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HYPERCUBES AS DIRECT PRODUCTS∗

BOŠTJAN BREŠAR† , WILFRIED IMRICH‡ , SANDI KLAVŽAR§ , AND BLAŽ ZMAZEK¶

Abstract. Let G be a connected bipartite graph. An involution α of G that preserves the
bipartition of G is called bipartite. Let Gα be the graph obtained from G by adding to G the natural
perfect matching induced by α. We show that the k-cube Qk is isomorphic to the direct product
G×H if and only if G is isomorphic to Qα

k−1 for some bipartite involution α of Qk−1 and H = K2.
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1. Introduction. This paper is concerned with hypercubes and the direct prod-
uct of graphs. The main result is the characterization of all graphs G for which G×K2

is a hypercube and the proof of the fact that there are no other factorizations of the
hypercube with respect to the direct product.

The paper was motivated by the problem of representing median graphs—that is,
retracts of hypercubes—as direct products [2]. In this context the first question per-
tains to the possibility of decomposing the hypercube itself. The original proof of the
result was unwieldy and long but could be considerably simplified by the application
of ideas connected with the density of subgraphs of sparse graphs, together with the
concept of the Cartesian skeleton [10, 11], which was introduced for the investigation
of the direct product.

The paper illustrates the importance and applicability of Graham’s density lemma
and adds to the numerous interesting properties of the hypercube, which plays a
prominent role in many areas of mathematics and computer science; see, e.g., the
papers [8, 16, 20] on networks, routings, and flows, respectively. It may also shed some
light on the decomposition of bipartite graphs with respect to the direct product.

The direct product, together with the Cartesian, the strong, and the lexicographic
product, is one of the four standard graph products [11]. It is the natural product in
the category of graphs [7] and harbors intriguing and challenging problems. Foremost
of all is Hedetniemi’s conjecture, which asserts that the chromatic number of the
direct product is the minimum of the chromatic numbers of its factors. It is the big
open problem in the area and has led to many different approaches and new concepts;
cf. surveys [17, 21]. More generally, the direct product is a widely used tool in the
area of graph colorings; see, for instance, [6, 22, 23]. It is also replete with interesting
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ideas and concepts relating to other areas of graph theory, for example to matching
theory [1, 9] and stability in graphs [3, 13].

This product has been introduced and studied from several points of view and
is known under many different names, for instance as the cardinal product, the Kro-
necker product, and the categorical product. Moreover, it is universal in the sense
that every graph is an induced subgraph of a suitable direct product of complete
graphs [15].

In 1971 McKenzie [14] proved that finite, nonbipartite, connected graphs have
unique prime factor decomposition (UPFD) with respect to the direct product in the
class of undirected graphs with loops. Many years later, in 1998, this result was
extended in [10] by showing that the UPFD can be found in polynomial time. For
disconnected graphs or bipartite graphs the prime factorizations need not be unique.
It is also not unique for finite nonbipartite graphs in the class of simple graphs without
loops.

Despite the extensive and deep investigations of the direct product, factorizations
of bipartite graphs have rarely been investigated. If a bipartite graph is a direct
product of two graphs, one factor must be bipartite, but not the other. (The direct
product of two connected bipartite graphs consists of two connected (bipartite) com-
ponents [19].) This also holds for the hypercube, and we cannot directly apply the
above results to our problem. Nevertheless, the concept of the Cartesian skeleton
that proved useful in the nonbipartite case can be fruitfully applied here, too. In the
nonbipartite case the Cartesian skeleton is connected, but not in the bipartite one,
and this accounts for the nonuniqueness of the factorizations.

In the remainder of the section we fix terminology and notation. All graphs
considered here are undirected, finite graphs that may contain loops.

The direct product G × H of two graphs G and H is defined on the Cartesian
product V (G) × V (H) of the vertex sets of the factors. Its edge set is the set of all
pairs of vertices (a, x), (b, y) ∈ V (G) × V (H), where ab ∈ E(G) and xy ∈ E(H). It is
commutative and associative, and the one-vertex graph with a loop is a unit.

The Cartesian product G�H has the same vertex set as the direct product. Its
edge set consists of all pairs (a, x), (b, y) with ab ∈ E(G) and x = y, or a = b and
xy ∈ E(H). It is also commutative and associative. Its unit is K1.

The subgraph of G�H induced by the vertices (a, x), x ∈ V (H), is called an
H-layer of G�H and denoted by H(a,x). Note that any H-layer is isomorphic to H.
Analogously one defines G-layers. The d-dimensional hypercube or d-cube Qd is the
Cartesian product of d copies of the complete graph K2 on two vertices. So Q1 = K2

and we also set Q0 = K1. Let Qd−1�K2 be an arbitrary factorization of Qd. The
edges between the two Qd−1-layers are said to be of the same color or parallel in Qd.

Let V (Qd) = X + Y be the bipartition of Qd. Then the halved cube Q′
d is the

graph with V (Q′
d) = X, where u is adjacent to v in Q′

d if u and v have a common
neighbor in Qd. A subgraph H of G is called spanning if V (H) = V (G).

The concept of layers is defined analogously for the direct product. In the case
of the direct product the layer H(a,x) is isomorphic to H only if a carries a loop (in
G); otherwise the edge-set of H(a,x) is empty.

2. Graham’s density lemma for hypercubes. At a first glance the hyper-
cube looks simple, and from many points of view this is true. Nevertheless, it has a
rich subgraph structure. For example, if one subdivides every edge of a given graph
G on n vertices into a path of length two and adds a vertex that is adjacent to the
original n vertices of G, then the resulting graph can be isometrically embedded into
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Qn; see [12]. This ambivalence between simplicity and structure definitely adds to its
attractiveness.

As the number |Qk| of vertices of Qk is 2k and the number of edges k2k/2, the
density of Qk; that is, the quotient |E(Qk)|/|Qk| is k/2. This is rather small if one
considers the fact that the complete graph on the same number of vertices as Qk has
density (2k − 1)/2. More important, this sparseness is inherited by the subgraphs of
the hypercube.

Before formulating the lemma, we note that the statement |E(Qk)| = 1
2 |Qk| ·

log2 |Qk| is equivalent to the assertion that the density of Qk is k/2.
We are now ready for Graham’s density lemma from [5]. We include a proof

(modelled after the proof given in [11]) because its main idea appears again in the
proof of Lemma 2.

Lemma 1 (density lemma). Let G be a subgraph of a hypercube. Then

|E(G)| ≤ |G|
2

log2 |G|,(2.1)

with equality holding if and only if G is a hypercube.
Proof. The proof is similar to that of [11, Proposition 1.24]. Let G be a subgraph

of Qk. We proceed by induction on k. The assertions of the lemma are true for k = 1
and 2. Suppose they are true for k ≥ 2 and that G is a subgraph of Qk+1 = Qk�K2.
If G meets only one Qk-layer, then the assertion is true by the induction hypothesis.
Thus both intersections G1 and G2 of G with the Qk-layers are nonempty. Let the
notation be chosen such that x = |G1| ≥ |G2| = y ≥ 1. Again by the induction
hypothesis |E(G1)| ≤ x

2 log2 x and |E(G2)| ≤ y
2 log2 y. Since every vertex of G2 has

at most one neighbor in G1 the number z of edges between G1 and G2 is at most y.
We thus have

|E(G)| ≤ x

2
log2 x + z +

y

2
log2 y.(2.2)

Since z ≤ y and 1
2 (x + y) log2(x + y) = 1

2 |G| log2 |G| it suffices to show that

x

2
log2 x + y +

y

2
log2 y ≤ x + y

2
log2(x + y)(2.3)

and that equality holds in (2.1) if and only if G is a hypercube.
We show the validity of inequality (2.3) first. It is clearly true for x = y; in this

case the equality sign holds. We now fix y and increase x. Comparing the partial
derivatives with respect to x on both sides of (2.3) we arrive at the inequality

1

2
log2 x +

1

2
log2 e <

1

2
log2(x + y) +

1

2
log2 e.

This means that the right side grows strictly faster than the left and in (2.3) equality
only holds for x = y.

Now, suppose |E(G)| = 1
2 |G| log2 |G|. Then the equality sign must hold every-

where, z = y and x = y. Also, |E(G1)| must be x
2 log2 x, just as |E(G2)| must be

y
2 log2 y. By the induction hypothesis both G1 and G2 are hypercubes. Since x = y
they have the same dimension, and z = y implies that G is the Cartesian product of
a hypercube of dimension log2 x by a K2, with the layers G1 and G2.

This completes the proof, because equality clearly holds in (2.1) if G is a hyper-
cube.
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This result has been generalized by Squier, Torrence, and Vogt [18] to Cartesian
products of complete graphs. They prove that subgraphs G of the k-fold Cartesian
product of Kp have at most 1

2 (p − 1)|G| logp |G| edges, with equality holding if and
only if G is a Cartesian power of Kp.

3. Factorizations of hypercubes. We continue with the investigation of the
structure of the graphs G with Qk = G×K2. It is easy to see that every hypercube Qk

of dimension k > 0 can be represented as a nontrivial direct product G×K2, where
G is obtained from Qk−1 by addition of a loop to every vertex. This is a special case
of the following lemma.

Lemma 2. Let Qk = G×K2. Then G has a spanning hypercube.
Proof. Let V (K2) = {b, w}. For convenience we color b black, w white, and assign

the same colors to the vertices of Qk that are mapped into b and w, respectively.
Moreover, for x = (g, b) and y = (g, w) we set x′ = y and y′ = x.

We proceed by induction on the size of G. It suffices to show that Qk has a
factorization Qk−1�K2 such that both Qk−1-layers are mapped injectively into G.
Clearly the theorem is true for Q1. In this case G is the graph on one vertex with a
loop and Qk−1 in the decomposition Qk−1�K2 is Q0 = K1.

Suppose it is true for all Qi with 1 ≤ i < k. Let Qk = G × K2 be a given
factorization. We consider all decompositions Q�K2 of the given Qk, where Q is a
(k − 1)-dimensional hypercube. Without loss of generality we can assume that Q is
a subgraph of Qk. In the rest of the proof let pG denote the projection map onto G.
If pG projects Q injectively into G there is nothing to show. Furthermore, since the
color classes in a regular bipartite graph have the same size, the numbers of black and
white vertices of Q are equal.

Suppose there is a Q whose projection pGQ meets exactly half the vertices of G.
By induction Q has a (k− 2)-dimensional subcube H that is mapped injectively into
pGQ. Let Hb be the set of the black vertices of H and Hw be its set of white ones.
Note that H ′

b ∪H ′
w also spans a subcube of Q with dimension k− 2. We denote it by

H ′; it is the other H-layer in the decomposition H�K2.
Let Q be the second Q-layer of Qk and F be the set of edges between Q and Q;

we color them blue. The blue edges induce matchings between H and H and between
H ′ and H ′. With every edge uv from a vertex u ∈ H to a vertex v ∈ H the pair u′v′

is an edge from H ′ to H ′. Hence pGH = pGH ′. Since the union of these projections
is pGQ all three projections are equal. Thus pG(H ∪H) = V (G) and H ∪H induces
a hypercube of dimension k − 1.

In the remaining case there is a nonempty part A of Q with pGAb = pGAw and
a nonempty part B that maps injectively into G. In other words, the sets pGBb

and pGBw are disjoint and at least one of them is nonempty. Since Q has the same
number of vertices as G this means that there is a further nonempty part C of Qk

with pGCb = pGCw. Of course this is only possible if k ≥ 3, which we will assume
henceforth. A simple calculation shows that |A| = |C|. The corresponding situation
of this last case is schematically shown in Figure 1.

We wish to show now that A and B are hypercubes of dimension k − 2. We
introduce the notation x = |A|, y = |B| and show first that the number of edges
between A and B is at most min(x, y). By the definition of the direct product the
number of edges between A and B is the same as the number of edges between A′

(which is A) and B′.
For an estimate we consider Q, the second layer of Q. It is spanned by the union

of B′ and C. This means that the number of edges between A and B′—they are part
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Fig. 1. Situation from the proof; Q = [A ∪B] is brighter and Q = [B′ ∪ C] darker.

of the matching between Q and Q—is at most min(x, y).
By the density lemma 1

2x log2 x+ min(x, y) + 1
2y log2 y is an upper bound for the

number of edges in Q, but the latter equals 1
2 (x+y) log2(x+y) since Q is a hypercube.

We thus arrive at the inequality

x

2
log2 x + min(x, y) +

y

2
log2 y ≥ x + y

2
log2(x + y).

As the proof of the density lemma shows this is only possible if both sides are equal,
x = y, and both A and B are hypercubes.

Thus, A and B have the same size x and are hypercubes of dimension k − 2.
Moreover, there are exactly x edges between them and they form a matching. We
color them red. By the matching between Q and Q they correspond to edges in Q
that we also color red; cf. Figure 1, which schematically shows the matchings of red
edges by unbroken lines. The edges of the matching between Q and Q we color blue.
These edges have the same projections into G as the red ones and are indicated in
the picture by broken lines.

By the induction hypothesis there is a color in A, call it green, whose removal
decomposes A into two hypercubes that are projected injectively into G by pG. Let us
remove all edges from Qk that are parallel to the green edges in A. The resulting graph
consists of two hypercubes of dimension k−1. Let H∗ be one of these components. We
wish to show that H∗ projects injectively into G. To see this, we consider A∗ = A∩H∗

and extend it to B∗ = B ∩ H∗ by the matching induced by the red edges and to
B′∗ = B′ ∩H∗ by the matching induced by the blue ones. The matching to C∗ can
then be effected either from B∗ by blue edges or B′∗ by red ones; cf. Figure 2.

Note that Ab \ A∗ and A∗
w have the same projections into G. Since the red and

blue edges also have the same projections into G one sees that B′
b \B′∗ and B∗

b have
the same projections too, from which we infer that B′∗

b and B∗
b have different ones.

Continuing this way it is easily seen that H∗ projects injectively into G.
An involution of a graph is an automorphism of order two. For a bipartite graph

G with bipartition V (G) = X + Y we call an involution α bipartite if α(X) = X. For
a bipartite involution α we let Gα denote the graph obtained from G by addition of
the perfect matching {uv | u = α(v), v ∈ V (G)}.

Theorem 3. The hypercube Qk is representable as a product of the form G×K2

if and only if G is isomorphic to Qα
k−1 for some bipartite involution α of Qk−1.
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Fig. 2. Situation from the proof; H∗ is indicated brighter.

Proof. Recall that the vertices of Qk can also be represented as strings from
{0, 1}k and that all vertices with an even number of 1’s form one of the bipartition
sets of Qk. Clearly, any two such vertices have even distance.

Suppose that G×K2 is a k-cube. By Lemma 2, G contains Qk−1 as a spanning
subgraph; we denote it by S. Then S ×K2 is a subgraph of G×K2 that consists of
two disjoint hypercubes Qk−1, say S1 and S2. As G ×K2 is isomorphic to Qk, each
vertex x of S1 is incident with an edge from (G×K2)\ (S×K2) that connects x with
a vertex y of S2. Hence the distance in S between pG(x) and pG(y) must be even.
Moreover, the edges between S1 and S2 induce an isomorphism between S1 and S2,
so their projections to G induce an automorphism α of Qk−1 which maps each vertex
v to a vertex α(v) with even distance from v. Also, the projections of the edges from
(G×K2) \ (S ×K2) form a perfect matching of G. We conclude that α is a bipartite
involution of G.

For the converse it suffices to show that every Qα
k−1 × K2 is isomorphic to

Qk.

If we are interested only in simple graphs G that factor Qk with respect to the
direct product, it suffices to restrict attention to fixed point free involutions α. We
state this as a corollary.

Corollary 4. The hypercube Qk is representable as a direct product G×K2 of
a simple graph G by K2 if and only if G is isomorphic to Qα

k−1 for some fixed point
free bipartite involution α of Qk−1.

4. The direct product representations of Qk. To find all representations of
Qk as a direct product we first note that no two vertices of Qk have the same set of
neighbors. Such graphs are called thin; their prime factorizations with respect to the
direct product are similar to the prime factorizations of graphs with respect to the
Cartesian product. For any thin graph G one can show the existence of a Cartesian
skeleton H. It is defined on the vertex set of G, is invariant under automorphisms of G,
and, most important, to any decomposition G1×G2 of G corresponds a decomposition
H1�H2 of H such that the vertex-sets of the Gi-layers of G are the vertex-sets of the
Hi-layers of H. In particular, this means that G is prime with respect to the direct
product if its Cartesian skeleton H is prime with respect to the Cartesian product.

The Cartesian skeleton was introduced in [10] (see also [11]) to investigate the
decomposition properties of graphs with respect to the direct product. It led to a
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polynomial algorithm for the prime factorization of nonbipartite connected graphs
with respect to the direct product and to a new proof of the uniqueness of this
decomposition for such graphs. It generalizes ideas of Feigenbaum and Schäffer [4],
who presented a polynomial algorithm for the prime factorization of connected graphs
with respect to the strong product and a new proof of its uniqueness.

For Qk we cannot apply the result in full strength, because the Cartesian skele-
ton of bipartite graphs is disconnected, whereas it is connected in the nonbipartite
case. However, we can use the results of [11, Lemmas 5.34 and 5.35], which hold for
Cartesian skeletons in general.

In particular, we can apply the fact from [11, Lemma 5.35] that two vertices x
and y are an edge of the Cartesian skeleton if the intersection N(x, y) = N(x)∩N(y)
of the neighborhoods N(x) of x and N(y) of y is strictly maximal in the set N (x) =
{N(x, y) |N(x, y) �= ∅}.

Proposition 5. The Cartesian skeleton of Qk consists of two (isomorphic)
halved cubes H1 and H2.

Proof. Any two vertices x and y with intersecting neighborhoods N(x) and N(y)
have distance two; the intersection N(x, y) = N(x) ∩N(y) has exactly two elements
(for k > 1) and N(x, y) = N(x, z) if and only if x = y. This implies that every
N(x, y) is strictly maximal in the set N (x) = {N(x, y) |N(x, y) �= ∅}. Therefore xy
is an edge of the Cartesian skeleton H of Qk if and only if d(x, y) = 2. Thus the
Cartesian skeleton H of Qk consists of the two halved cubes H1 and H2.

Clearly H is disconnected because Qk is bipartite. Nevertheless, every factoriza-
tion of Qk with respect to the direct product induces a factorization of H with respect
to the Cartesian product. This means that Qk cannot be a product of more factors
with respect to the direct product than H with respect to the Cartesian one. We
therefore decompose H first.

Either any two edges ab and ac of a halved cube are in a triangle abc or there
are two triangles abd and adc (with the common edge bd). This implies that every
halved cube is prime with respect to the Cartesian product. Thus, the only possible
factorization of H with respect to the Cartesian product is H1�D2, where D2 is the
graph on two vertices without edges or loops.

For Qk this implies that it can only be decomposed into a product G×K of two
factors, where K is a graph on two vertices: where V (H1) projects onto one vertex of
K and V (H2) onto the other. Since no pair of vertices in either H1 or H2 is adjacent
in G, we infer that K cannot have loops.

Moreover, both G and K must be connected because Qk is. We thus show the
following proposition.

Proposition 6. Every factorization of Qk with respect to the direct product is
of the form G×K2. All such graphs G are prime with respect to the direct product.

Together with Theorem 3 we can summarize our findings in the following theorem.

Theorem 7. Every decomposition of the hypercube Qk into a direct product has
exactly two factors. One factor is always K2 and the other one any of the graphs
Qα

k−1 for a bipartite involution α of Qk−1.

It would be interesting to enumerate the bipartite involutions of Qk as well as the
factorizations of Qk with respect to the direct product. These questions are open.

We wish to conclude with the remark that nonunique factorizations can easily be
found, also for factors different from K2. For example, the direct product of a path
Pn with a triangle is isomorphic to the product of Pn by a path of length two with
loops added to the endpoints; cf. Figure 3 where an isomorphism is indicated for the
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case n = 5.

1 1

2 2

3 3

4

4

5 5

6

67 7

8 8

9 9

10

10

11 11

12

1213 13

14 14

15 15

Fig. 3. Isomorphic direct products.
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[15] J. Nešetřil, Representations of graphs by means of products and their complexity, in Math-

ematical Foundations of Computer Science, 1981 (Štrbské Pleso, 1981), Lecture Notes in
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[20] B. Yu, J. Cheriyan, and P. E. Haxell, Hypercubes and multicommodity flows, SIAM J.
Discrete Math., 10 (1997), pp. 190–200.

[21] X. Zhu, A survey on Hedetniemi’s conjecture, Taiwanese J. Math., 2 (1998), pp. 1–24.
[22] X. Zhu, Construction of uniquely H-colorable graphs, J. Graph Theory, 30 (1999), pp. 1–6.
[23] X. Zhu, The fractional chromatic number of the direct product of graphs, Glasg. Math. J., 44

(2002), pp. 103–115.


