |Wu0v0 | < |Wv0u0
|. □

Proposition 2.2. For any n > 16, the generalized Petersen graph GP (n, 3) is not
2-distance-balanced.

Proof. Since dGP (n,3)(u0, v−3) = 2, it suffices to prove that |Wu0v−3
| < |Wv−3u0

|.
We divide the discussion into the six cases based on n mod 6, and for transparency
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and non-replication purposes, present only the first case in detail. Details for the
other five cases are given in Appendix A.

Firstly we consider vertices v−1, v−2, u−1, u−2.

• d(u0, v−1) = 2 and d(v−3, v−1) = 4.
• d(u0, v−2) = d(v−3, v−2) = 3.
• d(u0, u−1) = 1 and d(v−3, u−1) = 3.
• d(u0, u−2) = d(v−3, u−2) = 2.

So u−1, v−1 ∈ Wu0v−3
and no vertex of {v−1, v−2, u−1, u−2} is in Wv−3u0

.
Next we consider vertices vi where 0 ≤ i < n − 3 and uj where 1 ≤ j ≤ n − 3.

Let n = 6m where m ≥ 3. Note that v−3 = vn−3 and n− 3 = 6m− 3 = 3(2m− 1).

• If 0 ≤ t ≤ m− 1, then d(u0, v3t) = d(v6m−3, v3t) = 1 + t.
If m ≤ t < 2m − 1, then d(v6m−3, v3t) = 2m − 1 − t and d(u0, v3t) >
d(v6m−3, v3t).

• If 0 ≤ t ≤ m−1, then d(u0, v3t+1) = 2+t and d(u0, v3t+1) < d(v6m−3, v3t+1).
If m ≤ t < 2m− 1, then d(u0, v3t+1) = d(v6m−3, v3t+1) = 2m− t+ 2.

• If 0 ≤ t ≤ m−2, then d(u0, v3t+2) = 3+t and d(u0, v3t+2) < d(v6m−3, v3t+2).
If m− 1 ≤ t < 2m− 1, then d(u0, v3t+2) = d(v6m−3, v3t+2) = 2m− t+ 1.

• If 1 ≤ t ≤ m− 1, then d(u0, u3t) = d(v6m−3, u3t) = 2 + t.
If m ≤ t ≤ 2m − 1, then d(v6m−3, u3t) = 2m − t and d(u0, u3t) >
d(v6m−3, u3t).

• If 1 ≤ t ≤ m− 1, then d(u0, u3t+1) = d(v6m−3, u3t+1) = 3 + t.
If m ≤ t < 2m− 1, then d(v6m−3, u3t+1) = 2m− t+ 1 and d(u0, u3t+1) >
d(v6m−3, u3t+1).

• If 1 ≤ t ≤ m− 2, then d(u0, u3t+2) = d(v6m−3, u3t+2) = 4 + t.
If m− 1 ≤ t < 2m− 1, then d(v6m−3, u3t+2) = 2m− t and d(u0, u3t+2) >
d(v6m−3, u3t+2).

• d(u0, u1) = 1, d(v6m−3, u1) = 2m+ 1, d(u0, u2) = 2, d(v6m−3, u2) = 2m.

Note that u0 ∈ Wu0v6m−3
and v6m−3 ∈ Wv6m−3u0

. Combined with the above
discussion we get |Wu0v6m−3

| = 2m+ 4 and |Wv6m−3u0
| = 4m− 1. Because m ≥ 3,

we can conclude that |Wu0v6m−3 | < |Wv6m−3u0 |.
The conclusions in the remaining cases are as follows:

• If n = 6m+ 1, m ≥ 3, then |Wu0v−3
| = 2m+ 4 and |Wv−3u0

| = 4m+ 2.
• If n = 6m+ 2, m ≥ 3, then |Wu0v−3

| = 2m+ 3 and |Wv−3u0
| = 4m+ 1.

• If n = 6m+ 3, m ≥ 3, then |Wu0v−3 | = 2m+ 6 and |Wv−3u0 | = 4m+ 3.
• If n = 6m+ 4, m ≥ 3, then |Wu0v−3 | = 2m+ 4 and |Wv−3u0 | = 4m+ 2.
• If n = 6m+ 5, m ≥ 2, then |Wu0v−3

| = 2m+ 5 and |Wv−3u0
| = 4m+ 5.

In each case we have |Wu0v−3
| < |Wv−3u0

|. □

Proposition 2.3. For any n > 16, the generalized Petersen graph GP (n, 3) is not
ℓ-distance-balanced for any 3 ≤ ℓ < diam(GP (n, 3)).

Proof. For a given fixed n, we set D = diam(GP (n, 3)).
For any 3 ≤ ℓ < D, we first show that there exists vj such that d(u0, vj) = ℓ,

where 6 ≤ j ≤ n/2. From [18] we recall that there exists j∗ such that d(u0, uj∗) =
D.

https://doi.org/10.33044/revuma.4824
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If n = 6m (m ≥ 3) or n = 6m + 1 (m ≥ 3), then we know from [18] that
j∗ = 3(m − 1) + 2 and D = d(u0, uj∗) = m + 3. Note that d(u0, v3s+2) = s + 3,
where 2 ≤ s ≤ m− 1, and d(u0, v3s) = s+ 1, where 2 ≤ s ≤ m.

If n = 6m + 2 (m ≥ 3) or n = 6m + 3 (m ≥ 3), then from [18] we know that
j∗ = 3m + 1 and D = d(u0, uj∗) = m + 3. Note that d(u0, v3s+1) = s + 2, where
2 ≤ s ≤ m, and d(u0, v3s) = s+ 1, where 2 ≤ s ≤ m.

If n = 6m + 4 (m ≥ 3), then from [18] we know that j∗ = 3m + 2 and D =
d(u0, uj∗) = m + 4. Note that d(u0, v3s+2) = s + 3, where 2 ≤ s ≤ m, and
d(u0, v3s) = s+ 1, where 2 ≤ s ≤ m.

If n = 6m+ 5 (m ≥ 2), then (again by [18]) j∗ = 3m+ 1 and D = d(u0, uj∗) =
m + 3. Note that d(u0, v3s+1) = s + 2, where 2 ≤ s ≤ m, and d(u0, v3s) = s + 1,
where 2 ≤ s ≤ m.

From the above discussion, for any ℓ where 3 ≤ ℓ < D, there exists a j such that
6 ≤ j ≤ n/2 and d(u0, vj) = ℓ. Define the following sets of vertices:

V1 = {ui : 1 ≤ i ≤ j − 1} ∪ {vi : 1 ≤ i ≤ j − 1},
V2 = {ui : j + 1 ≤ i ≤ n− 1} ∪ {vi : j + 1 ≤ i ≤ n− 1},

W 1
u0vj = Wu0vj ∩ (V1 ∪ {u0, v0, uj , vj}),

W 1
vju0

= Wvju0 ∩ (V1 ∪ {u0, v0, uj , vj}),

W 2
u0vj = Wu0vj ∩ (V2 ∪ {u0, v0, uj , vj}),

W 2
vju0

= Wvju0 ∩ (V2 ∪ {u0, v0, uj , vj}).

Because 6 ≤ j ≤ n/2, we have |W 2
u0vj

| = |W 1
u0vn−j

| and |W 2
vju0

| = |W 1
vn−ju0

|. So

|Wu0vj
| = |W 1

u0vj |+ |W 2
u0vj | − 2 = |W 1

u0vj |+ |W 1
u0vn−j

| − 2 and

|Wvju0 | = |W 1
vju0

|+ |W 2
vju0

| − 2 = |W 1
vju0

|+ |W 1
vn−ju0

| − 2.

In the following we will compute |W 1
u0vj

| and |W 1
vju0

| where 6 ≤ j ≤ n − 6. The
computation is divided into six cases, and for transparency and non-replication
purposes, we present only the first case in detail. Details for the other five cases
are given in Appendix A.

The computation of |W 1
u0v3s | and |W 1

v3su0
|, where s is odd and s ≥ 5, is as

follows.

• If 0 ≤ t < s, then d(u0, v3t) = 1 + t and d(v3s, v3t) = s− t.
If 0 ≤ t < s−1

2 , then d(u0, v3t) < d(v3s, v3t).

If s−1
2 < t < s, then d(u0, v3t) > d(v3s, v3t).

• If 0 ≤ t < s, then d(u0, v3t+1) = 2 + t and d(v3s, v3t+1) = s− t+ 3.
If 0 ≤ t < s+1

2 , then d(u0, v3t+1) < d(v3s, v3t+1).

If s+1
2 < t < s, then d(u0, v3t+1) > d(v3s, v3t+1).

• If 0 ≤ t < s, then d(u0, v3t+2) = 3 + t and d(v3s, v3t+2) = s− t+ 2.
If 0 ≤ t < s−1

2 , then d(u0, v3t+2) < d(v3s, v3t+2).

If s−1
2 < t < s, then d(u0, v3t+2) > d(v3s, v3t+2).

https://doi.org/10.33044/revuma.4824


Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4824.

Submitted: May 29, 2024
Accepted: September 24, 2024
Published (early view): September 30, 2024

6 G. MA, J. WANG, AND S. KLAVŽAR

• If 1 ≤ t ≤ s, then d(u0, u3t) = 2 + t and d(v3s, u3t) = s− t+ 1.
If 1 ≤ t < s−1

2 , then d(u0, u3t) < d(v3s, u3t).

If s−1
2 < t ≤ s, then d(u0, u3t) > d(v3s, u3t).

• If 1 ≤ t < s, then d(u0, u3t+1) = 3 + t and d(v3s, u3t+1) = s− t+ 2.
If 1 ≤ t < s−1

2 , then d(u0, u3t+1) < d(v3s, u3t+1).

If s−1
2 < t < s, then d(u0, u3t+1) > d(v3s, u3t+1).

• If 1 ≤ t < s, then d(u0, u3t+2) = 4 + t and d(v3s, u3t+2) = s− t+ 1.
If 1 ≤ t < s−3

2 , then d(u0, u3t+2) < d(v3s, u3t+2).

If s−3
2 < t < s, then d(u0, u3t+2) > d(v3s, u3t+2).

• d(u0, u1) = 1, d(v3s, u1) = s+ 2, d(u0, u2) = 2, and d(v3s, u2) = s+ 1.

Note that u0 ∈ W 1
u0v3s and v3s ∈ W 1

v3su0
. Combined with the above discussion we

obtain |W 1
u0v3s | = 3s− 3 and |W 1

v3su0
| = 3s− 1.

The conclusions in the remaining cases are as follows:

• If s ≥ 4 and s is even, then |W 1
u0v3s | = 3s and |W 1

v3su0
| = 3s+ 2.

• If s ≥ 3 and s is odd, then |W 1
u0v3s+1

| = 3s+ 1 and |W 1
v3s+1u0

| = 3s+ 3.

• If s ≥ 4 and s is even, then |W 1
u0v3s+1

| = 3s− 2 and |W 1
v3s+1u0

| = 3s.

• If s ≥ 5 and s is odd, then |W 1
u0v3s+2

| = 3s− 1 and |W 1
v3s+2u0

| = 3s+ 1.

• If s ≥ 4 and s is even, then |W 1
u0v3s+2

| = 3s+ 2 and |W 1
v3s+2u0

| = 3s+ 4.

• |W 1
u0v6 | = 7 and |W 1

v6u0
| = 7.

• |W 1
u0v7 | = 6 and |W 1

v7u0
| = 6.

• |W 1
u0v8 | = 9 and |W 1

v8u0
| = 9.

• |W 1
u0v9 | = 7 and |W 1

v9u0
| = 8.

• |W 1
u0v11 | = 9 and |W 1

v11u0
| = 10.

When n ≥ 17, from the above computation of |W 1
u0vj | and |W 1

vju0
| where 6 ≤

j ≤ n− 6, for any 3 ≤ ℓ < D, we know that there exists j where d(u0, vj) = ℓ and
6 ≤ j ≤ n/2 such that |Wu0vj | < |Wvju0 |. □

3. Sketch proof of Theorem 1.4

As mentioned in the introduction, it suffices to prove that for any n > 24,
the generalized Petersen graph GP (n, 4) is not ℓ-distance-balanced for any 1 ≤
ℓ < diam(GP (n, 4)). We split the argument into the cases ℓ = 1, ℓ = 2, and
3 ≤ ℓ < diam(GP (n, 4)) to be respectively covered by Propositions 3.1, 3.2, and 3.3.

Proposition 3.1. For any n > 24, the generalized Petersen graph GP (n, 4) is not
1-distance-balanced.

Proof. Since dGP (n,4)(u0, v0) = 1, it suffices to prove that |Wu0v0 | < |Wv0u0 |. We
divide the discussion into eight cases based on n mod 8, and for transparency and
non-replication purposes, present only the first case in detail. Details for the other
seven cases are given in Appendix B.

Let n = 8m, where m ≥ 4. By symmetry, it suffices to consider vertices ui and
vi where 1 ≤ i ≤ n

2 . Then the following holds.

• If 1 ≤ t ≤ m, then d(u0, v4t) = 1 + t and d(v0, v4t) = t.
• If 0 ≤ t < m, then d(u0, v4t+1) = 2 + t and d(v0, v4t+1) = 3 + t.
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• If 0 ≤ t < m, then d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t.
• If 0 ≤ t < m, then d(u0, v4t+3) = 3 + t and d(v0, v4t+3) = 4 + t.
• If 1 ≤ t ≤ m, then d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t.
• If 1 ≤ t < m, then d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t.
• If 1 ≤ t < m, then d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t.
• If 1 ≤ t < m, then d(u0, u4t+3) = 4 + t and d(v0, u4t+3) = 3 + t.
• d(u0, u1) = 1, d(v0, u1) = 2, d(u0, u2) = 2, d(v0, u2) = 3, d(u0, u3) = 3, and
d(v0, u3) = 3.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion we

arrive at |Wu0v0 | = 2(3m+2)+1 = 6m+5 and |Wv0u0
| = 2(5m−5)+3 = 10m−7.

Because m ≥ 4, we can conclude that |Wu0v0 | < |Wv0u0
|.

The conclusions in the remaining cases are as follows:

• If n = 8m+1, where m ≥ 3, then |Wu0v0
| = 6m+3 and |Wv0u0

| = 10m−5.
• If n = 8m+2, where m ≥ 3, then |Wu0v0 | = 6m+4 and |Wv0u0 | = 10m−2.
• If n = 8m+3, where m ≥ 3, then |Wu0v0 | = 6m+5 and |Wv0u0 | = 10m−1.
• If n = 8m+4, where m ≥ 3, then |Wu0v0

| = 6m+8 and |Wv0u0
| = 10m−2.

• If n = 8m+5, where m ≥ 3, then |Wu0v0
| = 6m+7 and |Wv0u0

| = 10m+1.
• If n = 8m+6, where m ≥ 3, then |Wu0v0

| = 6m+6 and |Wv0u0
| = 10m+2.

• If n = 8m+7, where m ≥ 3, then |Wu0v0 | = 6m+7 and |Wv0u0 | = 10m+3.

In each case we have |Wu0v0 | < |Wv0u0
|. □

Proposition 3.2. For any n > 24, the generalized Petersen graph GP (n, 4) is not
2-distance-balanced.

Proof. Since dGP (n,4)(u0, v−4) = 2, it suffices to prove that |Wu0v−4
| < |Wv−4u0

|.
We divide the discussion into the eight cases based on n mod 8, and for trans-
parency and non-replication purposes, present only the first case in detail. Details
for the other seven cases are given in Appendix B.

Firstly we consider vertices v−1, v−2, v−3, u−1, u−2, u−3:

• d(u0, v−1) = 2 and d(v−4, v−1) = 4,
• d(u0, v−2) = 3 and d(v−4, v−2) = 4,
• d(u0, v−3) = d(v−4, v−3) = 3,
• d(u0, u−1) = 1 and d(v−4, u−1) = 3,
• d(u0, u−2) = 2 and d(v−4, u−2) = 3,
• d(u0, u−3) = 3 and d(v−4, u−3) = 2.

Next we consider vertices vi, 0 ≤ i < n − 4, and uj , 1 ≤ j ≤ n − 4. Let n = 8m,
m ≥ 4. Note that n− 4 = 8m− 4 = 4(2m− 1).

• If 0 ≤ t ≤ m− 1, then d(u0, v4t) = d(v8m−4, v4t) = 1 + t.
If m ≤ t < 2m − 1, then d(v8m−4, v4t) = 2m − t − 1 and d(u0, v4t) >
d(v8m−4, v4t).

• If 0 ≤ t ≤ m−1, then d(u0, v4t+1) = 2+t and d(u0, v4t+1) < d(v8m−4, v4t+1).
If m ≤ t < 2m− 1, then d(u0, v4t+1) = d(v8m−4, v4t+1) = 2m− t+ 2.

• If 0 ≤ t ≤ m−1, then d(u0, v4t+2) = 3+t and d(u0, v4t+2) < d(v8m−4, v4t+2).
If m ≤ t < 2m− 1, then d(u0, v4t+2) = d(v8m−4, v4t+2) = 2m− t+ 2.
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• If 0 ≤ t ≤ m−2, then d(u0, v4t+3) = 3+t and d(u0, v4t+3) < d(v8m−4, v4t+3).
If m− 1 ≤ t < 2m− 1, then d(u0, v4t+3) = d(v8m−4, v4t+3) = 2m− t+ 1.

• If 1 ≤ t ≤ m− 1, then d(u0, u4t) = d(v8m−4, u4t) = 2 + t.
If m ≤ t ≤ 2m − 1, then d(v8m−4, u4t) = 2m − t and d(u0, u4t) >
d(v8m−4, u4t).

• If 1 ≤ t ≤ m− 1, then d(u0, u4t+1) = d(v8m−4, u4t+1) = 3 + t.
If m ≤ t < 2m− 1, then d(v8m−4, u4t+1) = 2m− t+ 1 and d(u0, u4t+1) >
d(v8m−4, u4t+1).

• If 1 ≤ t ≤ m− 2, then d(u0, u4t+2) = d(v8m−4, u4t+2) = 4 + t.
If m−1 ≤ t < 2m−1, then d(v8m−4, u4t+2) = 2m−t+1 and d(u0, u4t+2) >
d(v8m−4, u4t+2).

• If 1 ≤ t ≤ m− 2, then d(u0, u4t+3) = d(v8m−4, u4t+3) = 4 + t.
If m− 1 ≤ t < 2m− 1, then d(v8m−4, u4t+3) = 2m− t and d(u0, u4t+3) >
d(v8m−4, u4t+3).

• d(u0, u1) = 1, d(v8m−4, u1) = 2m+1, d(u0, u2) = 2, d(v8m−4, u2) = 2m+1,
d(u0, u3) = 3, and d(v8m−4, u3) = 2m.

Note that u0 ∈ Wu0v8m−4
and v8m−4 ∈ Wv8m−4u0

. Combined with the above
discussion we arrive at |Wu0v8m−4 | = 3m+7 and |Wv8m−4u0 | = 5m. Because m ≥ 4
we may conclude that |Wu0v8m−4 | < |Wv8m−4u0 |.

The conclusions in the remaining cases are as follows:

• If n = 8m+1, wherem ≥ 3, then |Wu0v−4
| = 3m+7 and |Wv−4u0

| = 5m+3.
• If n = 8m+2, wherem ≥ 3, then |Wu0v−4

| = 3m+6 and |Wv−4u0
| = 5m+2.

• If n = 8m+3 where m ≥ 3, then |Wu0v−4
| = 3m+7 and |Wv−4u0

| = 5m+3.
• If n = 8m+4, wherem ≥ 3, then |Wu0v−4 | = 3m+9 and |Wv−4u0 | = 5m+4.
• If n = 8m+5, wherem ≥ 3, then |Wu0v−4 | = 3m+7 and |Wv−4u0 | = 5m+3.
• If n = 8m+6, wherem ≥ 3, then |Wu0v−4

| = 3m+8 and |Wv−4u0
| = 5m+6.

• If n = 8m+7, wherem ≥ 3, then |Wu0v−4
| = 3m+8 and |Wv−4u0

| = 5m+6.

In each case we have |Wu0v−4
| < |Wv−4u0

| as required. □

Proposition 3.3. For any n > 24, the generalized Petersen graph GP (n, 4) is not
ℓ-distance-balanced for any 3 ≤ ℓ < diam(GP (n, 4)).

Proof. For a given fixed n, we set D = diam(GP (n, 4)).
For any 3 ≤ ℓ < D, we first show that there exists vj such that d(u0, vj) = ℓ

where 8 ≤ j ≤ n/2. From [18] we recall that there exists j∗ such that d(u0, uj∗) =
D.

If n = 8m, where m ≥ 4, or n = 8m+ 1, where m ≥ 3, then from [18] we know
that j∗ = 4(m−1)+2 and D = d(u0, uj∗) = m+3. Note that d(u0, v4s+2) = s+3,
where 2 ≤ s ≤ m− 1, and d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 2, where m ≥ 3, or n = 8m + 3, where m ≥ 3, then from [18] we
know that j∗ = 4m+1 and D = d(u0, uj∗) = m+3. Note that d(u0, v4s+1) = s+2,
where 3 ≤ s ≤ m, and d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 4, where m ≥ 3, or n = 8m + 5, where m ≥ 3, then from [18] we
know that j∗ = 4m+2 and D = d(u0, uj∗) = m+4. Note that d(u0, v4s+2) = s+3,
where 2 ≤ s ≤ m, and d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.
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If n = 8m + 6, where m ≥ 3, then from [18] we know that j∗ = 4m + 3 and
D = d(u0, uj∗) = m + 4. Note that d(u0, v4s+3) = s + 3, where 2 ≤ s ≤ m, and
d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 7, where m ≥ 3, then from [18] we know that j∗ = 4m + 2 and
D = d(u0, uj∗) = m + 4. Note that d(u0, v4s+2) = s + 3, where 2 ≤ s ≤ m, and
d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

By the above discussion, there exists j, where 8 ≤ j ≤ n/2, such that d(u0, vj) =
ℓ for any 3 ≤ ℓ < D. Define the following sets of vertices:

V1 = {ui : 1 ≤ i ≤ j − 1} ∪ {vi : 1 ≤ i ≤ j − 1},
V2 = {ui : j + 1 ≤ i ≤ n− 1} ∪ {vi : j + 1 ≤ i ≤ n− 1},

W 1
u0vj = Wu0vj ∩ (V1 ∪ {u0, v0, uj , vj}),

W 1
vju0

= Wvju0 ∩ (V1 ∪ {u0, v0, uj , vj}),

W 2
u0vj = Wu0vj ∩ (V2 ∪ {u0, v0, uj , vj}),

W 2
vju0

= Wvju0 ∩ (V2 ∪ {u0, v0, uj , vj}).

Because 8 ≤ j ≤ n/2, we have |W 2
u0vj

| = |W 1
u0vn−j

| and |W 2
vju0

| = |W 1
vn−ju0

|. So

|Wu0vj
| = |W 1

u0vj |+ |W 2
u0vj | − 2 = |W 1

u0vj |+ |W 1
u0vn−j

| − 2 and

|Wvju0 | = |W 1
vju0

|+ |W 2
vju0

| − 2 = |W 1
vju0

|+ |W 1
vn−ju0

| − 2.

In the following we will compute |W 1
u0vj | and |W 1

vju0
| where 8 ≤ j ≤ n− 8. The

computation is divided into eight cases, and for transparency and non-replication
purposes, present only the first case in detail. Details for the other seven cases are
given in Appendix B.

The computation of |W 1
u0v4s | and |W 1

v4su0
|, where s ≥ 5 is odd is as follows.

• If 0 ≤ t < s, then d(u0, v4t) = 1 + t and d(v4s, v4t) = s− t.
If 0 ≤ t < s−1

2 , then d(u0, v4t) < d(v4s, v4t).

If s−1
2 < t < s, then d(u0, v4t) > d(v4s, v4t).

• If 0 ≤ t < s, then d(u0, v4t+1) = 2 + t and d(v4s, v4t+1) = s− t+ 3.
If 0 ≤ t < s+1

2 , then d(u0, v4t+1) < d(v4s, v4t+1).

If s+1
2 < t < s, then d(u0, v4t+1) > d(v4s, v4t+1).

• If 0 ≤ t < s, then d(u0, v4t+2) = 3 + t and d(v4s, v4t+2) = s− t+ 3.
If 0 ≤ t ≤ s−1

2 , then d(u0, v4t+2) < d(v4s, v4t+2).

If s+1
2 ≤ t < s, then d(u0, v4t+2) > d(v4s, v4t+2).

• If 0 ≤ t < s, then d(u0, v4t+3) = 3 + t and d(v4s, v4t+3) = s− t+ 2.
If 0 ≤ t < s−1

2 , then d(u0, v4t+3) < d(v4s, v4t+3).

If s−1
2 < t < s, then d(u0, v4t+3) > d(v4s, v4t+3).

• If 1 ≤ t ≤ s, then d(u0, u4t) = 2 + t and d(v4s, u4t) = s− t+ 1.
If 1 ≤ t < s−1

2 , then d(u0, u4t) < d(v4s, u4t).

If s−1
2 < t ≤ s, then d(u0, u4t) > d(v4s, u4t).

• If 1 ≤ t < s, then d(u0, u4t+1) = 3 + t and d(v4s, u4t+1) = s− t+ 2.
If 1 ≤ t < s−1

2 , then d(u0, u4t+1) < d(v4s, u4t+1).

If s−1
2 < t < s, then d(u0, u4t+1) > d(v4s, u4t+1).
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• If 1 ≤ t < s, then d(u0, u4t+2) = 4 + t and d(v4s, u4t+2) = s− t+ 2.
If 1 ≤ t ≤ s−3

2 , then d(u0, u4t+2) < d(v4s, u4t+2).

If s−1
2 ≤ t < s, then d(u0, u4t+2) > d(v4s, u4t+2).

• If 1 ≤ t < s, then d(u0, u4t+3) = 4 + t and d(v4s, u4t+3) = s− t+ 1.
If 1 ≤ t < s−3

2 , then d(u0, u4t+3) < d(v4s, u4t+3).

If s−3
2 < t < s, then d(u0, u4t+3) > d(v4s, u4t+3).

• d(u0, u1) = 1, d(v4s, u1) = s + 2, d(u0, u2) = 2, d(v4s, u2) = s + 2,
d(u0, u3) = 3, and d(v4s, u3) = s+ 1.

Note that u0 ∈ W 1
u0v4s and v4s ∈ W 1

v4su0
. Combined with the above discussion we

arrive at |W 1
u0v4s

| = 4s− 3 and |W 1
v4su0

| = 4s− 1.
The conclusions in the remaining cases are as follows:

• If s ≥ 4 and s is even, then |W 1
u0v4s | = 4s− 1 and |W 1

v4su0
| = 4s+ 1.

• If s ≥ 3 and s is odd, then |W 1
u0v4s+1

| = 4s+ 1 and |W 1
v4s+1u0

| = 4s+ 3.

• If s ≥ 4 and s is even, then |W 1
u0v4s+1

| = 4s− 3 and |W 1
v4s+1u0

| = 4s− 1.

• If s ≥ 5 and s is odd, then |W 1
u0v4s+2

| = 4s− 1 and |W 1
v4s+2u0

| = 4s+ 1.

• If s ≥ 4 and s is even, then |W 1
u0v4s+2

| = 4s+ 1 and |W 1
v4s+2u0

| = 4s+ 3.

• If s ≥ 5 and s is odd, then |W 1
u0v4s+3

| = 4s+ 1 and |W 1
v4s+3u0

| = 4s+ 3.

• If s ≥ 4 and s is even, then |W 1
u0v4s+3

| = 4s+ 1 and |W 1
v4s+3u0

| = 4s+ 3.

• |W 1
u0v8 | = 8 and |W 1

v8u0
| = 8.

• |W 1
u0v10 | = 11 and |W 1

v10u0
| = 10.

• |W 1
u0v11 | = 10 and |W 1

v11u0
| = 10.

• |W 1
u0v12 | = 10 and |W 1

v12u0
| = 11.

• |W 1
u0v14 | = 12 and |W 1

v14u0
| = 13.

• |W 1
u0v15 | = 14 and |W 1

v15u0
| = 15.

When n ≥ 26, from the above computation of |W 1
u0vj | and |W 1

vju0
|, where 8 ≤

j ≤ n− 8, for any 3 ≤ ℓ < D we know that there exists j where d(u0, vj) = ℓ and
8 ≤ j ≤ n/2 such that |Wu0vj | < |Wvju0

|. When n = 25, we have d(u0, v8) = 3,
d(u0, v12) = 4, d(u0, v11) = 5, and D(GP (25, 4)) = 6. From the above computation
of |W 1

u0vj | and |W 1
vju0

|, we know that |Wu0vj | < |Wvju0
| for any j ∈ {8, 11, 12}. □

4. Concluding remarks

In this paper, we prove that GP (n, 3) is not ℓ-distance-balanced for n > 16 and
1 ≤ ℓ < diam(GP (n, 3)). We also prove that GP (n, 4) is not ℓ-distance-balanced
for n > 24 and 1 ≤ ℓ < diam(GP (n, 4)). Earlier it was proved in [20] that GP (n, 2)
is not ℓ-distance-balanced for n > 11 and 1 ≤ ℓ < diam(GP (n, 2)).

From Proposition 2.1 we know that |Wv0u0
| − |Wu0v0 | is about 1

3 times of
|V (GP (n, 3))|. From Proposition 3.1 we know that |Wv0u0

| − |Wu0v0 | is about
1
4 times of |V (GP (n, 4))|. The above observations encourage us to try to consider
Conjecture 1.2 for distance-balancedness of generalized Petersen graph GP (n, k)
for k ≥ 5. The authors in [21] proved that for any k ≥ 2 and n > 6k2 GP (n, k) is
not distance-balanced. If Conjecture 1.2 is right, the “6k2” in [21] can be greatly
improved.
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Similarly, From Proposition 2.2, we know that |Wv−3u0 | − |Wu0v−3 | is about 1
6

times of |V (GP (n, 3))|. From Proposition 3.2, we know that |Wv−4u0
|− |Wu0v−4

| is
about 1

8 times of |V (GP (n, 4))|. So we can consider Conjecture 1.2 for 2-distance-
balancedness of generalized Petersen graph GP (n, k) for k ≥ 5.

The discussions on distance-balancedness and 2-distance-balancedness ofGP (n, k)
for k ≥ 5 may be merged into fewer cases because |Wv0u0 |−|Wu0v0 | and |Wv−ku0 |−
|Wu0v−k

| are big relative to |V (GP (n, k))|. This is the work we will do.
For 3 ≤ ℓ < diam(GP (n, k)), the ℓ-distance-balancedness of Conjecture 1.2 for

k ≥ 5 can not easily been investigated. A new approach may be needed.
Since Miklavič and Šparl proposed the two conjectures about the ℓ-distance-

balancedness of GP (n, k) in 2018, there are few positive results appeared in the
past several years. Up to our knowledge, the discussion is complicated even for
some special pairs of (n, k). Up to now, there are only a few pairs of (n, k), for
which the ℓ-distance-balancedness of GP (n, k) are studied completely. So there are
much many pairs of (n, k), for which the ℓ-distance-balancedness of GP (n, k) will
be worth studying in the future.
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[19] Š. Miklavič, P. Šparl, On the connectivity of bipartite distance-balanced graphs, European

J. Combin. 33 (2012) 237–247.
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Appendix A

Proof of the remaining cases of Proposition 2.1. (2) When n = 6m+1 where
m ≥ 3.

By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n
2 .

d(u0, v3t) = 1+ t and d(v0, v3t) = t where 1 ≤ t ≤ m. d(u0, v3t+1) = 2+ t where
0 ≤ t < m. d(v0, v3t+1) = 3+ t where 0 ≤ t ≤ m−2, and d(v0, v3(m−1)+1) = m+1.
d(u0, v3t+2) = 3 + t and d(v0, v3t+2) = 4 + t where 0 ≤ t < m.

d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t where 1 ≤ t < m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u3t+2) = 4+ t and d(v0, u3t+2) = 3+ t where
1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion,
|Wu0v0 | = 2(2m+1)+1 = 4m+3 and |Wv0u0 | = 2(4m− 2)+1 = 8m− 3. Because
m ≥ 3, |Wu0v0 | < |Wv0u0

|.

(3) When n = 6m+ 2 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v3t) = 1 + t and d(v0, v3t) = t where 1 ≤ t ≤ m. d(u0, v3t+1) = 2 + t and

d(v0, v3t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v3t+2) = 3 + t where 0 ≤ t < m.
d(v0, v3t+2) = 4 + t where 0 ≤ t ≤ m− 2, and d(v0, v3(m−1)+2) = m+ 1.

d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u3t+2) = 4+ t and d(v0, u3t+2) = 3+ t where
1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion,
|Wu0v0 | = 2(2m + 1) + 2 = 4m + 4 and |Wv0u0 | = 2(4m − 1) + 2 = 8m. Because
m ≥ 3, |Wu0v0 | < |Wv0u0

|.

(4) When n = 6m+ 3 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v3t) = 1 + t and d(v0, v3t) = t where 1 ≤ t ≤ m. d(u0, v3t+1) = 2 + t and

d(v0, v3t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v3t+2) = 3 + t and d(v0, v3t+2) = 4 + t
where 0 ≤ t < m.

d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u3t+2) = 4+ t and d(v0, u3t+2) = 3+ t where
1 ≤ t < m.
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Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion,
|Wu0v0

| = 2(2m+3)+1 = 4m+7 and |Wv0u0
| = 2(4m− 1)+1 = 8m− 1. Because

m ≥ 3, |Wu0v0 | < |Wv0u0
|.

(5) When n = 6m+ 4 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v3t) = 1+ t and d(v0, v3t) = t where 1 ≤ t ≤ m. d(u0, v3t+1) = 2+ t where

0 ≤ t ≤ m. d(v0, v3t+1) = 3 + t where 0 ≤ t ≤ m − 1, and d(v0, v3m+1) = m + 1.
d(u0, v3t+2) = 3 + t and d(v0, v3t+2) = 4 + t where 0 ≤ t ≤ m.

d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u3t+2) = 4+ t and d(v0, u3t+2) = 3+ t where
1 ≤ t ≤ m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion,

|Wu0v0 | = 2(2m + 2) + 2 = 4m + 6 and |Wv0u0
| = 2 × 4m + 2 = 8m + 2. Because

m ≥ 3, |Wu0v0 | < |Wv0u0
|.

(6) When n = 6m+ 5 where m ≥ 2.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v3t) = 1 + t and d(v0, v3t) = t where 1 ≤ t ≤ m. d(u0, v3t+1) = 2 + t and

d(v0, v3t+1) = 3+ t where 0 ≤ t ≤ m. d(u0, v3t+2) = 3+ t where 0 ≤ t ≤ m− 1 and
d(u0, v3m+2) = m+2. d(v0, v3t+2) = 4+ t where 0 ≤ t ≤ m−2, d(v0, v3(m−1)+2) =
m+ 2 and d(v0, v3m+2) = m+ 1.

d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u3t+2) = 4+ t and d(v0, u3t+2) = 3+ t where
1 ≤ t ≤ m− 1. d(u0, u3m+2) = m+ 3 and d(v0, u3m+2) = m+ 2.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion,

|Wu0v0 | = 2(2m+2)+1 = 4m+5 and |Wv0u0 | = 2(4m+1)+1 = 8m+3. Because
m ≥ 2, |Wu0v0 | < |Wv0u0 |. □

Proof of the remaining cases of Proposition 2.2. (2) When n = 6m+1 where
m ≥ 3.

Note that n− 3 = 6m− 2 = 3(2m− 1) + 1.
d(u0, v3t) = d(v6m−2, v3t) = 1 + t when 0 ≤ t ≤ m. d(u0, v3t) = d(v6m−2, v3t) =

2m − t + 2 when m + 1 ≤ t ≤ 2m − 1. d(u0, v3t+1) = 2 + t and d(u0, v3t+1) <
d(v6m−2, v3t+1) when 0 ≤ t ≤ m−2. d(v6m−2, v3t+1) = 2m−t−1 and d(u0, v3t+1) >
d(v6m−2, v3t+1) when m− 1 ≤ t < 2m− 1. d(u0, v3t+2) = 3 + t and d(u0, v3t+2) <
d(v6m−2, v3t+2) when 0 ≤ t ≤ m − 1. d(u0, v3t+2) = d(v6m−2, v3t+2) = 2m − t + 2
when m ≤ t < 2m− 1.

d(u0, u3t) = d(v6m−2, u3t) = 2 + t when 1 ≤ t ≤ m − 1. d(v6m−2, u3t) =
2m − t + 1 and d(u0, u3t) > d(v6m−2, u3t) when m ≤ t ≤ 2m − 1. d(u0, u1) =
1 and d(v6m−2, u1) = 2m. d(u0, u3t+1) = d(v6m−2, u3t+1) = 3 + t when 1 ≤
t ≤ m − 2. d(v6m−2, u3t+1) = 2m − t and d(u0, u3t+1) > d(v6m−2, u3t+1) when
m − 1 ≤ t ≤ 2m − 1. d(u0, u2) = 2 and d(v6m−2, u2) = 2m + 1. d(u0, u3t+2) =
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d(v6m−2, u3t+2) = 4 + t when 1 ≤ t ≤ m − 2. d(v6m−2, u3t+2) = 2m − t + 1 and
d(u0, u3t+2) > d(v6m−2, u3t+2) when m− 1 ≤ t < 2m− 1.

Note that u0 ∈ Wu0v6m−2
and v6m−2 ∈ Wv6m−2u0

. Combined with the above
discussion, |Wu0v6m−2

| = 2m + 4 and |Wv6m−2u0
| = 4m + 2. Because m ≥ 3,

|Wu0v6m−2 | < |Wv6m−2u0 |.

(3) When n = 6m+ 2 where m ≥ 3.
Note that n− 3 = 6m− 1 = 3(2m− 1) + 2.
d(u0, v3t) = d(v6m−1, v3t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v3t) = d(v6m−1, v3t) =

2m − t + 3 when m + 2 ≤ t ≤ 2m − 1. d(u0, v3t+1) = 2 + t and d(u0, v3t+1) <
d(v6m−1, v3t+1) when 0 ≤ t ≤ m − 1. d(u0, v3t+1) = d(v6m−1, v3t+1) = 2m − t + 2
when m ≤ t ≤ 2m−1. d(u0, v3t+2) = 3+t and d(u0, v3t+2) < d(v6m−1, v3t+2) when
0 ≤ t ≤ m−3. d(u0, v3(m−2)+2) = d(v6m−1, v3(m−2)+2) = m+1. d(v6m−1, v3t+2) =
2m− t− 1 and d(u0, v3t+2) > d(v6m−1, v3t+2) when m− 1 ≤ t < 2m− 1.

d(u0, u3t) = d(v6m−1, u3t) = 2 + t when 1 ≤ t ≤ m. d(v6m−1, u3t) = 2m− t+ 2
and d(u0, u3t) > d(v6m−1, u3t) when m + 1 ≤ t ≤ 2m − 1. d(u0, u1) = 1 and
d(v6m−1, u1) = 2m+1. d(u0, u3t+1) = d(v6m−1, u3t+1) = 3+ t when 1 ≤ t ≤ m−1.
d(v6m−1, u3t+1) = 2m − t + 1 and d(u0, u3t+1) > d(v6m−1, u3t+1) when m ≤ t ≤
2m−1. d(u0, u2) = 2 and d(v6m−1, u2) = 2m. d(u0, u3t+2) = d(v6m−1, u3t+2) = 4+
t when 1 ≤ t ≤ m−2. d(v6m−1, u3t+2) = 2m−t and d(u0, u3t+2) > d(v6m−1, u3t+2)
when m− 1 ≤ t ≤ 2m− 1.

Note that u0 ∈ Wu0v6m−1 and v6m−1 ∈ Wv6m−1u0 . Combined with the above
discussion, |Wu0v6m−1

| = 2m + 3 and |Wv6m−1u0
| = 4m + 1. Because m ≥ 3,

|Wu0v6m−1
| < |Wv6m−1u0

|.

(4) When n = 6m+ 3 where m ≥ 3.
Note that n− 3 = 6m = 3× 2m.
d(u0, v3t) = d(v6m, v3t) = 1 + t when 0 ≤ t ≤ m − 1. d(v6m, v3t) = 2m − t and

d(u0, v3t) > d(v6m, v3t) when m ≤ t < 2m. d(u0, v3t+1) = 2 + t and d(u0, v3t+1) <
d(v6m, v3t+1) when 0 ≤ t ≤ m. d(u0, v3t+1) = d(v6m, v3t+1) = 2m − t + 3 when
m + 1 ≤ t < 2m. d(u0, v3t+2) = 3 + t and d(u0, v3t+2) < d(v6m, v3t+2) when
0 ≤ t ≤ m− 1. d(u0, v3t+2) = d(v6m, v3t+2) = 2m− t+ 2 when m ≤ t < 2m.

d(u0, u3t) = d(v6m, u3t) = 2+t when 1 ≤ t ≤ m−1. d(v6m, u3t) = 2m−t+1 and
d(u0, u3t) > d(v6m, u3t) when m ≤ t ≤ 2m. d(u0, u1) = 1 and d(v6m, u1) = 2m+2.
d(u0, u3t+1) = d(v6m, u3t+1) = 3 + t when 1 ≤ t ≤ m − 1. d(v6m, u3t+1) =
2m− t+ 2 and d(u0, u3t+1) > d(v6m, u3t+1) when m ≤ t < 2m. d(u0, u2) = 2 and
d(v6m, u2) = 2m + 1. d(u0, u3t+2) = d(v6m, u3t+2) = 4 + t when 1 ≤ t ≤ m − 2.
d(v6m, u3t+2) = 2m− t+1 and d(u0, u3t+2) > d(v6m, u3t+2) when m− 1 ≤ t < 2m.

Note that u0 ∈ Wu0v6m and v6m ∈ Wv6mu0 . Combined with the above discussion,
|Wu0v6m | = 2m+ 6 and |Wv6mu0 | = 4m+ 3. Because m ≥ 3, |Wu0v6m | < |Wv6mu0 |.

(5) When n = 6m+ 4 where m ≥ 3.
Note that n− 3 = 6m+ 1 = 3× 2m+ 1.
d(u0, v3t) = d(v6m+1, v3t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v3t) = d(v6m+1, v3t) =

2m − t + 3 when m + 2 ≤ t ≤ 2m. d(u0, v3t+1) = 2 + t and d(u0, v3t+1) <
d(v6m+1, v3t+1) when 0 ≤ t ≤ m − 2. d(u0, v3(m−1)+1) = d(v6m+1, v3(m−1)+1) =
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m+1. d(v6m+1, v3t+1) = 2m− t and d(u0, v3t+1) > d(v6m+1, v3t+1) when m ≤ t <
2m. d(u0, v3t+2) = 3 + t and d(u0, v3t+2) < d(v6m+1, v3t+2) when 0 ≤ t ≤ m − 1.
d(u0, v3t+2) = d(v6m+1, v3t+2) = 2m− t+ 3 when m ≤ t < 2m.

d(u0, u3t) = d(v6m+1, u3t) = 2 + t when 1 ≤ t ≤ m. d(v6m+1, u3t) = 2m −
t + 2 and d(u0, u3t) > d(v6m+1, u3t) when m + 1 ≤ t ≤ 2m. d(u0, u1) = 1 and
d(v6m+1, u1) = 2m+1. d(u0, u3t+1) = d(v6m+1, u3t+1) = 3+ t when 1 ≤ t ≤ m−1.
d(v6m+1, u3t+1) = 2m−t+1 and d(u0, u3t+1) > d(v6m+1, u3t+1) when m ≤ t ≤ 2m.
d(u0, u2) = 2 and d(v6m, u2) = 2m+2. d(u0, u3t+2) = d(v6m+1, u3t+2) = 4+t when
1 ≤ t ≤ m − 1. d(v6m+1, u3t+2) = 2m − t + 2 and d(u0, u3t+2) > d(v6m+1, u3t+2)
when m ≤ t < 2m.

Note that u0 ∈ Wu0v6m+1 and v6m+1 ∈ Wv6m+1u0 . Combined with the above
discussion, |Wu0v6m+1 | = 2m + 4 and |Wv6m+1u0 | = 4m + 2. Because m ≥ 3,
|Wu0v6m+1

| < |Wv6m+1u0
|.

(6) When n = 6m+ 5 where m ≥ 2.
Note that n− 3 = 6m+ 2 = 3× 2m+ 2.
d(u0, v3t) = d(v6m+2, v3t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v3t) = d(v6m+2, v3t) =

2m − t + 4 when m + 2 ≤ t ≤ 2m. d(u0, v3t+1) = 2 + t and d(u0, v3t+1) <
d(v6m+2, v3t+1) when 0 ≤ t ≤ m. d(u0, v3t+1) = d(v6m+2, v3t+1) = 2m− t+3 when
m + 1 ≤ t ≤ 2m. d(u0, v3t+2) = 3 + t and d(u0, v3t+2) < d(v6m+2, v3t+2) when
0 ≤ t ≤ m− 2. d(v6m+2, v3t+2) = 2m− t and d(u0, v3t+2) > d(v6m+1, v3t+2) when
m− 1 ≤ t < 2m.

d(u0, u3t) = d(v6m+2, u3t) = 2 + t when 1 ≤ t ≤ m. d(v6m+2, u3t) = 2m −
t + 3 and d(u0, u3t) > d(v6m+2, u3t) when m + 1 ≤ t ≤ 2m. d(u0, u1) = 1 and
d(v6m+2, u1) = 2m+2. d(u0, u3t+1) = d(v6m+2, u3t+1) = 3+ t when 1 ≤ t ≤ m−1.
d(v6m+2, u3t+1) = 2m−t+2 and d(u0, u3t+1) > d(v6m+2, u3t+1) when m ≤ t ≤ 2m.
d(u0, u2) = 2 and d(v6m, u2) = 2m+1. d(u0, u3t+2) = d(v6m+2, u3t+2) = 4+t when
1 ≤ t ≤ m − 2. d(v6m+2, u3t+2) = 2m − t + 1 and d(u0, u3t+2) > d(v6m+2, u3t+2)
when m− 1 ≤ t ≤ 2m.

Note that u0 ∈ Wu0v6m+2
and v6m+2 ∈ Wv6m+2u0

. Combined with the above
discussion, |Wu0v6m+2 | = 2m + 5 and |Wv6m+2u0 | = 4m + 5. Because m ≥ 2,
|Wu0v6m+2 | < |Wv6m+2u0 |. □

Proof of the remaining cases of Proposition 2.3. (1a) The computation of
|W 1

u0v3s | and |W 1
v3su0

| when s = 3.
d(u0, v0) = 1 and d(v9, v0) = 3. d(u0, v3) = d(v9, v3) = 2. d(u0, v6) = 3 and

d(v9, v6) = 1. d(u0, v1) = 2 and d(v9, v1) = 6. d(u0, v4) = 3 and d(v9, v4) = 5.
d(u0, v7) = 4 and d(v9, v7) = 4. d(u0, v2) = 3 and d(v9, v2) = 5. d(u0, v5) = 4
and d(v9, v5) = 4. d(u0, v8) = 5 and d(v9, v8) = 3. So v0, v1, v4, v2 ∈ W 1

u0v9 and

v6, v8 ∈ W 1
v9u0

.
d(u0, u3) = 3 and d(v9, u3) = 3. d(u0, u6) = 4 and d(v9, u6) = 2. d(u0, u9) = 5

and d(v9, u9) = 1. d(u0, u1) = 1 and d(v9, u1) = 5. d(u0, u4) = 4 and d(v9, u4) = 4.
d(u0, u7) = 5 and d(v9, u7) = 3. d(u0, u2) = 2 and d(v9, u2) = 4. d(u0, u5) = 5
and d(v9, u5) = 3. d(u0, u8) = 6 and d(v9, u8) = 2. So u1, u2 ∈ W 1

u0v9 and

u6, u9, u7, u5, u8 ∈ W 1
v9u0

.
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Note that u0 ∈ W 1
u0v9 and v9 ∈ W 1

v9u0
. Combined with the above discussion,

|W 1
u0v9 | = 7 and |W 1

v9u0
| = 8.

(1b) Computation of |W 1
u0v3s | and |W 1

v3su0
| when s is even and s ≥ 2.

When s = 2,
d(u0, v0) = 1 and d(v6, v0) = 2. d(u0, v3) = 2 and d(v6, v3) = 1. d(u0, v1) = 2

and d(v6, v1) = 5. d(u0, v4) = 3 and d(v6, v4) = 4. d(u0, v2) = 3 and d(v6, v2) = 4.
d(u0, v5) = 4 and d(v6, v5) = 3. So v0, v1, v2, v4 ∈ W 1

u0v6 and v3, v5 ∈ W 1
v6u0

.
d(u0, u3) = 3 and d(v6, u3) = 2. d(u0, u6) = 4 and d(v6, u6) = 1. d(u0, u1) = 1

and d(v6, u1) = 4. d(u0, u4) = 4 and d(v6, u4) = 3. d(u0, u2) = 2 and d(v6, u2) = 3.
d(u0, u5) = 5 and d(v6, u5) = 2. So u1, u2 ∈ W 1

u0v6 and u3, u4, u5, u6 ∈ W 1
v6u0

.

Note that u0 ∈ W 1
u0v6 and v6 ∈ W 1

v6u0
. Combined with the above discussion,

|W 1
u0v6 | = 7 and |W 1

v6u0
| = 7.

When s ≥ 4,
d(u0, v3t) = 1 + t and d(v3s, v3t) = s − t where 0 ≤ t < s. When 0 ≤ t ≤ s−2

2 ,
d(u0, v3t) < d(v3s, v3t). When s

2 ≤ t < s, d(u0, v3t) > d(v3s, v3t). d(u0, v3t+1) =
2+ t and d(v3s, v3t+1) = s− t+3 where 0 ≤ t < s. When 0 ≤ t ≤ s

2 , d(u0, v3t+1) <

d(v3s, v3t+1). When s+2
2 ≤ t < s, d(u0, v3t+1) > d(v3s, v3t+1). d(u0, v3t+2) = 3 + t

and d(v3s, v3t+2) = s − t + 2 where 0 ≤ t < s. When 0 ≤ t ≤ s−2
2 , d(u0, v3t+2) <

d(v3s, v3t+2). When s
2 ≤ t < s, d(u0, v3t+2) > d(v3s, v3t+2).

d(u0, u3t) = 2+ t and d(v3s, u3t) = s− t+1 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−2
2 ,

d(u0, u3t) < d(v3s, u3t). When s
2 ≤ t ≤ s, d(u0, u3t) > d(v3s, u3t). d(u0, u1) = 1

and d(v3s, u1) = s + 2. d(u0, u3t+1) = 3 + t and d(v3s, u3t+1) = s − t + 2 where
1 ≤ t < s. When 1 ≤ t ≤ s−2

2 , d(u0, u3t+1) < d(v3s, u3t+1). When s
2 ≤ t < s,

d(u0, u3t+1) > d(v3s, u3t+1). d(u0, u2) = 2 and d(v3s, u2) = s + 1. d(u0, u3t+2) =
4 + t and d(v3s, u3t+2) = s − t + 1 where 1 ≤ t < s. When 1 ≤ t ≤ s−4

2 ,

d(u0, u3t+2) < d(v3s, u3t+2). When s−2
2 ≤ t < s, d(u0, u3t+2) > d(v3s, u3t+2).

Note that u0 ∈ W 1
u0v3s and v3s ∈ W 1

v3su0
. Combined with the above discussion,

|W 1
u0v3s | = 3s and |W 1

v3su0
| = 3s+ 2.

(2a) Computation of |W 1
u0v3s+1

| and |W 1
v3s+1u0

| when s is odd and s ≥ 3.

d(u0, v3t) = 1 + t and d(v3s+1, v3t) = s − t + 3 where 0 ≤ t ≤ s. When 0 ≤
t ≤ s+1

2 , d(u0, v3t) < d(v3s+1, v3t). When s+3
2 ≤ t ≤ s, d(u0, v3t) > d(v3s+1, v3t).

d(u0, v3t+1) = 2+t and d(v3s+1, v3t+1) = s−t where 0 ≤ t < s. When 0 ≤ t ≤ s−3
2 ,

d(u0, v3t+1) < d(v3s+1, v3t+1). When s−1
2 ≤ t < s, d(u0, v3t+1) > d(v3s+1, v3t+1).

d(u0, v3t+2) = 3 + t and d(v3s+1, v3t+2) = s − t + 3 where 0 ≤ t < s. When
0 ≤ t ≤ s−1

2 , d(u0, v3t+2) < d(v3s+1, v3t+2). When s+1
2 ≤ t < s, d(u0, v3t+2) >

d(v3s+1, v3t+2).
d(u0, u3t) = 2 + t and d(v3s+1, u3t) = s − t + 2 where 1 ≤ t ≤ s. When 1 ≤

t ≤ s−1
2 , d(u0, u3t) < d(v3s+1, u3t). When s+1

2 ≤ t ≤ s, d(u0, u3t) > d(v3s+1, u3t).
d(u0, u1) = 1 and d(v3s+1, u1) = s + 1. d(u0, u3t+1) = 3 + t and d(v3s+1, u3t+1) =
s− t+1 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−3

2 , d(u0, u3t+1) < d(v3s+1, u3t+1). When
s−1
2 ≤ t ≤ s, d(u0, u3t+1) > d(v3s+1, u3t+1). d(u0, u2) = 2 and d(v3s+1, u2) = s+2.

d(u0, u3t+2) = 4 + t and d(v3s+1, u3t+2) = s − t + 2 where 1 ≤ t < s. When
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1 ≤ t ≤ s−3
2 , d(u0, u3t+2) < d(v3s+1, u3t+2). When s−1

2 ≤ t < s, d(u0, u3t+2) >
d(v3s+1, u3t+2).

Note that u0 ∈ W 1
u0v3s+1

and v3s+1 ∈ W 1
v3s+1u0

. Combined with the above

discussion, |W 1
u0v3s+1

| = 3s+ 1 and |W 1
v3s+1u0

| = 3s+ 3.

(2b) Computation of |W 1
u0v3s+1

| and |W 1
v3s+1u0

| when s is even and s ≥ 2.
When s = 2.
d(u0, v0) = 1 and d(v7, v0) = 5. d(u0, v3) = 2 and d(v7, v3) = 4. d(u0, v6) = 3

and d(v7, v6) = 3. d(u0, v1) = 2 and d(v7, v1) = 2. d(u0, v4) = 3 and d(v7, v4) = 1.
d(u0, v2) = 3 and d(v7, v2) = 5. d(u0, v5) = 4 and d(v7, v5) = 4. So v0, v2, v3 ∈
W 1

u0v7 and v4 ∈ W 1
v7u0

.
d(u0, u3) = 3 and d(v7, u3) = 3. d(u0, u6) = 4 and d(v7, u6) = 2. d(u0, u1) = 1

and d(v7, u1) = 3. d(u0, u4) = 4 and d(v7, u4) = 2. d(u0, u7) = 5 and d(v7, u7) = 1.
d(u0, u2) = 2 and d(v7, u2) = 4. d(u0, u5) = 5 and d(v7, u5) = 4. So u1, u2 ∈ W 1

u0v7

and u4, u5, u6, u7 ∈ W 1
v7u0

.

Note that u0 ∈ W 1
u0v7 and v7 ∈ W 1

v7u0
. Combined with the above discussion,

|W 1
u0v7 | = 6 and |W 1

v7u0
| = 6.

When s ≥ 4.
d(u0, v3t) = 1 + t and d(v3s+1, v3t) = s − t + 3 where 0 ≤ t ≤ s. When 0 ≤

t < s+2
2 , d(u0, v3t) < d(v3s+1, v3t). When s+2

2 < t ≤ s, d(u0, v3t) > d(v3s+1, v3t).

d(u0, v3t+1) = 2+t and d(v3s+1, v3t+1) = s−t where 0 ≤ t < s. When 0 ≤ t < s−2
2 ,

d(u0, v3t+1) < d(v3s+1, v3t+1). When s−2
2 < t < s, d(u0, v3t+1) > d(v3s+1, v3t+1).

d(u0, v3t+2) = 3+t and d(v3s+1, v3t+2) = s−t+3 where 0 ≤ t < s. When 0 ≤ t < s
2 ,

d(u0, v3t+2) < d(v3s+1, v3t+2). When s
2 < t < s, d(u0, v3t+2) > d(v3s+1, v3t+2).

d(u0, u3t) = 2+ t and d(v3s+1, u3t) = s− t+2 where 1 ≤ t ≤ s. When 1 ≤ t < s
2 ,

d(u0, u3t) < d(v3s+1, u3t). When s
2 < t ≤ s, d(u0, u3t) > d(v3s+1, u3t). d(u0, u1) =

1 and d(v3s+1, u1) = s + 1. d(u0, u3t+1) = 3 + t and d(v3s+1, u3t+1) = s − t + 1
where 1 ≤ t ≤ s. When 1 ≤ t < s−2

2 , d(u0, u3t+1) < d(v3s+1, u3t+1). When
s−2
2 < t ≤ s, d(u0, u3t+1) > d(v3s+1, u3t+1). d(u0, u2) = 2 and d(v3s+1, u2) = s+2.

d(u0, u3t+2) = 4 + t and d(v3s+1, u3t+2) = s − t + 2 where 1 ≤ t < s. When
1 ≤ t < s−2

2 , d(u0, u3t+2) < d(v3s+1, u3t+2). When s−2
2 < t < s, d(u0, u3t+2) >

d(v3s+1, u3t+2).
Note that u0 ∈ W 1

u0v3s+1
and v3s+1 ∈ W 1

v3s+1u0
. Combined with the above

discussion, |W 1
u0v3s+1

| = 3s− 2 and |W 1
v3s+1u0

| = 3s.

(3a) Computation of |W 1
u0v3s+2

| and |W 1
v3s+2u0

| when s is odd and s ≥ 3.
When s = 3.
d(u0, v0) = 1 and d(v11, v0) = 7. d(u0, v3) = 2 and d(v11, v3) = 6. d(u0, v6) = 3

and d(v11, v6) = 5. d(u0, v9) = d(v11, v9) = 4. d(u0, v1) = 2 and d(v11, v1) = 6.
d(u0, v4) = 3 and d(v11, v4) = 5. d(u0, v7) = 4 and d(v11, v7) = 4. d(u0, v10) = 5
and d(v11, v10) = 3. d(u0, v2) = 3 and d(v11, v2) = 3. d(u0, v5) = 4 and d(v11, v5) =
2. d(u0, v8) = 5 and d(v11, v8) = 1. So v0, v1, v3, v4, v6 ∈ W 1

u0v11 and v5, v8, v10 ∈
W 1

v11u0
.

d(u0, u3) = 3 and d(v11, u3) = 5. d(u0, u6) = 4 and d(v11, u6) = 4. d(u0, u9) =
5 and d(v11, u9) = 3. d(u0, u1) = 1 and d(v11, u1) = 5. d(u0, u4) = 4 and
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d(v11, u4) = 4. d(u0, u7) = 5 and d(v11, u7) = 3. d(u0, u10) = 6 and d(v11, u10) = 2.
d(u0, u2) = 2 and d(v11, u2) = 4. d(u0, u5) = 5 and d(v11, u5) = 3. d(u0, u8) = 6
and d(v11, u8) = 2. d(u0, u11) = 7 and d(v11, u11) = 1. So u1, u2, u3 ∈ W 1

u0v11 and

u5, u7, u8, u9, u10, u11 ∈ W 1
v11u0

.

Note that u0 ∈ W 1
u0v11

and v11 ∈ W 1
v11u0

. Combined with the above discussion,

|W 1
u0v11 | = 9 and |W 1

v11u0
| = 10.

When s ≥ 5.
d(u0, v3t) = 1 + t and d(v3s+2, v3t) = s − t + 4 where 0 ≤ t ≤ s. When 0 ≤

t < s+3
2 , d(u0, v3t) < d(v3s+2, v3t). When s+3

2 < t ≤ s, d(u0, v3t) > d(v3s+2, v3t).
d(u0, v3t+1) = 2 + t and d(v3s+2, v3t+1) = s − t + 3 where 0 ≤ t ≤ s. When
0 ≤ t < s+1

2 , d(u0, v3t+1) < d(v3s+2, v3t+1). When s+1
2 < t ≤ s, d(u0, v3t+1) >

d(v3s+2, v3t+1). d(u0, v3t+2) = 3 + t and d(v3s+2, v3t+2) = s − t where 0 ≤ t <
s. When 0 ≤ t < s−3

2 , d(u0, v3t+2) < d(v3s+2, v3t+2). When s−3
2 < t < s,

d(u0, v3t+2) > d(v3s+2, v3t+2).
d(u0, u3t) = 2 + t and d(v3s+2, u3t) = s − t + 3 where 1 ≤ t ≤ s. When 1 ≤

t < s+1
2 , d(u0, u3t) < d(v3s+2, u3t). When s+1

2 < t ≤ s, d(u0, u3t) > d(v3s+2, u3t).
d(u0, u1) = 1 and d(v3s+2, u1) = s + 2. d(u0, u3t+1) = 3 + t and d(v3s+2, u3t+1) =
s− t+2 where 1 ≤ t ≤ s. When 1 ≤ t < s−1

2 , d(u0, u3t+1) < d(v3s+2, u3t+1). When
s−1
2 < t ≤ s, d(u0, u3t+1) > d(v3s+2, u3t+1). d(u0, u2) = 2 and d(v3s+2, u2) = s+1.

d(u0, u3t+2) = 4 + t and d(v3s+2, u3t+2) = s − t + 1 where 1 ≤ t ≤ s. When
1 ≤ t < s−3

2 , d(u0, u3t+2) < d(v3s+2, u3t+2). When s−3
2 < t ≤ s, d(u0, u3t+2) >

d(v3s+2, u3t+2).
Note that u0 ∈ W 1

u0v3s+2
and v3s+2 ∈ W 1

v3s+2u0
. Combined with the above

discussion, |W 1
u0v3s+2

| = 3s− 1 and |W 1
v3s+2u0

| = 3s+ 1.

(3b) Computation of |W 1
u0v3s+2

| and |W 1
v3s+2u0

| when s is even and s ≥ 2.
When s = 2.
d(u0, v0) = 1 and d(v8, v0) = 6. d(u0, v3) = 2 and d(v8, v3) = 5. d(u0, v6) = 3

and d(v8, v6) = 4. d(u0, v1) = 2 and d(v8, v1) = 5. d(u0, v4) = 3 and d(v8, v4) = 4.
d(u0, v7) = 4 and d(v8, v7) = 3. d(u0, v2) = 3 and d(v8, v2) = 2. d(u0, v5) = 4 and
d(v8, v5) = 1. So v0, v1, v3, v4, v6 ∈ W 1

u0v8 and v2, v5, v7 ∈ W 1
v8u0

.
d(u0, u3) = 3 and d(v8, u3) = 4. d(u0, u6) = 4 and d(v8, u6) = 3. d(u0, u1) = 1

and d(v8, u1) = 4. d(u0, u4) = 4 and d(v8, u4) = 3. d(u0, u7) = 5 and d(v8, u7) = 2.
d(u0, u2) = 2 and d(v8, u2) = 3. d(u0, u5) = 5 and d(v8, u5) = 2. d(u0, u8) = 6 and
d(v8, u8) = 1. So u1, u2, u3 ∈ W 1

u0v8 and u4, u5, u6, u7, u8 ∈ W 1
v8u0

.

Note that u0 ∈ W 1
u0v8 and v8 ∈ W 1

v8u0
. Combined with the above discussion,

|W 1
u0v8 | = 9 and |W 1

v8u0
| = 9.

When s ≥ 4.
d(u0, v3t) = 1 + t and d(v3s+2, v3t) = s − t + 4 where 0 ≤ t ≤ s. When 0 ≤

t ≤ s+2
2 , d(u0, v3t) < d(v3s+2, v3t). When s+4

2 ≤ t ≤ s, d(u0, v3t) > d(v3s+2, v3t).
d(u0, v3t+1) = 2+t and d(v3s+2, v3t+1) = s−t+3 where 0 ≤ t ≤ s. When 0 ≤ t ≤ s

2 ,

d(u0, v3t+1) < d(v3s+2, v3t+1). When s+2
2 ≤ t ≤ s, d(u0, v3t+1) > d(v3s+2, v3t+1).

d(u0, v3t+2) = 3+t and d(v3s+2, v3t+2) = s−t where 0 ≤ t < s. When 0 ≤ t ≤ s−4
2 ,

d(u0, v3t+2) < d(v3s+2, v3t+2). When s−2
2 ≤ t < s, d(u0, v3t+2) > d(v3s+2, v3t+2).
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d(u0, u3t) = 2 + t and d(v3s+2, u3t) = s − t + 3 where 1 ≤ t ≤ s. When
1 ≤ t ≤ s

2 , d(u0, u3t) < d(v3s+2, u3t). When s+2
2 ≤ t ≤ s, d(u0, u3t) > d(v3s+2, u3t).

d(u0, u1) = 1 and d(v3s+2, u1) = s + 2. d(u0, u3t+1) = 3 + t and d(v3s+2, u3t+1) =
s− t+2 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−2

2 , d(u0, u3t+1) < d(v3s+2, u3t+1). When
s
2 ≤ t ≤ s, d(u0, u3t+1) > d(v3s+2, u3t+1). d(u0, u2) = 2 and d(v3s+2, u2) = s + 1.
d(u0, u3t+2) = 4 + t and d(v3s+2, u3t+2) = s − t + 1 where 1 ≤ t ≤ s. When
1 ≤ t ≤ s−4

2 , d(u0, u3t+2) < d(v3s+2, u3t+2). When s−2
2 ≤ t ≤ s, d(u0, u3t+2) >

d(v3s+2, u3t+2).
Note that u0 ∈ W 1

u0v3s+2
and v3s+2 ∈ W 1

v3s+2u0
. Combined with the above

discussion, |W 1
u0v3s+2

| = 3s+ 2 and |W 1
v3s+2u0

| = 3s+ 4. □

Appendix B

Proof of the remaining cases of Proposition 3.1. (2) When n = 8m+1 where
m ≥ 3.

By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n
2 .

d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and
d(v0, v4t+1) = 3+t where 0 ≤ t ≤ m−2. d(u0, v4(m−1)+1) = d(v0, v4(m−1)+1) = m+
1. d(u0, v4t+2) = 3+t and d(v0, v4t+2) = 4+t where 0 ≤ t < m. d(u0, v4t+3) = 3+t
and d(v0, v4t+3) = 4 + t where 0 ≤ t < m.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t < m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t
where 1 ≤ t < m. d(u0, u3) = 3 and d(v0, u3) = 3. d(u0, u4t+3) = 4 + t and
d(v0, u4t+3) = 3 + t where 1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion,
|Wu0v0 | = 2(3m+1)+1 = 6m+3 and |Wv0u0 | = 2(5m−3)+1 = 10m−5. Because
m ≥ 3, |Wu0v0 | < |Wv0u0

|.

(3) When n = 8m+ 2 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and

d(v0, v4t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t
where 0 ≤ t ≤ m − 2. d(u0, v4(m−1)+2) = m + 2 and d(v0, v4(m−1)+2) = m + 1.
d(u0, v4t+3) = 3 + t and d(v0, v4t+3) = 4 + t where 0 ≤ t < m.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t
where 1 ≤ t < m. d(u0, u3) = 3 and d(v0, u3) = 3. d(u0, u4t+3) = 4 + t and
d(v0, u4t+3) = 3 + t where 1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion,

|Wu0v0 | = 2(3m+1)+2 = 6m+4 and |Wv0u0 | = 2(5m−2)+2 = 10m−2. Because
m ≥ 3, |Wu0v0 | < |Wv0u0 |.

(4) When n = 8m+ 3 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
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d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and
d(v0, v4t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t
where 0 ≤ t < m. d(u0, v4t+3) = 3+ t and d(v0, v4t+3) = 4+ t where 0 ≤ t ≤ m−2.
d(u0, v4(m−1)+3) = m+ 2 and d(v0, v4(m−1)+3) = m+ 1.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t
where 1 ≤ t < m. d(u0, u3) = 3 and d(v0, u3) = 3. d(u0, u4t+3) = 4 + t and
d(v0, u4t+3) = 3 + t where 1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion,
|Wu0v0 | = 2(3m+2)+1 = 6m+5 and |Wv0u0

| = 2(5m−1)+1 = 10m−1. Because
m ≥ 3, |Wu0v0 | < |Wv0u0

|.

(5) When n = 8m+ 4 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and

d(v0, v4t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t
where 0 ≤ t ≤ m. d(u0, v4t+3) = 3 + t and d(v0, v4t+3) = 4 + t where 0 ≤ t < m.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t
where 1 ≤ t ≤ m. d(u0, u3) = 3 and d(v0, u3) = 3. d(u0, u4t+3) = 4 + t and
d(v0, u4t+3) = 3 + t where 1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion,

|Wu0v0 | = 2(3m+3)+2 = 6m+8 and |Wv0u0
| = 2(5m−2)+2 = 10m−2. Because

m ≥ 3, |Wu0v0 | < |Wv0u0
|.

(6) When n = 8m+ 5 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and

d(v0, v4t+1) = 3+ t where 0 ≤ t ≤ m− 1. d(u0, v4m+1) = m+2 and d(v0, v4m+1) =
m+1. d(u0, v4t+2) = 3+ t and d(v0, v4t+2) = 4+ t where 0 ≤ t ≤ m. d(u0, v4t+3) =
3 + t and d(v0, v4t+3) = 4 + t where 0 ≤ t < m.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t
where 1 ≤ t ≤ m. d(u0, u3) = 3 and d(v0, u3) = 3. d(u0, u4t+3) = 4 + t and
d(v0, u4t+3) = 3 + t where 1 ≤ t < m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion,

|Wu0v0 | = 2(3m+ 3) + 1 = 6m+ 7 and |Wv0u0 | = 2× 5m+ 1 = 10m+ 1. Because
m ≥ 3, |Wu0v0 | < |Wv0u0 |.

(7) When n = 8m+ 6 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and

d(v0, v4t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t
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where 0 ≤ t ≤ m−2. d(u0, v4(m−1)+2) = d(v0, v4(m−1)+2) = m+2. d(u0, v4m+2) =
m+2 and d(v0, v4m+2) = m+1. d(u0, v4t+3) = 3+ t and d(v0, v4t+3) = 4+ t where
0 ≤ t ≤ m.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4+ t and d(v0, u4t+2) = 3+ t where
1 ≤ t ≤ m− 1. d(u0, u4m+2) = m+3 and d(v0, u4m+2) = m+2. d(u0, u3) = 3 and
d(v0, u3) = 3. d(u0, u4t+3) = 4 + t and d(v0, u4t+3) = 3 + t where 1 ≤ t ≤ m.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion,
|Wu0v0 | = 2(3m+ 2) + 2 = 6m+ 6 and |Wv0u0 | = 2× 5m+ 2 = 10m+ 2. Because
m ≥ 3, |Wu0v0 | < |Wv0u0

|.
(8) When n = 8m+ 7 where m ≥ 3.
By symmetry, we just need to consider vertices ui and vi where 1 ≤ i ≤ n

2 .
d(u0, v4t) = 1 + t and d(v0, v4t) = t where 1 ≤ t ≤ m. d(u0, v4t+1) = 2 + t and

d(v0, v4t+1) = 3 + t where 0 ≤ t ≤ m. d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t
where 0 ≤ t ≤ m. d(u0, v4t+3) = 3 + t and d(v0, v4t+3) = 4 + t where 0 ≤ t ≤
m − 2. d(u0, v4(m−1)+3) = d(v0, v4(m−1)+3) = m + 2. d(u0, v4m+3) = m + 2 and
d(v0, v4m+3) = m+ 1.

d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t where 1 ≤ t ≤ m. d(u0, u1) = 1 and
d(v0, u1) = 2. d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t where 1 ≤ t ≤ m.
d(u0, u2) = 2 and d(v0, u2) = 3. d(u0, u4t+2) = 4+ t and d(v0, u4t+2) = 3+ t where
1 ≤ t ≤ m. d(u0, u3) = 3 and d(v0, u3) = 3. d(u0, u4t+3) = 4+ t and d(v0, u4t+3) =
3 + t where 1 ≤ t ≤ m− 1. d(u0, u4m+3) = m+ 3 and d(v0, u4m+3) = m+ 2.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0
. Combined with the above discussion,

|Wu0v0 | = 2(3m+3)+1 = 6m+7 and |Wv0u0
| = 2(5m+1)+1 = 10m+3. Because

m ≥ 3, |Wu0v0 | < |Wv0u0
|. □

Proof of the remaining cases of Proposition 3.2. (2) When n = 8m+1 where
m ≥ 3.

Note that n− 4 = 8m− 3 = 4(2m− 1) + 1.
d(u0, v4t) = d(v8m−3, v4t) = 1 + t when 0 ≤ t ≤ m. d(u0, v4t) = d(v8m−3, v4t) =

2m − t + 2 when m + 1 ≤ t ≤ 2m − 1. d(u0, v4t+1) = 2 + t and d(u0, v4t+1) <
d(v8m−3, v4t+1) when 0 ≤ t ≤ m−2. d(v8m−3, v4t+1) = 2m−t−1 and d(u0, v4t+1) >
d(v8m−3, v4t+1) when m− 1 ≤ t < 2m− 1. d(u0, v4t+2) = 3 + t and d(u0, v4t+2) <
d(v8m−3, v4t+2) when 0 ≤ t ≤ m − 1. d(u0, v4t+2) = d(v8m−3, v4t+2) = 2m − t + 2
when m ≤ t < 2m−1. d(u0, v4t+3) = 3+t and d(u0, v4t+3) < d(v8m−3, v4t+3) when
0 ≤ t ≤ m− 1. d(u0, v4t+3) = d(v8m−3, v4t+3) = 2m− t+ 2 when m ≤ t < 2m− 1.

d(u0, u4t) = d(v8m−3, u4t) = 2 + t when 1 ≤ t ≤ m − 1. d(v8m−3, u4t) =
2m − t + 1 and d(u0, u4t) > d(v8m−3, u4t) when m ≤ t ≤ 2m − 1. d(u0, u1) =
1 and d(v8m−3, u1) = 2m. d(u0, u4t+1) = d(v8m−3, u4t+1) = 3 + t when 1 ≤
t ≤ m − 2. d(v8m−3, u4t+1) = 2m − t and d(u0, u4t+1) > d(v8m−3, u4t+1) when
m − 1 ≤ t ≤ 2m − 1. d(u0, u2) = 2 and d(v8m−3, u2) = 2m + 1. d(u0, u4t+2) =
d(v8m−3, u4t+2) = 4 + t when 1 ≤ t ≤ m − 2. d(v8m−3, u4t+2) = 2m − t + 1 and
d(u0, u4t+2) > d(v8m−3, u4t+2) when m − 1 ≤ t < 2m − 1. d(u0, u3) = 3 and
d(v8m−3, u3) = 2m+1. d(u0, u4t+3) = d(v8m−3, u4t+3) = 4+ t when 1 ≤ t ≤ m−2.
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d(v8m−3, u4t+3) = 2m− t+1 and d(u0, u4t+3) > d(v8m−3, u4t+3) when m−1 ≤ t <
2m− 1.

Note that u0 ∈ Wu0v8m−3
and v8m−3 ∈ Wv8m−3u0

. Combined with the above
discussion, |Wu0v8m−3

| = 3m + 7 and |Wv8m−3u0
| = 5m + 3. Because m ≥ 3,

|Wu0v8m−3 | < |Wv8m−3u0 |.

(3) When n = 8m+ 2 where m ≥ 3.
Note that n− 4 = 8m− 2 = 4(2m− 1) + 2.
d(u0, v4t) = d(v8m−2, v4t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v4t) = d(v8m−2, v4t) =

2m − t + 3 when m + 2 ≤ t ≤ 2m − 1. d(u0, v4t+1) = 2 + t and d(u0, v4t+1) <
d(v8m−2, v4t+1) when 0 ≤ t ≤ m − 1. d(u0, v4t+1) = d(v8m−2, v4t+1) = 2m − t + 2
when m ≤ t ≤ 2m−1. d(u0, v4t+2) = 3+t and d(u0, v4t+2) < d(v8m−2, v4t+2) when
0 ≤ t < m−2. d(u0, v4(m−2)+2) = d(v8m−2, v4(m−2)+2) = m+1. d(v8m−2, v4t+2) =
2m − t − 1 and d(u0, v4t+2) > d(v8m−2, v4t+2) when m − 2 < t < 2m − 1.
d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m−2, v4t+3) when 0 ≤ t ≤ m − 1.
d(u0, v4t+3) = d(v8m−2, v4t+3) = 2m− t+ 2 when m ≤ t < 2m− 1.

d(u0, u4t) = d(v8m−2, u4t) = 2 + t when 1 ≤ t ≤ m. d(v8m−2, u4t) = 2m− t+ 2
and d(u0, u4t) > d(v8m−2, u4t) when m + 1 ≤ t ≤ 2m − 1. d(u0, u1) = 1 and
d(v8m−2, u1) = 2m+1. d(u0, u4t+1) = d(v8m−2, u4t+1) = 3+ t when 1 ≤ t ≤ m−1.
d(v8m−2, u4t+1) = 2m − t + 1 and d(u0, u4t+1) > d(v8m−2, u4t+1) when m ≤ t ≤
2m−1. d(u0, u2) = 2 and d(v8m−2, u2) = 2m. d(u0, u4t+2) = d(v8m−2, u4t+2) = 4+
t when 1 ≤ t ≤ m−2. d(v8m−2, u4t+2) = 2m−t and d(u0, u4t+2) > d(v8m−2, u4t+2)
when m−1 ≤ t ≤ 2m−1. d(u0, u3) = 3 and d(v8m−2, u3) = 2m+1. d(u0, u4t+3) =
d(v8m−2, u4t+3) = 4 + t when 1 ≤ t ≤ m − 2. d(v8m−2, u4t+3) = 2m − t + 1 and
d(u0, u4t+3) > d(v8m−2, u4t+3) when m− 1 ≤ t < 2m− 1.

Note that u0 ∈ Wu0v8m−2 and v8m−2 ∈ Wv8m−2u0 . Combined with the above
discussion, |Wu0v8m−2

| = 3m + 6 and |Wv8m−2u0
| = 5m + 2. Because m ≥ 3,

|Wu0v8m−2
| < |Wv8m−2u0

|.

(4) When n = 8m+ 3 where m ≥ 3.
Note that n− 4 = 8m− 1 = 4(2m− 1) + 3.
d(u0, v4t) = d(v8m−1, v4t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v4t) = d(v8m−1, v4t) =

2m − t + 3 when m + 2 ≤ t ≤ 2m − 1. d(u0, v4t+1) = 2 + t and d(u0, v4t+1) <
d(v8m−1, v4t+1) when 0 ≤ t ≤ m. d(u0, v4t+1) = d(v8m−1, v4t+1) = 2m− t+3 when
m+ 1 ≤ t ≤ 2m− 1. d(u0, v4t+2) = 3 + t and d(u0, v4t+2) < d(v8m−1, v4t+2) when
0 ≤ t ≤ m− 1. d(u0, v4t+2) = d(v8m−1, v4t+2) = 2m− t+ 2 when m ≤ t ≤ 2m− 1.
d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m−1, v4t+3) when 0 ≤ t < m − 2.
d(u0, v4(m−2)+3) = d(v8m−1, v4(m−2)+3) = m+1. d(v8m−1, v4t+3) = 2m− t−1 and
d(u0, v4t+3) > d(v8m−1, v4t+3) when m− 2 < t < 2m− 1.

d(u0, u4t) = d(v8m−1, u4t) = 2 + t when 1 ≤ t ≤ m. d(v8m−1, u4t) = 2m− t+ 2
and d(u0, u4t) > d(v8m−1, u4t) when m + 1 ≤ t ≤ 2m − 1. d(u0, u1) = 1 and
d(v8m−1, u1) = 2m + 2. d(u0, u4t+1) = d(v8m−1, u4t+1) = 3 + t when 1 ≤ t ≤
m − 1. d(v8m−1, u4t+1) = 2m − t + 2 and d(u0, u4t+1) > d(v8m−1, u4t+1) when
m ≤ t ≤ 2m − 1. d(u0, u2) = 2 and d(v8m−1, u2) = 2m + 1. d(u0, u4t+2) =
d(v8m−1, u4t+2) = 4 + t when 1 ≤ t ≤ m − 2. d(v8m−1, u4t+2) = 2m − t + 1 and
d(u0, u4t+2) > d(v8m−1, u4t+2) when m − 1 ≤ t ≤ 2m − 1. d(u0, u3) = 3 and
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d(v8m−1, u3) = 2m. d(u0, u4t+3) = d(v8m−1, u4t+3) = 4 + t when 1 ≤ t ≤ m − 2.
d(v8m−1, u4t+3) = 2m − t and d(u0, u4t+3) > d(v8m−1, u4t+3) when m − 1 ≤ t ≤
2m− 1.

Note that u0 ∈ Wu0v8m−1
and v8m−1 ∈ Wv8m−1u0

. Combined with the above
discussion, |Wu0v8m−1 | = 3m + 7 and |Wv8m−1u0 | = 5m + 3. Because m ≥ 3,
|Wu0v8m−1 | < |Wv8m−1u0 |.

(5) When n = 8m+ 4 where m ≥ 3.
Note that n− 4 = 8m = 4× 2m.
d(u0, v4t) = d(v8m, v4t) = 1 + t when 0 ≤ t ≤ m − 1. d(v8m, v4t) = 2m − t

and d(u0, v4t) > d(v8m, v4t) when m ≤ t ≤ 2m − 1. d(u0, v4t+1) = 2 + t and
d(u0, v4t+1) < d(v8m, v4t+1) when 0 ≤ t ≤ m. d(u0, v4t+1) = d(v8m, v4t+1) =
2m − t + 3 when m + 1 ≤ t ≤ 2m − 1. d(u0, v4t+2) = 3 + t and d(u0, v4t+2) <
d(v8m, v4t+2) when 0 ≤ t ≤ m − 1. d(u0, v4t+2) = d(v8m, v4t+2) = 2m − t + 3
when m ≤ t ≤ 2m− 1. d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m, v4t+3) when
0 ≤ t ≤ m− 1. d(u0, v4t+3) = d(v8m, v4t+3) = 2m− t+ 2 when m ≤ t ≤ 2m− 1.

d(u0, u4t) = d(v8m, u4t) = 2+t when 1 ≤ t ≤ m−1. d(v8m, u4t) = 2m−t+1 and
d(u0, u4t) > d(v8m, u4t) when m ≤ t ≤ 2m. d(u0, u1) = 1 and d(v8m, u1) = 2m+2.
d(u0, u4t+1) = d(v8m, u4t+1) = 3+t when 1 ≤ t ≤ m−1. d(v8m, u4t+1) = 2m−t+2
and d(u0, u4t+1) > d(v8m, u4t+1) when m ≤ t ≤ 2m − 1. d(u0, u2) = 2 and
d(v8m, u2) = 2m + 2. d(u0, u4t+2) = d(v8m, u4t+2) = 4 + t when 1 ≤ t ≤ m − 1.
d(v8m, u4t+2) = 2m− t+2 and d(u0, u4t+2) > d(v8m, u4t+2) when m ≤ t ≤ 2m− 1.
d(u0, u3) = 3 and d(v8m, u3) = 2m+ 1. d(u0, u4t+3) = d(v8m, u4t+3) = 4 + t when
1 ≤ t ≤ m− 2. d(v8m, u4t+3) = 2m− t+ 1 and d(u0, u4t+3) > d(v8m, u4t+3) when
m− 1 ≤ t ≤ 2m− 1.

Note that u0 ∈ Wu0v8m and v8m ∈ Wv8mu0 . Combined with the above discussion,
|Wu0v8m | = 3m+ 9 and |Wv8mu0 | = 5m+ 4. Because m ≥ 3, |Wu0v8m | < |Wv8mu0 |.

(6) When n = 8m+ 5 where m ≥ 3.
Note that n− 4 = 8m+ 1 = 4× 2m+ 1.
d(u0, v4t) = d(v8m+1, v4t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v4t) = d(v8m+1, v4t) =

2m − t + 3 when m + 2 ≤ t ≤ 2m. d(u0, v4t+1) = 2 + t and d(u0, v4t+1) <
d(v8m+1, v4t+1) when 0 ≤ t ≤ m − 2. d(u0, v4(m−1)+1) = d(v8m+1, v4(m−1)+1) =
m + 1. d(v8m+1, v4t+1) = 2m − t and d(u0, v4t+1) > d(v8m+1, v4t+1) when m ≤
t ≤ 2m − 1. d(u0, v4t+2) = 3 + t and d(u0, v4t+2) < d(v8m+1, v4t+2) when 0 ≤
t ≤ m − 1. d(u0, v4t+2) = d(v8m+1, v4t+2) = 2m − t + 3 when m ≤ t ≤ 2m − 1.
d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m+1, v4t+3) when 0 ≤ t ≤ m − 1.
d(u0, v4t+3) = d(v8m+1, v4t+3) = 2m− t+ 3 when m ≤ t ≤ 2m− 1.

d(u0, u4t) = d(v8m+1, u4t) = 2 + t when 1 ≤ t ≤ m. d(v8m+1, u4t) = 2m −
t + 2 and d(u0, u4t) > d(v8m+1, u4t) when m + 1 ≤ t ≤ 2m. d(u0, u1) = 1 and
d(v8m+1, u1) = 2m+1. d(u0, u4t+1) = d(v8m+1, u4t+1) = 3+ t when 1 ≤ t ≤ m−1.
d(v8m+1, u4t+1) = 2m − t + 1 and d(u0, u4t+1) > d(v8m+1, u4t+1) when m ≤ t ≤
2m. d(u0, u2) = 2 and d(v8m+1, u2) = 2m + 2. d(u0, u4t+2) = d(v8m+1, u4t+2) =
4 + t when 1 ≤ t ≤ m − 1. d(v8m+1, u4t+2) = 2m − t + 2 and d(u0, u4t+2) >
d(v8m+1, u4t+2) when m ≤ t ≤ 2m − 1. d(u0, u3) = 3 and d(v8m+1, u3) = 2m + 2.

https://doi.org/10.33044/revuma.4824
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d(u0, u4t+3) = d(v8m+1, u4t+3) = 4 + t when 1 ≤ t ≤ m − 1. d(v8m+1, u4t+3) =
2m− t+ 2 and d(u0, u4t+3) > d(v8m+1, u4t+3) when m ≤ t ≤ 2m− 1.

Note that u0 ∈ Wu0v8m+1
and v8m+1 ∈ Wv8m+1u0

. Combined with the above
discussion, |Wu0v8m+1

| = 3m + 7 and |Wv8m+1u0
| = 5m + 3. Because m ≥ 3,

|Wu0v8m+1 | < |Wv8m+1u0 |.

(7) When n = 8m+ 6 where m ≥ 3.
Note that n− 4 = 8m+ 2 = 4× 2m+ 2.
d(u0, v4t) = d(v8m+2, v4t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v4t) = d(v8m+2, v4t) =

2m − t + 4 when m + 2 ≤ t ≤ 2m. d(u0, v4t+1) = 2 + t and d(u0, v4t+1) <
d(v8m+2, v4t+1) when 0 ≤ t ≤ m. d(u0, v4t+1) = d(v8m+2, v4t+1) = 2m− t+3 when
m + 1 ≤ t ≤ 2m. d(u0, v4t+2) = 3 + t and d(u0, v4t+2) < d(v8m+2, v4t+2) when
0 ≤ t ≤ m− 2. d(v8m+2, v4t+2) = 2m− t and d(u0, v4t+2) > d(v8m+2, v4t+2) when
m− 1 ≤ t ≤ 2m− 1. d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m+2, v4t+3) when
0 ≤ t ≤ m− 1. d(u0, v4t+3) = d(v8m+2, v4t+3) = 2m− t+ 3 when m ≤ t ≤ 2m− 1.

d(u0, u4t) = d(v8m+2, u4t) = 2 + t when 1 ≤ t ≤ m. d(v8m+2, u4t) = 2m −
t + 3 and d(u0, u4t) > d(v8m+2, u4t) when m + 1 ≤ t ≤ 2m. d(u0, u1) = 1 and
d(v8m+2, u1) = 2m+2. d(u0, u4t+1) = d(v8m+2, u4t+1) = 3+ t when 1 ≤ t ≤ m−1.
d(v8m+2, u4t+1) = 2m − t + 2 and d(u0, u4t+1) > d(v8m+2, u4t+1) when m ≤ t ≤
2m. d(u0, u2) = 2 and d(v8m+2, u2) = 2m + 1. d(u0, u4t+2) = d(v8m+2, u4t+2) =
4 + t when 1 ≤ t ≤ m − 2. d(v8m+2, u4t+2) = 2m − t + 1 and d(u0, u4t+2) >
d(v8m+2, u4t+2) when m − 1 ≤ t ≤ 2m. d(u0, u3) = 3 and d(v8m+2, u3) = 2m + 2.
d(u0, u4t+3) = d(v8m+2, u4t+3) = 4 + t when 1 ≤ t ≤ m − 1. d(v8m+2, u4t+3) =
2m− t+ 2 and d(u0, u4t+3) > d(v8m+2, u4t+3) when m ≤ t ≤ 2m− 1.

Note that u0 ∈ Wu0v8m+2
and v8m+2 ∈ Wv8m+2u0

. Combined with the above
discussion, |Wu0v8m+2

| = 3m + 8 and |Wv8m+2u0
| = 5m + 6. Because m ≥ 3,

|Wu0v8m+2 | < |Wv8m+2u0 |.

(8) When n = 8m+ 7 where m ≥ 3.
Note that n− 4 = 8m+ 3 = 4× 2m+ 3.
d(u0, v4t) = d(v8m+3, v4t) = 1+t when 0 ≤ t ≤ m+1. d(u0, v4t) = d(v8m+3, v4t) =

2m − t + 4 when m + 2 ≤ t ≤ 2m. d(u0, v4t+1) = 2 + t and d(u0, v4t+1) <
d(v8m+3, v4t+1) when 0 ≤ t ≤ m. d(u0, v4t+1) = d(v8m+3, v4t+1) = 2m− t+4 when
m + 1 ≤ t ≤ 2m. d(u0, v4t+2) = 3 + t and d(u0, v4t+2) < d(v8m+3, v4t+2) when
0 ≤ t ≤ m − 1. d(u0, v4t+2) = d(v8m+3, v4t+2) = 2m − t + 3 when m ≤ t ≤ 2m.
d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m+3, v4t+3) when 0 ≤ t ≤ m − 2.
d(v8m+3, v4t+3) = 2m − t and d(u0, v4t+3) > d(v8m+3, v4t+3) when m − 1 ≤ t ≤
2m− 1.

d(u0, u4t) = d(v8m+3, u4t) = 2+t when 1 ≤ t ≤ m. d(v8m+3, u4t) = 2m−t+3 and
d(u0, u4t) > d(v8m+3, u4t) when m+1 ≤ t ≤ 2m. d(u0, u1) = 1 and d(v8m+3, u1) =
2m+3. d(u0, u4t+1) = d(v8m+3, u4t+1) = 3+ t when 1 ≤ t ≤ m. d(v8m+3, u4t+1) =
2m− t+3 and d(u0, u4t+1) > d(v8m+3, u4t+1) when m+1 ≤ t ≤ 2m. d(u0, u2) = 2
and d(v8m+3, u2) = 2m + 2. d(u0, u4t+2) = d(v8m+3, u4t+2) = 4 + t when 1 ≤
t ≤ m − 1. d(v8m+3, u4t+2) = 2m − t + 2 and d(u0, u4t+2) > d(v8m+3, u4t+2)
when m ≤ t ≤ 2m. d(u0, u3) = 3 and d(v8m+3, u3) = 2m + 1. d(u0, u4t+3) =
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d(v8m+3, u4t+3) = 4 + t when 1 ≤ t ≤ m − 2. d(v8m+3, u4t+3) = 2m − t + 1 and
d(u0, u4t+3) > d(v8m+3, u4t+3) when m− 1 ≤ t ≤ 2m.

Note that u0 ∈ Wu0v8m+3
and v8m+3 ∈ Wv8m+3u0

. Combined with the above
discussion, |Wu0v8m+3

| = 3m + 8 and |Wv8m+3u0
| = 5m + 6. Because m ≥ 3,

|Wu0v8m+3 | < |Wv8m+3u0 |. □

Proof of the remaining cases of Proposition 3.3. (1a) The computation of
|W 1

u0v4s | and |W 1
v4su0

| when s = 3.
d(u0, v0) = 1 and d(v12, v0) = 3. d(u0, v4) = d(v12, v4) = 2. d(u0, v8) = 3 and

d(v12, v8) = 1. d(u0, v1) = 2 and d(v12, v1) = 6. d(u0, v5) = 3 and d(v12, v5) = 5.
d(u0, v9) = 4 and d(v12, v9) = 4. d(u0, v2) = 3 and d(v12, v2) = 6. d(u0, v6) = 4 and
d(v12, v6) = 5. d(u0, v10) = 5 and d(v12, v10) = 4. d(u0, v3) = 3 and d(v12, v3) =
5. d(u0, v7) = 4 and d(v12, v7) = 4. d(u0, v11) = 5 and d(v12, v11) = 3. So
v0, v1, v2, v3, v5, v6 ∈ W 1

u0v12 and v8, v10, v11 ∈ W 1
v12u0

.
d(u0, u4) = 3 and d(v12, u4) = 3. d(u0, u8) = 4 and d(v12, u8) = 2. d(u0, u12) =

5 and d(v12, u12) = 1. d(u0, u1) = 1 and d(v12, u1) = 5. d(u0, u5) = 4 and
d(v12, u5) = 4. d(u0, u9) = 5 and d(v12, u9) = 3. d(u0, u2) = 2 and d(v12, u2) = 5.
d(u0, u6) = 5 and d(v12, u6) = 4. d(u0, u10) = 6 and d(v12, u10) = 3. d(u0, u3) =
3 and d(v12, u3) = 4. d(u0, u7) = 5 and d(v12, u7) = 3. d(u0, u11) = 6 and
d(v12, u11) = 2. So u1, u2, u3 ∈ W 1

u0v12 and u6, u7, u8, u9, u10, u11, u12 ∈ W 1
v12u0

.

Note that u0 ∈ W 1
u0v12 and v12 ∈ W 1

v12u0
. Combined with the above discussion,

|W 1
u0v12 | = 10 and |W 1

v12u0
| = 11.

(1b) Computation of |W 1
u0v4s | and |W 1

v4su0
| when s is even and s ≥ 2.

When s = 2,
d(u0, v0) = 1 and d(v8, v0) = 2. d(u0, v4) = 2 and d(v8, v4) = 1. d(u0, v1) = 2

and d(v8, v1) = 5. d(u0, v5) = 3 and d(v8, v5) = 4. d(u0, v2) = 3 and d(v8, v2) = 5.
d(u0, v6) = 4 and d(v8, v6) = 4. d(u0, v3) = 3 and d(v8, v3) = 4. d(u0, v7) = 4 and
d(v8, v7) = 3. So v0, v1, v2, v3, v5 ∈ W 1

u0v8 and v4, v7 ∈ W 1
v8u0

.
d(u0, u4) = 3 and d(v8, u4) = 2. d(u0, u8) = 4 and d(v8, u8) = 1. d(u0, u1) = 1

and d(v8, u1) = 4. d(u0, u5) = 4 and d(v8, u5) = 3. d(u0, u2) = 2 and d(v8, u2) = 4.
d(u0, u6) = 5 and d(v8, u6) = 3. d(u0, u3) = 3 and d(v8, u3) = 3. d(u0, u7) = 5 and
d(v8, u7) = 2. So u1, u2 ∈ W 1

u0v8 and u4, u5, u6, u7, u8 ∈ W 1
v8u0

.

Note that u0 ∈ W 1
u0v8 and v8 ∈ W 1

v8u0
. Combined with the above discussion,

|W 1
u0v8 | = 8 and |W 1

v8u0
| = 8.

When s ≥ 4,
d(u0, v4t) = 1 + t and d(v4s, v4t) = s − t where 0 ≤ t < s. When 0 ≤ t ≤ s−2

2 ,
d(u0, v4t) < d(v4s, v4t). When s

2 ≤ t < s, d(u0, v4t) > d(v4s, v4t). d(u0, v4t+1) =
2+ t and d(v4s, v4t+1) = s− t+3 where 0 ≤ t < s. When 0 ≤ t ≤ s

2 , d(u0, v4t+1) <

d(v4s, v4t+1). When s+2
2 ≤ t < s, d(u0, v4t+1) > d(v4s, v4t+1). d(u0, v4t+2) = 3 + t

and d(v4s, v4t+2) = s − t + 3 where 0 ≤ t < s. When 0 ≤ t < s
2 , d(u0, v4t+2) <

d(v4s, v4t+2). When s
2 < t < s, d(u0, v4t+2) > d(v4s, v4t+2). d(u0, v4t+3) = 3 + t

and d(v4s, v4t+3) = s − t + 2 where 0 ≤ t < s. When 0 ≤ t ≤ s−2
2 , d(u0, v4t+3) <

d(v4s, v4t+3). When s
2 ≤ t < s, d(u0, v4t+3) > d(v4s, v4t+3).
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d(u0, u4t) = 2+ t and d(v4s, u4t) = s− t+1 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−2
2 ,

d(u0, u4t) < d(v4s, u4t). When s
2 ≤ t ≤ s, d(u0, u4t) > d(v4s, u4t). d(u0, u1) = 1

and d(v4s, u1) = s + 2. d(u0, u4t+1) = 3 + t and d(v4s, u4t+1) = s − t + 2 where
1 ≤ t < s. When 1 ≤ t ≤ s−2

2 , d(u0, u4t+1) < d(v4s, u4t+1). When s
2 ≤ t < s,

d(u0, u4t+1) > d(v4s, u4t+1). d(u0, u2) = 2 and d(v4s, u2) = s + 2. d(u0, u4t+2) =
4+t and d(v4s, u4t+2) = s−t+2 where 1 ≤ t < s. When 1 ≤ t < s−2

2 , d(u0, u4t+2) <

d(v4s, u4t+2). When s−2
2 < t < s, d(u0, u4t+2) > d(v4s, u4t+2). d(u0, u3) = 3 and

d(v4s, u3) = s + 1. d(u0, u4t+3) = 4 + t and d(v4s, u4t+3) = s − t + 1 where
1 ≤ t < s. When 1 ≤ t ≤ s−4

2 , d(u0, u4t+3) < d(v4s, u4t+3). When s−2
2 ≤ t < s,

d(u0, u4t+3) > d(v4s, u4t+3).
Note that u0 ∈ W 1

u0v4s and v4s ∈ W 1
v4su0

. Combined with the above discussion,

|W 1
u0v4s | = 4s− 1 and |W 1

v4su0
| = 4s+ 1.

(2a) Computation of |W 1
u0v4s+1

| and |W 1
v4s+1u0

| when s is odd and s ≥ 3.

d(u0, v4t) = 1 + t and d(v4s+1, v4t) = s − t + 3 where 0 ≤ t ≤ s. When 0 ≤
t ≤ s+1

2 , d(u0, v4t) < d(v4s+1, v4t). When s+3
2 ≤ t ≤ s, d(u0, v4t) > d(v4s+1, v4t).

d(u0, v4t+1) = 2+t and d(v4s+1, v4t+1) = s−t where 0 ≤ t < s. When 0 ≤ t ≤ s−3
2 ,

d(u0, v4t+1) < d(v4s+1, v4t+1). When s−1
2 ≤ t < s, d(u0, v4t+1) > d(v4s+1, v4t+1).

d(u0, v4t+2) = 3 + t and d(v4s+1, v4t+2) = s − t + 3 where 0 ≤ t < s. When
0 ≤ t ≤ s−1

2 , d(u0, v4t+2) < d(v4s+1, v4t+2). When s+1
2 ≤ t < s, d(u0, v4t+2) >

d(v4s+1, v4t+2). d(u0, v4t+3) = 3 + t and d(v4s+1, v4t+3) = s − t + 3 where 0 ≤
t < s. When 0 ≤ t ≤ s−1

2 , d(u0, v4t+3) < d(v4s+1, v4t+3). When s+1
2 ≤ t < s,

d(u0, v4t+3) > d(v4s+1, v4t+3).
d(u0, u4t) = 2 + t and d(v4s+1, u4t) = s − t + 2 where 1 ≤ t ≤ s. When 1 ≤

t ≤ s−1
2 , d(u0, u4t) < d(v4s+1, u4t). When s+1

2 ≤ t ≤ s, d(u0, u4t) > d(v4s+1, u4t).
d(u0, u1) = 1 and d(v4s+1, u1) = s + 1. d(u0, u4t+1) = 3 + t and d(v4s+1, u4t+1) =
s− t+1 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−3

2 , d(u0, u4t+1) < d(v4s+1, u4t+1). When
s−1
2 ≤ t ≤ s, d(u0, u4t+1) > d(v4s+1, u4t+1). d(u0, u2) = 2 and d(v4s+1, u2) = s+2.

d(u0, u4t+2) = 4 + t and d(v4s+1, u4t+2) = s − t + 2 where 1 ≤ t < s. When
1 ≤ t ≤ s−3

2 , d(u0, u4t+2) < d(v4s+1, u4t+2). When s−1
2 ≤ t < s, d(u0, u4t+2) >

d(v4s+1, u4t+2). d(u0, u3) = 3 and d(v4s+1, u3) = s + 2. d(u0, u4t+3) = 4 + t and
d(v4s+1, u4t+3) = s − t + 2 where 1 ≤ t < s. When 1 ≤ t ≤ s−3

2 , d(u0, u4t+3) <

d(v4s+1, u4t+3). When s−1
2 ≤ t < s, d(u0, u4t+3) > d(v4s+1, u4t+3).

Note that u0 ∈ W 1
u0v4s+1

and v4s+1 ∈ W 1
v4s+1u0

. Combined with the above

discussion, |W 1
u0v4s+1

| = 4s+ 1 and |W 1
v4s+1u0

| = 4s+ 3.

(2b) Computation of |W 1
u0v4s+1

| and |W 1
v4s+1u0

| when s is even and s ≥ 4.
When s ≥ 4,
d(u0, v4t) = 1 + t and d(v4s+1, v4t) = s − t + 3 where 0 ≤ t ≤ s. When 0 ≤

t < s+2
2 , d(u0, v4t) < d(v4s+1, v4t). When s+2

2 < t ≤ s, d(u0, v4t) > d(v4s+1, v4t).

d(u0, v4t+1) = 2+t and d(v4s+1, v4t+1) = s−t where 0 ≤ t < s. When 0 ≤ t < s−2
2 ,

d(u0, v4t+1) < d(v4s+1, v4t+1). When s−2
2 < t < s, d(u0, v4t+1) > d(v4s+1, v4t+1).

d(u0, v4t+2) = 3+t and d(v4s+1, v4t+2) = s−t+3 where 0 ≤ t < s. When 0 ≤ t < s
2 ,

d(u0, v4t+2) < d(v4s+1, v4t+2). When s
2 < t < s, d(u0, v4t+2) > d(v4s+1, v4t+2).
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d(u0, v4t+3) = 3+t and d(v4s+1, v4t+3) = s−t+3 where 0 ≤ t < s. When 0 ≤ t < s
2 ,

d(u0, v4t+3) < d(v4s+1, v4t+3). When s
2 < t < s, d(u0, v4t+3) > d(v4s+1, v4t+3).

d(u0, u4t) = 2+ t and d(v4s+1, u4t) = s− t+2 where 1 ≤ t ≤ s. When 1 ≤ t < s
2 ,

d(u0, u4t) < d(v4s+1, u4t). When s
2 < t ≤ s, d(u0, u4t) > d(v4s+1, u4t). d(u0, u1) =

1 and d(v4s+1, u1) = s + 1. d(u0, u4t+1) = 3 + t and d(v4s+1, u4t+1) = s − t + 1
where 1 ≤ t ≤ s. When 1 ≤ t < s−2

2 , d(u0, u4t+1) < d(v4s+1, u4t+1). When
s−2
2 < t ≤ s, d(u0, u4t+1) > d(v4s+1, u4t+1). d(u0, u2) = 2 and d(v4s+1, u2) = s+2.

d(u0, u4t+2) = 4 + t and d(v4s+1, u4t+2) = s − t + 2 where 1 ≤ t < s. When
1 ≤ t < s−2

2 , d(u0, u4t+2) < d(v4s+1, u4t+2). When s−2
2 < t < s, d(u0, u4t+2) >

d(v4s+1, u4t+2). d(u0, u3) = 3 and d(v4s+1, u3) = s + 2. d(u0, u4t+3) = 4 + t and
d(v4s+1, u4t+3) = s − t + 2 where 1 ≤ t < s. When 1 ≤ t < s−2

2 , d(u0, u4t+3) <

d(v4s+1, u4t+3). When s−2
2 < t < s, d(u0, u4t+3) > d(v4s+1, u4t+3).

Note that u0 ∈ W 1
u0v4s+1

and v4s+1 ∈ W 1
v4s+1u0

. Combined with the above

discussion, |W 1
u0v4s+1

| = 4s− 3 and |W 1
v4s+1u0

| = 4s− 1.

(3a) Computation of |W 1
u0v4s+2

| and |W 1
v4s+2u0

| when s is odd and s ≥ 3.
When s = 3,
d(u0, v0) = 1 and d(v14, v0) = 7. d(u0, v4) = 2 and d(v14, v4) = 6. d(u0, v8) =

3 and d(v14, v8) = 5. d(u0, v12) = 4 and d(v14, v12) = 4. d(u0, v1) = 2 and
d(v14, v1) = 6. d(u0, v5) = 3 and d(v14, v5) = 5. d(u0, v9) = 4 and d(v14, v9) = 4.
d(u0, v13) = 5 and d(v14, v13) = 3. d(u0, v2) = 3 and d(v14, v2) = 3. d(u0, v6) =
4 and d(v14, v6) = 2. d(u0, v10) = 5 and d(v14, v10) = 1. d(u0, v3) = 3 and
d(v14, v3) = 6. d(u0, v7) = 4 and d(v14, v7) = 5. d(u0, v11) = 5 and d(v14, v11) = 4.
So v0, v1, v3, v4, v5, v7, v8 ∈ W 1

u0v14 and v6, v10, v11, v13 ∈ W 1
v14u0

.
d(u0, u4) = 3 and d(v14, u4) = 5. d(u0, u8) = 4 and d(v14, u8) = 4. d(u0, u12) =

5 and d(v14, u12) = 3. d(u0, u1) = 1 and d(v14, u1) = 5. d(u0, u5) = 4 and
d(v14, u5) = 4. d(u0, u9) = 5 and d(v14, u9) = 3. d(u0, u13) = 6 and d(v14, u13) = 2.
d(u0, u2) = 2 and d(v14, u2) = 4. d(u0, u6) = 5 and d(v14, u6) = 3. d(u0, u10) =
6 and d(v14, u10) = 2. d(u0, u14) = 7 and d(v14, u14) = 1. d(u0, u3) = 3 and
d(v14, u3) = 5. d(u0, u7) = 5 and d(v14, u7) = 4. d(u0, u11) = 6 and d(v14, u11) = 3.
So u1, u2, u3, u4 ∈ W 1

u0v14 and u6, u7, u9, u10, u11, u12, u13, u14 ∈ W 1
v14u0

.

Note that u0 ∈ W 1
u0v14 and v14 ∈ W 1

v14u0
. Combined with the above discussion,

|W 1
u0v14 | = 12 and |W 1

v14u0
| = 13.

When s ≥ 5,
d(u0, v4t) = 1 + t and d(v4s+2, v4t) = s − t + 4 where 0 ≤ t ≤ s. When 0 ≤

t < s+3
2 , d(u0, v4t) < d(v4s+2, v4t). When s+3

2 < t ≤ s, d(u0, v4t) > d(v4s+2, v4t).
d(u0, v4t+1) = 2 + t and d(v4s+2, v4t+1) = s − t + 3 where 0 ≤ t ≤ s. When
0 ≤ t < s+1

2 , d(u0, v4t+1) < d(v4s+2, v4t+1). When s+1
2 < t ≤ s, d(u0, v4t+1) >

d(v4s+2, v4t+1). d(u0, v4t+2) = 3 + t and d(v4s+2, v4t+2) = s − t where 0 ≤ t <
s. When 0 ≤ t < s−3

2 , d(u0, v4t+2) < d(v4s+2, v4t+2). When s−3
2 < t < s,

d(u0, v4t+2) > d(v4s+2, v4t+2). d(u0, v4t+3) = 3 + t and d(v4s+2, v4t+3) = s − t + 3
where 0 ≤ t < s. When 0 ≤ t ≤ s−1

2 , d(u0, v4t+3) < d(v4s+2, v4t+3). When
s+1
2 ≤ t < s, d(u0, v4t+3) > d(v4s+2, v4t+3).

https://doi.org/10.33044/revuma.4824
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d(u0, u4t) = 2 + t and d(v4s+2, u4t) = s − t + 3 where 1 ≤ t ≤ s. When 1 ≤
t < s+1

2 , d(u0, u4t) < d(v4s+2, u4t). When s+1
2 < t ≤ s, d(u0, u4t) > d(v4s+2, u4t).

d(u0, u1) = 1 and d(v4s+2, u1) = s + 2. d(u0, u4t+1) = 3 + t and d(v4s+2, u4t+1) =
s− t+2 where 1 ≤ t ≤ s. When 1 ≤ t < s−1

2 , d(u0, u4t+1) < d(v4s+2, u4t+1). When
s−1
2 < t ≤ s, d(u0, u4t+1) > d(v4s+2, u4t+1). d(u0, u2) = 2 and d(v4s+2, u2) = s+1.

d(u0, u4t+2) = 4 + t and d(v4s+2, u4t+2) = s − t + 1 where 1 ≤ t ≤ s. When
1 ≤ t < s−3

2 , d(u0, u4t+2) < d(v4s+2, u4t+2). When s−3
2 < t ≤ s, d(u0, u4t+2) >

d(v4s+2, u4t+2). d(u0, u3) = 3 and d(v4s+2, u3) = s + 2. d(u0, u4t+3) = 4 + t and
d(v4s+2, u4t+3) = s − t + 2 where 1 ≤ t < s. When 1 ≤ t ≤ s−3

2 , d(u0, u4t+3) <

d(v4s+2, u4t+3). When s−1
2 ≤ t < s, d(u0, u4t+3) > d(v4s+2, u4t+3).

Note that u0 ∈ W 1
u0v4s+2

and v4s+2 ∈ W 1
v4s+2u0

. Combined with the above

discussion, |W 1
u0v4s+2

| = 4s− 1 and |W 1
v4s+2u0

| = 4s+ 1.

(3b) Computation of |W 1
u0v4s+2

| and |W 1
v4s+2u0

| when s is even and s ≥ 2.
When s = 2,
d(u0, v0) = 1 and d(v10, v0) = 6. d(u0, v4) = 2 and d(v10, v4) = 5. d(u0, v8) = 3

and d(v10, v8) = 4. d(u0, v1) = 2 and d(v10, v1) = 5. d(u0, v5) = 3 and d(v10, v5) =
4. d(u0, v9) = 4 and d(v10, v9) = 3. d(u0, v2) = 3 and d(v10, v2) = 2. d(u0, v6) = 4
and d(v10, v6) = 1. d(u0, v3) = 3 and d(v10, v3) = 5. d(u0, v7) = 4 and d(v10, v7) =
4. So v0, v1, v3, v4, v5, v8 ∈ W 1

u0v10 and v2, v6, v9 ∈ W 1
v10u0

.
d(u0, u4) = 3 and d(v10, u4) = 4. d(u0, u8) = 4 and d(v10, u8) = 3. d(u0, u1) = 1

and d(v10, u1) = 4. d(u0, u5) = 4 and d(v10, u5) = 3. d(u0, u9) = 5 and d(v10, u9) =
2. d(u0, u2) = 2 and d(v10, u2) = 3. d(u0, u6) = 5 and d(v10, u6) = 2. d(u0, u10) =
6 and d(v10, u10) = 1. d(u0, u3) = 3 and d(v10, u3) = 4. d(u0, u7) = 5 and
d(v10, u7) = 3. So u1, u2, u3, u4 ∈ W 1

u0v10 and u5, u6, u7, u8, u9, u10 ∈ W 1
v10u0

.

Note that u0 ∈ W 1
u0v10 and v8 ∈ W 1

v10u0
. Combined with the above discussion,

|W 1
u0v10 | = 11 and |W 1

v10u0
| = 10.

When s ≥ 4,
d(u0, v4t) = 1 + t and d(v4s+2, v4t) = s − t + 4 where 0 ≤ t ≤ s. When 0 ≤

t ≤ s+2
2 , d(u0, v4t) < d(v4s+2, v4t). When s+4

2 ≤ t ≤ s, d(u0, v4t) > d(v4s+2, v4t).
d(u0, v4t+1) = 2+t and d(v4s+2, v4t+1) = s−t+3 where 0 ≤ t ≤ s. When 0 ≤ t ≤ s

2 ,

d(u0, v4t+1) < d(v4s+2, v4t+1). When s+2
2 ≤ t ≤ s, d(u0, v4t+1) > d(v4s+2, v4t+1).

d(u0, v4t+2) = 3+t and d(v4s+2, v4t+2) = s−t where 0 ≤ t < s. When 0 ≤ t ≤ s−4
2 ,

d(u0, v4t+2) < d(v4s+2, v4t+2). When s−2
2 ≤ t < s, d(u0, v4t+2) > d(v4s+2, v4t+2).

d(u0, v4t+3) = 3+t and d(v4s+2, v4t+3) = s−t+3 where 0 ≤ t < s. When 0 ≤ t < s
2 ,

d(u0, v4t+3) < d(v4s+2, v4t+3). When s
2 < t < s, d(u0, v4t+3) > d(v4s+2, v4t+3).

d(u0, u4t) = 2 + t and d(v4s+2, u4t) = s − t + 3 where 1 ≤ t ≤ s. When
1 ≤ t ≤ s

2 , d(u0, u4t) < d(v4s+2, u4t). When s+2
2 ≤ t ≤ s, d(u0, u4t) > d(v4s+2, u4t).

d(u0, u1) = 1 and d(v4s+2, u1) = s + 2. d(u0, u4t+1) = 3 + t and d(v4s+2, u4t+1) =
s− t+2 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−2

2 , d(u0, u4t+1) < d(v4s+2, u4t+1). When
s
2 ≤ t ≤ s, d(u0, u4t+1) > d(v4s+2, u4t+1). d(u0, u2) = 2 and d(v4s+2, u2) = s + 1.
d(u0, u4t+2) = 4 + t and d(v4s+2, u4t+2) = s − t + 1 where 1 ≤ t ≤ s. When
1 ≤ t ≤ s−4

2 , d(u0, u4t+2) < d(v4s+2, u4t+2). When s−2
2 ≤ t ≤ s, d(u0, u4t+2) >

d(v4s+2, u4t+2). d(u0, u3) = 3 and d(v4s+2, u3) = s + 2. d(u0, u4t+3) = 4 + t and
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Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4824.

Submitted: May 29, 2024
Accepted: September 24, 2024
Published (early view): September 30, 2024

THE CONJECTURE ON DISTANCE-BALANCEDNESS 29

d(v4s+2, u4t+3) = s − t + 2 where 1 ≤ t < s. When 1 ≤ t < s−2
2 , d(u0, u4t+3) <

d(v4s+2, u4t+3). When s−2
2 < t < s, d(u0, u4t+3) > d(v4s+2, u4t+3).

Note that u0 ∈ W 1
u0v4s+2

and v4s+2 ∈ W 1
v4s+2u0

. Combined with the above

discussion, |W 1
u0v4s+2

| = 4s+ 1 and |W 1
v4s+2u0

| = 4s+ 3.

(4a) Computation of |W 1
u0v4s+3

| and |W 1
v4s+3u0

| when s is odd and s ≥ 3.
When s = 3,
d(u0, v0) = 1 and d(v15, v0) = 7. d(u0, v4) = 2 and d(v15, v4) = 6. d(u0, v8) =

3 and d(v15, v8) = 5. d(u0, v12) = 4 and d(v15, v12) = 4. d(u0, v1) = 2 and
d(v15, v1) = 7. d(u0, v5) = 3 and d(v15, v5) = 6. d(u0, v9) = 4 and d(v15, v9) = 5.
d(u0, v13) = 5 and d(v15, v13) = 4. d(u0, v2) = 3 and d(v15, v2) = 6. d(u0, v6) =
4 and d(v15, v6) = 5. d(u0, v10) = 5 and d(v15, v10) = 4. d(u0, v14) = 6 and
d(v15, v14) = 3. d(u0, v3) = 3 and d(v15, v3) = 3. d(u0, v7) = 4 and d(v15, v7) = 2.
d(u0, v11) = 5 and d(v15, v11) = 1. So v0, v1, v2, v4, v5, v6, v8, v9 ∈ W 1

u0v15 and

v7, v10, v11, v13, v14 ∈ W 1
v15u0

.
d(u0, u4) = 3 and d(v15, u4) = 5. d(u0, u8) = 4 and d(v15, u8) = 4. d(u0, u12) =

5 and d(v15, u12) = 3. d(u0, u1) = 1 and d(v15, u1) = 6. d(u0, u5) = 4 and
d(v15, u5) = 5. d(u0, u9) = 5 and d(v15, u9) = 4. d(u0, u13) = 6 and d(v15, u13) = 3.
d(u0, u2) = 2 and d(v15, u2) = 5. d(u0, u6) = 5 and d(v15, u6) = 4. d(u0, u10) =
6 and d(v15, u10) = 3. d(u0, u14) = 7 and d(v15, u14) = 2. d(u0, u3) = 3 and
d(v15, u3) = 4. d(u0, u7) = 5 and d(v15, u7) = 3. d(u0, u11) = 6 and d(v15, u11) = 2.
d(u0, u15) = 7 and d(v15, u15) = 1. So u1, u2, u3, u4, u5 ∈ W 1

u0v15 and u6, u7, u9,

u10, u11, u12, u13, u14, u15 are in W 1
v15u0

.

Note that u0 ∈ W 1
u0v15

and v15 ∈ W 1
v15u0

. Combined with the above discussion,

|W 1
u0v15 | = 14 and |W 1

v15u0
| = 15.

When s ≥ 5,
d(u0, v4t) = 1 + t and d(v4s+3, v4t) = s − t + 4 where 0 ≤ t ≤ s. When 0 ≤

t < s+3
2 , d(u0, v4t) < d(v4s+3, v4t). When s+3

2 < t ≤ s, d(u0, v4t) > d(v4s+3, v4t).
d(u0, v4t+1) = 2 + t and d(v4s+3, v4t+1) = s − t + 4 where 0 ≤ t ≤ s. When
0 ≤ t ≤ s+1

2 , d(u0, v4t+1) < d(v4s+3, v4t+1). When s+3
2 ≤ t ≤ s, d(u0, v4t+1) >

d(v4s+3, v4t+1). d(u0, v4t+2) = 3 + t and d(v4s+3, v4t+2) = s − t + 3 where 0 ≤
t ≤ s. When 0 ≤ t ≤ s−1

2 , d(u0, v4t+2) < d(v4s+3, v4t+2). When s+1
2 ≤ t ≤ s,

d(u0, v4t+2) > d(v4s+3, v4t+2). d(u0, v4t+3) = 3 + t and d(v4s+3, v4t+3) = s − t
where 0 ≤ t < s. When 0 ≤ t < s−3

2 , d(u0, v4t+3) < d(v4s+3, v4t+3). When
s−3
2 < t < s, d(u0, v4t+3) > d(v4s+3, v4t+3).
d(u0, u4t) = 2 + t and d(v4s+3, u4t) = s − t + 3 where 1 ≤ t ≤ s. When 1 ≤

t < s+1
2 , d(u0, u4t) < d(v4s+3, u4t). When s+1

2 < t ≤ s, d(u0, u4t) > d(v4s+3, u4t).
d(u0, u1) = 1 and d(v4s+3, u1) = s + 3. d(u0, u4t+1) = 3 + t and d(v4s+3, u4t+1) =
s− t+3 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−1

2 , d(u0, u4t+1) < d(v4s+3, u4t+1). When
s+1
2 ≤ t ≤ s, d(u0, u4t+1) > d(v4s+3, u4t+1). d(u0, u2) = 2 and d(v4s+3, u2) = s+2.

d(u0, u4t+2) = 4 + t and d(v4s+3, u4t+2) = s − t + 2 where 1 ≤ t ≤ s. When
1 ≤ t ≤ s−3

2 , d(u0, u4t+2) < d(v4s+3, u4t+2). When s−1
2 ≤ t ≤ s, d(u0, u4t+2) >

d(v4s+3, u4t+2). d(u0, u3) = 3 and d(v4s+3, u3) = s + 1. d(u0, u4t+3) = 4 + t and
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d(v4s+3, u4t+3) = s − t + 1 where 1 ≤ t ≤ s. When 1 ≤ t < s−3
2 , d(u0, u4t+3) <

d(v4s+3, u4t+3). When s−3
2 < t ≤ s, d(u0, u4t+3) > d(v4s+3, u4t+3).

Note that u0 ∈ W 1
u0v4s+3

and v4s+3 ∈ W 1
v4s+3u0

. Combined with the above

discussion, |W 1
u0v4s+3

| = 4s+ 1 and |W 1
v4s+3u0

| = 4s+ 3.

(4b) Computation of |W 1
u0v4s+3

| and |W 1
v4s+3u0

| when s is even.
When s = 2.
d(u0, v0) = 1 and d(v11, v0) = 6. d(u0, v4) = 2 and d(v11, v4) = 5. d(u0, v8) = 3

and d(v11, v8) = 4. d(u0, v1) = 2 and d(v11, v1) = 6. d(u0, v5) = 3 and d(v11, v5) =
5. d(u0, v9) = 4 and d(v11, v9) = 4. d(u0, v2) = 3 and d(v11, v2) = 5. d(u0, v6) =
4 and d(v11, v6) = 4. d(u0, v10) = 5 and d(v11, v10) = 3. d(u0, v3) = 3 and
d(v11, v3) = 2. d(u0, v7) = 4 and d(v11, v7) = 1. So v0, v1, v2, v4, v5, v8 ∈ W 1

u0v11

and v3, v7, v10 ∈ W 1
v11u0

.
d(u0, u4) = 3 and d(v11, u4) = 4. d(u0, u8) = 4 and d(v11, u8) = 3. d(u0, u1) = 1

and d(v11, u1) = 5. d(u0, u5) = 4 and d(v11, u5) = 4. d(u0, u9) = 5 and d(v11, u9) =
3. d(u0, u2) = 2 and d(v11, u2) = 4. d(u0, u6) = 5 and d(v11, u6) = 3. d(u0, u10) =
6 and d(v11, u10) = 2. d(u0, u3) = 3 and d(v11, u3) = 3. d(u0, u7) = 5 and
d(v11, u7) = 2. d(u0, u11) = 6 and d(v11, u11) = 1. So u1, u2, u4 ∈ W 1

u0v11 and

u6, u7, u8, u9, u10, u11 ∈ W 1
v11u0

.

Note that u0 ∈ W 1
u0v11 and v11 ∈ W 1

v11u0
. Combined with the above discussion,

|W 1
u0v11 | = 10 and |W 1

v11u0
| = 10.

When s ≥ 4.
d(u0, v4t) = 1 + t and d(v4s+3, v4t) = s − t + 4 where 0 ≤ t ≤ s. When 0 ≤

t ≤ s+2
2 , d(u0, v4t) < d(v4s+3, v4t). When s+4

2 ≤ t ≤ s, d(u0, v4t) > d(v4s+3, v4t).
d(u0, v4t+1) = 2 + t and d(v4s+3, v4t+1) = s − t + 4 where 0 ≤ t ≤ s. When
0 ≤ t < s+2

2 , d(u0, v4t+1) < d(v4s+3, v4t+1). When s+2
2 < t ≤ s, d(u0, v4t+1) >

d(v4s+3, v4t+1). d(u0, v4t+2) = 3 + t and d(v4s+3, v4t+2) = s − t + 3 where 0 ≤
t ≤ s. When 0 ≤ t < s

2 , d(u0, v4t+2) < d(v4s+3, v4t+2). When s
2 < t ≤ s,

d(u0, v4t+2) > d(v4s+3, v4t+2). d(u0, v4t+3) = 3 + t and d(v4s+3, v4t+3) = s − t
where 0 ≤ t < s. When 0 ≤ t ≤ s−4

2 , d(u0, v4t+3) < d(v4s+3, v4t+3). When
s−2
2 ≤ t < s, d(u0, v4t+3) > d(v4s+3, v4t+3).
d(u0, u4t) = 2 + t and d(v4s+3, u4t) = s − t + 3 where 1 ≤ t ≤ s. When

1 ≤ t ≤ s
2 , d(u0, u4t) < d(v4s+3, u4t). When s+2

2 ≤ t ≤ s, d(u0, u4t) > d(v4s+3, u4t).
d(u0, u1) = 1 and d(v4s+3, u1) = s + 3. d(u0, u4t+1) = 3 + t and d(v4s+3, u4t+1) =
s− t+ 3 where 1 ≤ t ≤ s. When 1 ≤ t < s

2 , d(u0, u4t+1) < d(v4s+3, u4t+1). When
s
2 < t ≤ s, d(u0, u4t+1) > d(v4s+3, u4t+1). d(u0, u2) = 2 and d(v4s+3, u2) = s + 2.
d(u0, u4t+2) = 4 + t and d(v4s+3, u4t+2) = s − t + 2 where 1 ≤ t ≤ s. When
1 ≤ t < s−2

2 , d(u0, u4t+2) < d(v4s+3, u4t+2). When s−2
2 < t ≤ s, d(u0, u4t+2) >

d(v4s+3, u4t+2). d(u0, u3) = 3 and d(v4s+3, u3) = s + 1. d(u0, u4t+3) = 4 + t and
d(v4s+3, u4t+3) = s − t + 1 where 1 ≤ t ≤ s. When 1 ≤ t ≤ s−4

2 , d(u0, u4t+3) <

d(v4s+3, u4t+3). When s−2
2 ≤ t ≤ s, d(u0, u4t+3) > d(v4s+3, u4t+3).

Note that u0 ∈ W 1
u0v4s+3

and v4s+3 ∈ W 1
v4s+3u0

. Combined with the above

discussion, |W 1
u0v4s+3

| = 4s+ 1 and |W 1
v4s+3u0

| = 4s+ 3. □
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Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4824.

Submitted: May 29, 2024
Accepted: September 24, 2024
Published (early view): September 30, 2024

THE CONJECTURE ON DISTANCE-BALANCEDNESS 31

(Gang MaB) School of Mathematics and Statistics, Shandong University of Tech-
nology, People’s Republic of China

Email address: math magang@163.com

(Jianfeng Wang) School of Mathematics and Statistics, Shandong University of Tech-
nology, People’s Republic of China

Email address: jfwang@sdut.edu.cn
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