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Abstract

Independent dominating sets in the direct product of four complete
graphs are considered. Possible types of such sets are classified. The sets in
which every pair of vertices agree in exactly one coordinate, called T1-sets,
are explicitly described. It is proved that the direct product of four complete
graphs admits an idomatic partition into T1-sets if and only if each factor
has at least three vertices and the orders of at least two factors are divisible
by 3.
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1 Introduction

The direct product of graphs is the product in the category of graphs and has
been extensively investigated since the 1960’s, see [9] for results up to 2000.
Rather surprisingly, many fundamental discoveries about the direct product were
obtained recently. Let us briefly mention some of them.

Cancellation properties of the direct product were studied by Lovász [12]
who proved that nonbipartite factors can always be canceled. The cancellation
for bipartite factors was finally clarified in [6] so that the situations in which
cancellation holds or fails are now completely described. Hammack [5] also proved
a conjecture from [10] and thus finished a clarification of the structure of the direct
product of two bipartite graphs. From the algorithmic point of view, Imrich [8]
designed the first polynomial algorithm for factorization of nonbipartite graphs.
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Very recently, the original approach was simplified in [7] where the computational
complexity is given for the first time.

In many respects the direct product is the most difficult among the standard
graph products. For instance, while it is not difficult to see that the direct
product is connected if and only if both factors are connected and at least one is
not bipartite [18], it is a difficult problem to determine the exact connectivity of
direct products [1]. Probably the most challenging open problem related to the
direct product of graphs is Hedetniemi’s conjecture. It asserts that χ(G×H) =
min{χ(G), χ(H)}. Despite many efforts it is still widely open, see the surveys [13,
15, 19]. The strongest general known result goes back to El-Zahar and Sauer
who proved that the conjecture holds for 4-chromatic graphs [4]. (Other types of
colorings were also considered on the direct product, see, for instance, [14].)

Colorings are just partitions into independent sets. In this paper we focus
on partitions into independent sets that are at the same time dominating sets.
Such partitions are called idomatic partitions. It was proved in [3] that the only
idomatic partitions of the direct product of two complete graphs consist of parts
in which one coordinate is fixed and the other arbitrary. The authors also posed
the problem of characterizing idomatic partitions of direct products of at least
three complete graphs. The problem for three factors was solved in [16]. Roughly
speaking, there are only two types of independent dominating sets that can be
combined into idomatic partitions. Here we consider products of four factors in
which case the variety of types (see the next section for the definition of a type)
is already bigger.

The rest of the paper is organized as follows. In Section 2 we fix notation and
terminology and introduce possible types of independent dominating sets. Then,
in Section 3, all our results are presented. We show that among seven potential
types, four are not possible and for three there exist independent dominating
sets. Then a characterization of independent dominating sets in which every
pair of vertices agree in exactly one coordinate is given. Each such set necessary
contains nine vertices whose coordinates can be explicitly described. Our last
result asserts that an idomatic partition into such sets exists if and only if the
order of at least two factors is divisible by 3. The proofs are given is Section 4.
The concluding section contains several comments and problems.

2 Preliminaries

The direct product G ×H of graphs G = (V (G), E(G)) and H = (V (H), E(H))
has the vertex set V (G) × V (H) and edges (g1, h1)(g2, h2), where g1g2 ∈ E(G)
and h1h2 ∈ E(H). This graph product is commutative and associative, hence
it extends naturally to more than two factors. The direct product of graphs
G1, . . . , Gn will be denoted ×n

i=1Gi. It is well-known (cf. [9]) that the direct
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product of vertex-transitive graphs is vertex-transitive. In the rest we will fre-
quently and implicitly use this fact.

A fall coloring of a graph G is a partition of V (G) into color classes that
are (as usual) independent sets, and every vertex u has at least one neighbor in
each of the other color classes. Not every graph contains a fall coloring, consider
for instance the 5-cycle, so the basic question here is which graphs admit such
colorings. It is not difficult to see that fall colorings of G coincide with partitions
of the vertices of G into independent dominating sets. Such a partition is in this
context known as an idomatic partition.

Fall colorings were introduced in [3], but a closely related concept was studied
back in 1976 by Cockayne and Hedetniemi [2]: they were interested in the largest
number of independent dominating sets contained in a given graph. Fall colorings
were further studied in [11] where it is proved that a strongly chordal graph G
has a fall coloring if and only if the clique number of G equals the minimum
degree in G plus one.

As already mentioned, Valencia-Pabon [16] characterized idomatic partitions
of direct products of three complete graphs. In that case, there are two types of
independent dominating sets that can be combined into idomatic partitions. To
deal with four factors, the following concepts will be useful.

For a complete graph Kn, n ≥ 1, we will always assume V (Kn) = [n] =
{0, 1, . . . , n− 1}. Let G = ×k

i=1Kni and let u = (u1, . . . , uk) and v = (v1, . . . , vk)
be vertices of G. Then let

e(u, v) = |{i | ui = vi}|

be the number of coordinates in which u and v coincide. Note that the function e
can be defined for direct products of arbitrary graphs. Observe also that e(u, v) =
k −H(u, v), where H(u, v) is the Hamming distance between the vectors u and
v, that is, the number of coordinates in which they differ. However, since the
distance in the direct product is not the Hamming distance, we prefer to use
e(u, v).

With this notation we can state that u and v are adjacent in G = ×k
i=1Kni

if and only if e(u, v) = 0. Therefore I ⊆ V (G) is independent if and only if
e(u, v) > 0 for any u, v ∈ I. Note also that e(u, v) ≤ k − 1 holds for any u 6= v.

Now comes the key definition. Let X ⊆ V (G) be an independent set of
G = ×k

i=1Kni . Let

{e(u, v) | u, v ∈ X, u 6= v} = {j1, . . . , jr} .

Then we say that X is a Tj1,...,jr -set.
Let I ⊆ V (G), G = ×3

i=1Kni , be an independent and dominating set of
G. Then I can only be a T1-set, a T2-set, or a T1,2-set. Valencia-Pabon [16]
showed that there is no such T2-set and described the other two types as well as
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determined when they form idomatic partitions. (The sporadic example from [3]
is a T1-set.)

3 Results

We consider direct products of four complete graphs and index the factors from
0 to 3. We first exclude the following four types.

Proposition 3.1 Let I be an independent dominating set of G = ×3
i=0Kni, ni ≥

2. Then I is not T2, T3, T2,3, and T1,3.

So we are left with the possible types T1, T1,2, T1,2,3 and all three of them are
achievable. We have already mentioned that for two and three factors one can
construct independent dominating sets by fixing one coordinate. This is true for
any number of factors, in particular the vertex subset of G = Kn0 ×Kn1 ×Kn2 ×
Kn3 , ni ≥ 2, defined with

I = [n0]× [n1]× [n2]× {i} ,

where i ∈ [n3], is independent and dominating. Moreover, I is a T1,2,3-set. Of
course, we could fix any of the four coordinates in the above construction. But
there are additional sporadic independent dominating sets that are T1,2,3. Con-
sider K2 ×K2 ×K2 ×K2, then

I1 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}

and

I2 = {(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}

are both dominating T1,2,3-sets. In addition, they form an idomatic partition.
We next give an idomatic partition into T1,2-sets. Let G = K2×K2×K2×K4

and consider the set

I1 = {(0, 0, 0, 0), (1, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1),
(1, 0, 1, 2), (0, 1, 0, 2), (1, 1, 0, 3), (0, 0, 1, 3)}.

Clearly, I1 is a T1,2-set. But it is also dominating. To see it, note first that G
consists of four connected components isomorphic to K2 × K4 which is in turn
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isomorphic to the 3-cube Q3. Then consecutive pairs of vertices dominate the
four copies of Q3 respectively. Finally, the sets I1, I2, I3, I4, where

I2 = {(u1 + 1 mod 2, u2, u3, u4) | (u1, u2, u3, u4) ∈ I1} ,

I3 = {(u1, u2 + 1 mod 2, u3, u4) | (u1, u2, u3, u4) ∈ I1} ,

I4 = {(u1, u2, u3 + 1 mod 2, u4) | (u1, u2, u3, u4) ∈ I1} ,

form an idomatic partition of G.
In our first main result we characterize T1-sets as follows.

Theorem 3.2 Let G = Kn0 ×Kn1 ×Kn2 ×Kn3, ni ≥ 2, and let I be a T1-set of
G. Then I is a dominating set if and only if ni ≥ 3 and I is of the form

I = {(α0, α1, α2, α3), (α0, β1, β2, β3), (α0, γ1, γ2, γ3),
(β0, α1, β2, γ3), (β0, γ1, α2, β3), (β0, β1, γ2, α3),

(γ0, α1, γ2, β3), (γ0, β1, α2, γ3), (γ0, γ1, β2, α3)} ,

where αi, βi, γi ∈ Kni are pairwise different, 0 ≤ i ≤ 3.

In the second main result we characterize the products which admit idomatic
partitions into T1-sets.

Theorem 3.3 Let G = Kn0×Kn1×Kn2×Kn3, ni ≥ 2. Then G has an idomatic
partition into T1-sets if and only if ni ≥ 3 and there exist indices j, k ∈ [4], j 6= k,
such that 3|nj and 3|nk.

4 Proofs

Proof of Proposition 3.1. Assume on the contrary that I is a T2-set or a
T2,3-set. Since I is dominating, |I| > 2. Assume (0, 0, 0, 0) ∈ I. Using vertex-
transitivity and the commutativity of the direct product we may also assume that
(0, 0, 1, 1) ∈ I. Since e((0, 0, 1, 1), (1, 0, 0, 0)) = 1, we get (1, 0, 0, 0) /∈ I. Hence
there exists a vertex (a, b, c, d) ∈ I such that (a, b, c, d) dominates (1, 0, 0, 0).
This in particular implies that b, c, d 6= 0. But then e((a, b, c, d), (0, 0, 0, 0)) ≤ 1,
a contradiction.

Suppose next that I is a T3-set. We may assume that {(0, 0, 0, 0), (0, 0, 0, 1)} ⊆
I. Clearly, (0, 0, 1, 1) /∈ I, hence there exists a vertex (a, b, c, d) ∈ I that dominates
(0, 0, 1, 1). But then a, b 6= 0 and thus e((a, b, c, d), (0, 0, 0, 0)) ≤ 2.

In the last case let I be a T1,3 set. Again, assume that {(0, 0, 0, 0), (0, 0, 0, 1)} ⊆
I. From e((0, 0, 0, 1), (0, 0, 1, 0)) = 2 we deduce that (0, 0, 1, 0) /∈ I. Hence there
is a vertex (a, b, c, d) ∈ I that dominates (0, 0, 1, 0). The elements a, b, and
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d are different from 0, therefore c = 0 due to the independence of I. More-
over, e((0, 0, 0, 1), (a, b, 0, 1)) = 2, hence d 6= 1. Since we already know that
d 6= 0, the fourth factor must contain more than 2 vertices, for otherwise no ele-
ment from I would dominate (0, 0, 1, 0). We next consider the vertex (0, 0, 0, d),
d /∈ {0, 1}. Suppose that (0, 0, 0, d) /∈ I. I is dominating, so there exists a vertex
(e, f, g, h) ∈ I, such that e, f, g 6= 0 and h 6= d. But then the vertex (e, f, g, h)
is adjacent with at least one of the vertices (0, 0, 0, 0), (0, 0, 0, 1) ∈ I, a contra-
diction. Thus we must have (0, 0, 0, d) ∈ I. The proof is concluded by observing
that e((0, 0, 0, d), (a, b, 0, d)) = 2. ¤

Proof of Theorem 3.2. We will prove the theorem in two steps. In the first,
major step, we assume that ni ≥ 3, 0 ≤ i ≤ 3.

So let I be a dominating T1-set of G and without loss of generality assume that
(0, 0, 0, 0) ∈ I. Clearly, |I| > 1, hence we may further assume that (0, β1, β2, β3) ∈
I, where β1, β2, β3 6= 0.

If w 6= 0 then (0, 0, 0, w) /∈ I, hence there exists a vertex (β0, b, c, d) ∈ I,
where β0, b, c 6= 0 and d 6= w. Since the latter vertex is not adjacent to (0, 0, 0, 0)
we get d = 0. In addition, it is also not adjacent to (0, β1, β2, β3), hence either
b = β1 and c 6= β2, or b 6= β1 and c = β2. In the first case set c = γ2, in the
second b = γ1. This gives the following two possibilities:

A1 = {(0, 0, 0, 0), (0, β1, β2, β3), (β0, β1, γ2, 0)} ⊆ I

and
A2 = {(0, 0, 0, 0), (0, β1, β2, β3), (β0, γ1, β2, 0)} ⊆ I.

Similarly, the vertex (0, y, 0, 0) does not belong to I, hence there exists (a, b, c, d) ∈
I (for some a, b, c, d different from above) that dominates (0, y, 0, 0). As (0, 0, 0, 0)
∈ I, we infer that b = 0. Now comparing (a, 0, c, d) with (0, β1, β2, β3) we obtain
either (i) (a, 0, c, d) = (a, 0, β2, d), d 6= β3, or (ii) (a, 0, c, d) = (a, 0, c, β3), c 6= β2.

Consider case (i). Comparing (a, 0, β2, d) (d 6= β3) with the third vertex of
A1 we get a = β0. Since 0 6= d 6= β3 we can set d = γ3. Similarly, comparing
(a, 0, β2, d) with the third vertex of A2 we obtain 0 6= a 6= β0 and 0 6= d 6= β3,
hence we can set a = γ0 and d = γ3.

Consider case (ii). In this case (a, 0, c, β3) (c 6= β2) is a candidate for a vertex
from I. Considering the possibility of A1, we must have either a 6= β0 and c = γ2,
or a = β0 and β2 6= c 6= γ2. In the latter option set c = δ2. Note that when
n2 = 3 this is not possible since there are only three coordinates available for
the Kn2 factor. Comparing (a, 0, c, β3) with the third vertex of A2 we find that
a = β0. Since 0 6= c 6= β2 we can set c = γ2. Hence we have altogether obtained
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5 possible subsets of I:

B1 = A1 ∪ {(β0, 0, β2, γ3)},
B2 = A2 ∪ {(γ0, 0, β2, γ3)},
B3 = A1 ∪ {(γ0, 0, γ2, β3)},
B4 = A1 ∪ {(β0, 0, δ2, β3)},
B5 = A2 ∪ {(β0, 0, γ2, β3)}.

We next take into account that (0, 0, z, 0) /∈ I for any z 6= 0. Hence there is a
vertex (a, b, c, d) ∈ I, a, b, d 6= 0, c 6= z. Comparing it with (0, 0, 0, 0) we get
c = 0. Since it is not adjacent to (0, β1, β2, β3), either (i) b = β1 and d 6= β3, or
(ii) b 6= β1 and d = β3.

We first consider case (i), that is, we will compare the vertex (a, β1, 0, d) with
B1, . . . , B5. Since e((a, β1, 0, d), (β0, β1, γ2, 0)) = 1 we infer a 6= β0. Hence, as in
the set B1 no γ0 is present we can set a = γ0. Considering further the vertex
(β0, 0, β2, γ3) ∈ B1 we find that d = γ3, for otherwise e((γ0, β1, 0, d), (β0, 0, β2, γ3))
= 0. Set

C1 = B1 ∪ {(γ0, β1, 0, γ3)}.
Next, compare (a, β1, 0, d) with the vertices from B2. Then a = β0 because it is
not adjacent to (β0, γ1, β2, 0). In addition, d = γ3 as (β0, β1, 0, d) is not adjacent
to (γ0, 0, β2, γ3). So we have the following possibility:

C2 = B2 ∪ {(β0, β1, 0, γ3)}.
Next, compare (a, β1, 0, d) with (γ0, 0, γ2, β3) ∈ B3. Since d 6= β3 we must have
a = γ0, while d can be denoted with γ3, yielding

C3 = B3 ∪ {(γ0, β1, 0, γ3)}.
Now compare (a, β1, 0, d) with (β0, 0, δ2, β3) ∈ B4. Since d 6= β3 we have a = β0.
But then e((β0, β1, 0, d), (β0, β1, γ2, 0)) = 2, a contradiction.

Finally, compare (a, β1, 0, d) with (β0, γ1, β2, 0) ∈ B5. Since e((a, β1, 0, d),
(β0, γ1, β2, 0)) = 1, we have a = β0. As 0 6= d 6= β3 and γ3 is not present in B5

we can set d = γ3 thus yielding

C4 = B5 ∪ {(β0, β1, 0, γ3)}.
We next consider case (ii) by comparing (a, b, 0, β3)(b 6= β1) with the sets

B1, . . . , B5. The arguments are similar as above. In particular, also this vertex
is not compatible with B4. The other four cases give the following possibilities:

C5 = B1 ∪ {(β0, γ1, 0, β3)},
C6 = B2 ∪ {(γ0, γ1, 0, β3)},
C7 = B3 ∪ {(β0, γ1, 0, β3)},
C8 = B5 ∪ {(γ0, γ1, 0, β3)},
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where γ1 is introduced into C5 and C7, and γ0 into C8.
To complete the proof of necessity part of the proof we claim that in any of

the above 8 cases the set I is as stated in the lemma. More precisely, if one of
the sets C1, C3, C5, C7 is contained in I, then the set

{(0, 0, 0, 0), (0, β1, β2, β3), (0, γ1, γ2, γ3),
(β0, 0, β2, γ3), (β0, β1, γ2, 0), (β0, γ1, 0, β3),
(γ0, 0, γ2, β3), (γ0, β1, 0, γ3), (γ0, γ1, β2, 0)}

is contained in I. And if one of C2, C4, C6, C8 is contained in I, then eventually
the set

{(0, 0, 0, 0), (0, β1, β2, β3), (0, γ1, γ2, γ3),
(β0, 0, γ2, β3), (β0, β1, 0, γ3), (β0, γ1, β2, 0),
(γ0, 0, β2, γ3), (γ0, β1, γ2, 0), (γ0, γ1, 0, β3)}

is contained in I. Note that both of these sets are as claimed in the statement
of the lemma, which can be seen by observing that exchanging β0 with γ0 in
the second set yields the first one. Observe also that such a set is a maximal
independent set with respect to the property that e(u, v) = 1 for any of its
different vertices u and v.

We are going to prove the above claim for C1. The still missing vertices are

(0, γ1, γ2, γ3), (β0, γ1, 0, β3), (γ0, 0, γ2, β3) and (γ0, γ1, β2, 0) ,

where γ1 ∈ V (Kn1) \ {0, β1} has not yet been introduced.
Assume (γ0, 0, γ2, β3) /∈ I. Then there exists (a, b, c, d) ∈ I such that a 6=

γ0, b 6= 0, c 6= γ2 and d 6= β3. Since e((a, b, c, d), (0, 0, 0, 0)) = 1, exactly one of
a, c and d equals 0. If a = 0, then we compare (0, b, c, d) with (β0, β1, γ2, 0) ∈ C1

to realize that they can only be equal in the second coordinate, that is, b = β1.
It follows that (0, β1, c, d) = (0, β1, β2, β3) ∈ C1, which is not possible because
d 6= β3. Suppose c = 0. Since e((a, b, 0, d), (0, β1, β2, β3)) = 1, we have b = β1.
Then (a, β1, 0, d) = (γ0, β1, 0, γ3) ∈ C1, another contradiction. Suppose finally
d = 0. Since e((a, b, c, 0), (γ0, β1, 0, γ3)) = 1, we get b = β1 and thus (a, b, c, 0) =
(β0, β1, γ2, 0) ∈ C1, the final contradiction. We conclude that (γ0, 0, γ2, β3) ∈ I.

To prove that the remaining three vertices necessarily lie in I, some more
efforts are needed. Clearly, (0, 0, γ2, γ3) /∈ I. Note also that this vertex is not
dominated with any of the vertices from C1 ∪{(γ0, 0, γ2, β3)}. Hence there exists
(a, b, c, d) ∈ I with a, b 6= 0, c 6= γ2, and d 6= γ3. Since e((a, b, c, d), (0, 0, 0, 0)) = 1,
either c = 0 or d = 0. Assume first c = 0. Comparing (a, b, 0, d) with (β0, 0, β2, γ3)
yields a = β0. Since (β0, b, 0, d) and (β0, β1, γ2, 0) already coincide in one position
and differ in two positions, we find that b 6= β1. Hence we can set b = γ1.
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Comparing (β0, γ1, 0, d) with (0, β1, β2, β3) gives d = β3. We conclude that

C1.1 = C1 ∪ {(γ0, 0, β2, γ3)} ∪ {(β0, γ1, 0, β3)} ⊆ I.

Assume next d = 0. Then comparing (a, b, c, 0) with (γ0, 0, γ2, β3) we get a = γ0.
Since (γ0, b, c, 0) and (β0, β1, γ2, 0) ∈ C1 already coincide in one position and
differ in two positions, b 6= β1. Hence we can introduce b = γ1. We next find
that c = β2 by comparing (γ0, γ1, c, 0) with (β0, 0, β2, γ3). So we have another
possibility for a subset of I:

C1.2 = C1 ∪ {(γ0, 0, β2, γ3)} ∪ {(γ0, γ1, β2, 0)} ⊆ I.

Suppose C1.1 ⊆ I. Then we need to prove that (γ0, γ1, β2, 0) and (0, γ1, γ2, γ3)
belong to I. Assume on the contrary that (γ0, γ1, β2, 0) /∈ I. Then there is
a vertex (a, b, c, d) ∈ I such that a 6= γ0, b 6= γ1, c 6= β2, and d 6= 0. Since
e((a, b, c, d), (0, 0, 0, 0)) = 1 and as d 6= 0, exactly one of a, b, c equals 0. In
the first case compare (0, b, c, d) with (β0, γ1, 0, β3) ∈ C1.1. It follows that d =
β3. Then, since e((0, b, c, β3), (0, β1, β2, β3)) ≥ 2, these two vertices must be the
same. But this means that c = β2, a contradiction. Assume next b = 0. Then
comparing (a, 0, c, d) with (γ0, β1, 0, γ3) ∈ C1.1 we find that d = γ3. It follows
that (a, 0, c, γ3) = (β0, 0, β2, γ3), another contradiction because c 6= β2. In the
last case, c = 0, compare (a, b, 0, d) with (γ0, 0, γ2, β3) ∈ C1.1 to see that d = β3.
Therefore (a, b, 0, β3) = (β0, γ1, 0, β3), the final contradiction, since b 6= γ1. We
conclude that (γ0, γ1, β2, 0) ∈ I.

We proceed similarly for the vertex (0, γ1, γ2, γ3) and assume that it does not
belong to I. Then there exists (a, b, c, d) ∈ I, such that a 6= 0, b 6= γ1, c 6= γ2,
and d 6= γ3. Since e((a, b, c, d), (0, 0, 0, 0)) = 1, exactly one of b, c, d equals 0.
In the first case compare (a, 0, c, d) with (β0, β1, γ2, 0) ∈ C1.1 to get a = β0.
But then (β0, 0, c, d) = (β0, 0, β2, γ3), which is not possible since d 6= γ3. In the
second case we have a = β0 by considering (a, b, 0, d) and (β0, 0, β2, γ3) ∈ C1.1.
Then (β0, b, 0, d) = (β0, γ1, 0, β3), which is not possible since b 6= γ1. Finally, if
d = 0, we have a = γ0 (compare (a, b, c, 0) with (γ0, 0, γ2, β3) ∈ C1.1), therefore
(γ0, b, c, 0) = (γ0, γ1, β2, 0). Another contradiction, since b 6= γ1. We conclude
that (0, γ1, γ2, γ3) ∈ I and hence I is as required.

Assume C1.2 ⊆ I. Then we need to show that (β0, γ1, 0, β3) and (0, γ1, γ2, γ3)
belong to I. Suppose (β0, γ1, 0, β3) /∈ I. Then there exists (a, b, c, d) ∈ I,
such that a 6= β0, b 6= γ1, c 6= 0, d 6= β3, and exactly one of a, b, d equals 0.
If a = 0 then c = β2 by considering (0, b, c, d) and (γ0, γ1, β2, 0). But then
(0, b, β2, d) = (0, β1, β2, β3), contradicting d 6= β3. If b = 0, then consider
(a, 0, c, d) and (0, β1, β2, β3) to get c = β2. Now (a, 0, β2, d) = (β0, 0, β2, γ3),
contradicting a 6= β0. Finally, if d = 0, then (a, b, c, 0) and (β0, 0, β2, γ3) give
c = β2. But then (a, b, β2, 0) = (γ0, γ1, β2, 0), which contradicts b 6= γ1. There-
fore, (β0, γ1, 0, β3) ∈ I.
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Suppose (0, γ1, γ2, γ3) /∈ I. Then we have (a, b, c, d) ∈ I, where a 6= 0, b 6=
γ1, c 6= γ2, d 6= γ3, and one of b, c, d is 0. If b = 0 then a = γ0 (consider (a, 0, c, d)
and (γ0, β1, 0, γ3)), and therefore (γ0, 0, c, d) = (γ0, 0, γ2, β3), contradicting c 6= γ2.
If c = 0 we get a = β0 (consider (a, b, 0, d) and (β0, 0, β2, γ3)), and so (β0, b, 0, d) =
(β0, γ1, 0, β3), contradicting b 6= γ1. Finally, for d = 0 we have a = γ0 (consider
(a, b, c, 0) and (γ0, 0, γ2, β3)). Now (γ0, b, c, 0) = (γ0, γ1, β2, 0), contradicting b 6=
γ1. We conclude that (0, γ1, γ2, γ3) ∈ I and hence also in this case I is as claimed.

The proofs for the remaining 7 cases, that is, for the sets Ci, i = 2, 3, ..., 8, go
along the same lines as the above proof for C1. In each of these sets we miss four
vertices and exactly one of the integers γ0, γ1, γ2, and γ3. (In the above case, γ1

was missing.) Now, exactly one among the four missing vertices does not contain
the missing integer (above such a vertex is (γ0, 0, γ2, β3)). Then we prove for
this vertex that belongs to I. We continue by selecting a vertex not in I that
coincides with the previous six vertices in at least one position, and coincides
in at least one position also with one of the three missing vertices. (Above the
vertex (0, 0, γ2, γ3) played this role.) Now we proceed as above and detect the
remaining two vertices. We note that the order in which we prove the inclusion
of these two vertices is essential because the inclusion of one of them is needed
to prove the inclusion of the other.

Conversely, assume that I contains 9 vertices as described in the statement.
We need to prove that an arbitrary vertex x = (δ0, δ1, δ2, δ3) /∈ I is dominated by
at least one vertex from I.

Note first that for each i, each of the αi, βi, and γi, appears in exactly three
vertices from I. If, say, u, v, and w contain αi, then e(u, v) = 1, e(u,w) = 1,
e(v, w) = 1, and, moreover, u, v, and w coincide in the position where αi stands.
We now distinguish four cases.

Suppose e(x, (α0, α1, α2, α3)) = 0. Then (α0, α1, α2, α3) dominates x.
Let e(x, (α0, α1, α2, α3)) = 3 and let δk 6= αk, where k ∈ {0, 1, 2, 3}. Then x

is dominated by the two vertices that contain αk and do not contain αi for i 6= k.
The next case is e(x, (α0, α1, α2, α3)) = 2. Let δk 6= αk and δ` 6= α`, where

k, ` ∈ {0, 1, 2, 3}. Consider the two vertices that contain αk and none of the
remaining αi’s. These two vertices can coincide with x only in δ`. Since they
differ in the corresponding position (which is because they agree in αk), one of
them dominates x.

The last case to consider is when e(x, (α0, α1, α2, α3)) = 1. Let δk = αk.
Then δi 6= αi for i 6= k. Assume that no vertex from I dominates x. Let I1 be
the set of the three vertices from I that contain βk and let I2 be the set of the
three vertices that contain γk. Since x is dominated by no vertex from I1 ∪ I2,
we have three positions to agree with each of them. For such a fixed position, x
can agree with at most one vertex from I1 and with at most one vertex from I2.
Hence only in the optimal case we can have e(x, u) ≥ 1 for each u ∈ I1 ∪ I2. This
in particular implies that δi ∈ {βi, γi} for any i 6= k. No two of the δi’s, where
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i 6= k, appear in the same vertex from I1 ∪ I2, for otherwise we would have two
vertices from this set that would agree on two positions. Note further that for
any two integers r and s that appear as coordinates of vertices from I, there is
exactly one vertex in I that contains r and s. There are three pairs of integers
of the form {δi, δj}, where i, j 6= k. None of these two such integers appear in
the same vertex from I1 ∪ I2. Hence these pairs must appear on the two vertices
from I \ (I1∪ I2∪{(0, 0, 0, 0)}). Therefore, two of these pairs appear on the same
vertex, but this means that x is equal to one them, the final contradiction which
completes the first step of the proof.

It remains to prove that if 2 ∈ {ni, 0 ≤ i ≤ 3}, then G contains no domi-
nating T1-set. Suppose I is such a set and assume (0, 0, 0, 0) ∈ I. We may also
without loss of generality assume n3 = 2. Since (1, 0, 0, 0) /∈ I, there exists a
vertex (a, b, c, d) ∈ I such that a 6= 1 and b, c, d 6= 0. Hence d = 1 and because
e((a, b, c, 1), (0, 0, 0, 0)) = 1 we have a = 0. Thus

{(0, 0, 0, 0), (0, b, c, 1)} ⊆ I.

Consider next (0, 1, 0, 0) /∈ I. Then there exists (e, f, g, h) ∈ I that dominates
(0, 1, 0, 0). Similarly as above we get h = 1 and f = 0. Since e((e, 0, g, 1),
(0, 0, 0, 0)) = 1 and e((e, 0, g, 1), (0, b, c, 1)) = 1 we also have g 6= 0 and g 6= c. If
n2 = 2 this is a contradiction because no vertex of I dominates (0, 1, 0, 0). So let
n2 > 2. Then

{(0, 0, 0, 0), (0, b, c, 1), (e, 0, g, 1)} ⊆ I.

Now (0, 0, 1, 0) /∈ I, hence there is a vertex (k, l,m, n) ∈ I, such that k, l, n 6= 0
and m 6= 1. Similarly as above we find that

{(0, 0, 0, 0), (0, b, c, 1), (e, 0, g, 1), (k, l, 0, 1)} ⊆ I.

If n0 = 2 or n1 = 2 we have a contradiction because 0, e, k are pairwise different
as well as are 0, b, l. So let n0 ≥ 3 and n1 ≥ 3. Since (0, l, g, 1) /∈ I, there is a
vertex (x, y, z, w) ∈ I with x 6= 0, y 6= l, z 6= g, and w = 0. The set I is T1

hence (x, y, z, 0) = (e, l, c, 0) or (x, y, z, 0) = (k, b, g, 0). But both possibilities are
impossible because y 6= l and z 6= g, respectively. ¤

Proof of Theorem 3.3. Note first that by Theorem 3.2, ni ≥ 3 is a necessary
condition for the existence of an idomatic partition into T1-sets. Hence assume
in the rest that this is the case.

Suppose that G has an idomatic partition into T1-sets. By Theorem 3.2, each
part (every T1-set) in an idomatic partition into T1-sets has nine vertices, and
thus 9 is a divisor of n0n1n2n3, so there exists at least one j ∈ [4] such that 3|nj .
By the commutativity of the direct product, we can assume that j = 3. Let I`
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be a T1-set of our idomatic partition. By Theorem 3.2, I` is of the form

{(α0, α1, α2, α3), (α0, β1, β2, β3), (α0, γ1, γ2, γ3),
(β0, α1, β2, γ3), (β0, γ1, α2, β3), (β0, β1, γ2, α3),
(γ0, α1, γ2, β3), (γ0, β1, α2, γ3), (γ0, γ1, β2, α3)}

for some pairwise different αi, βi, γi ∈ [ni], 0 ≤ i ≤ 3. The number of ver-
tices of the form (x, y, z, α3) with fixed α3 ∈ [n3] in G is exactly n0n1n2. In
every T1-set of the partition in which α3 occurs, there are exactly three ver-
tices (x, y, z, α3), (x′, y′, z′, α3) and (x′′, y′′, z′′, α3), where x, x′, and x′′ are pair-
wise different and so are y, y′, and y′′. Hence we must be able to partition the
n0n1n2 vertices containing α3 into triples of vertices described above. Therefore,
3|n0n1n2.

Conversely, assume that there exist indices j, k ∈ [4], j 6= k, such that 3|nj

and 3|nk. The graph G = Kn0 × Kn1 × Kn2 × Kn3 can be seen as the Cayley
graph associated with the direct product group G = Zn0 ×Zn1 ×Zn2 ×Zn3 with
connector set

(
[n0]\{0}

)×(
[n1]\{0}

)×(
[n2]\{0}

)×(
[n3]\{0}

)
, where Zni denotes

the additive cyclic group of the integers modulo ni. Using the commutativity of
the direct product again, we can assume that j = 2 and k = 3. Let aj be an
element of order nj

3 in the group Znj for j ∈ {2, 3}. Let H0 = 〈(1, 0, 0, 0)〉 denote
the cyclic subgroup of G generated by the element (1, 0, 0, 0). Similarly, let H1 =
〈(0, 1, 0, 0)〉, H2 = 〈(0, 0, a2, 0)〉 and H3 = 〈(0, 0, 0, a3)〉. It is obvious that Hi ∩
Hj = {(0, 0, 0, 0)} for i, j ∈ [4], i 6= j. As G is abelian it follows that H0H1H2H3 =
{h0 + h1 + h2 + h3 | hi ∈ Hi for i ∈ [4]} is a subgroup of order n0n1n2n3

9 in G. Let
us use the notation r = n0n1n2n3

9 and P = H0H1H2H3 = {p1, p2, ..., pr}, where
we may without loss of generality assume that p1 = (0, 0, 0, 0). Let βk and γk

be any elements in Znk
\ {0}, with βk 6= γk for k ∈ {0, 1}, and let βj and γj

be any elements in Znj \ {0}, with βj 6= γj ; βj , γj /∈ 〈aj〉; and if aj 6= 0 then
βj 6≡ γj mod aj , j ∈ {2, 3}. By standard group theory arguments,

P, (0, β1, β2, β3) + P, (0, γ1, γ2, γ3) + P,

(β0, 0, β2, γ3) + P, (β0, γ1, 0, β3) + P, (β0, β1, γ2, 0) + P,

(γ0, 0, γ2, β3) + P, (γ0, β1, 0, γ3) + P, (γ0, γ1, β2, 0) + P

is a partition of G into left cosets of P . If we denote

D = {(0, β1, β2, β3), (0, γ1, γ2, γ3), (β0, 0, β2, γ3), (β0, γ1, 0, β3),
(β0, β1, γ2, 0), (γ0, 0, γ2, β3), (γ0, β1, 0, γ3), (γ0, γ1, β2, 0)},

then no element from D belongs to the subgroup P due to the construction of
D. Moreover, there exists no element z ∈ P such that x + z = y for some
pairwise different elements x, y ∈ D. Otherwise, z = (z0, z1, z2, z3) is such that
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z2 ∈ {±β2,±γ2,±(β2−γ2)} or z3 ∈ {±β3,±γ3,±(β3−γ3)}. All these possibilities
lead to a contradiction with the conditions of choosing βj and γj , j ∈ {2, 3}.
Hence our statement about the partition of G into left cosets of P holds. For
instance, in the above construction we could have chosen β0 = β1 = β2 = β3 = 1
and γ0 = γ1 = γ2 = γ3 = 2.

Now we will construct an idomatic partition of G into T1-sets. For every
pi ∈ P , 1 ≤ i ≤ r, we introduce

Ci = {pi, pi + (0, β1, β2, β3), pi + (0, γ1, γ2, γ3),
pi + (β0, 0, β2, γ3), pi + (β0, γ1, 0, β3), pi + (β0, β1, γ2, 0),
pi + (γ0, 0, γ2, β3), pi + (γ0, β1, 0, γ3), pi + (γ0, γ1, β2, 0)},

where

pi + x = (pi0 , pi1 , pi2 , pi3) + (x0, x1, x2, x3)
= (pi0 + x0 mod n0, pi1 + x1 mod n1, pi2 + x2 mod n2, pi3 + x3 mod n3).

It is clear that for arbitrary pairwise different x, y ∈ D ∪ {(0, 0, 0, 0)} and i ∈
{1, 2, ..., r} the vertices pi+x and pi+y are non-adjacent because of non-adjacency
of x and y. That is, all Ci are independent. By Theorem 3.2, all Ci are T1-sets
and by our statement above we get

⋃r
i=1 Ci = G and Ci∩Cj = ∅ for i 6= j. Hence

C1, C2, ..., Cr is an idomatic partition of the graph G into T1-sets. ¤

We add that the arguments of the proof of Theorem 3.3 are in part parallel
to those from [16].

5 Concluding remarks

The proof of Theorem 3.2 is quite technical and lengthy. Hence it seems that one
needs another approach to deal with direct products of more than four factors.
In this respect, we pose the following conjecture.

Conjecture 5.1 Let I be a T1-set of ×k
i=1Kni, where k ≥ 5. Then |I| = (k−1)2.

For instance, we can show that the following subset of the direct product of
six factors

(0,0,0,0,0,0) (1,0,1,2,3,4) (2,0,4,3,2,1) (3,0,2,4,1,3) (4,0,3,1,4,2)
(0,1,1,1,1,1) (1,4,0,1,2,3) (2,1,0,4,3,2) (3,3,0,2,4,1) (4,2,0,3,1,4)
(0,2,2,2,2,2) (1,3,4,0,1,2) (2,2,1,0,4,3) (3,1,3,0,2,4) (4,4,2,0,3,1)
(0,3,3,3,3,3) (1,2,3,4,0,1) (2,3,2,1,0,4) (3,4,1,3,0,2) (4,1,4,2,0,3)
(0,4,4,4,4,4) (1,1,2,3,4,0) (2,4,3,2,1,0) (3,2,4,1,3,0) (4,3,1,4,2,0)
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is a dominating T1-set. In fact, it has a structure similar to the one for four
factors from Theorem 3.2 so perhaps (at least for even k) such sets are the only
dominating T1-sets.

The T1,2-sets and T1,2,3-sets seem more involved than the T1-sets. Hence we
pose:

Problem 5.2 Characterize T1,2-sets and T1,2,3-sets of the direct product of four
complete graphs.

We have already noted that fall colorings coincide with idomatic partitions.
The fall chromatic number χf (G) of a graph G is defined as the minimum order
of a fall coloring of G. Clearly, χf (G) ≥ χ(G). Since Hedetniemi’s conjecture
holds for complete graphs we have χ(×k

i=1Kni) = min{ni | 1 ≤ i ≤ k}. Let
n` = min{ni | 1 ≤ i ≤ k}. In Section 2 we have noticed (for four factors) that

Ij = [n1]× · · · × [n`−1]× {j} × [n`+1]× · · · × [nk] ,

where j ∈ [n`], is an independent dominating set. Consequently, {Ij | j ∈ [n`]}
is a fall coloring. Hence χf (×k

i=1Kni) ≤ n` = χ(×k
i=1Kni) ≤ χf (×k

i=1Kni) and so

χf (×k
i=1Kni) = χ(×k

i=1Kni) .

An alternative argument for the above conclusion could use the independence
number of the direct product of complete graphs, see [17, Corollary 1].
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