
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 10 (2016), 30–45. doi:10.2298/AADM160207003K

ON GRAPHS WITH SMALL GAME DOMINATION

NUMBER

Sandi Klavžar, Gašper Košmrlj, Simon Schmidt

The domination game is played on a graph G by Dominator and Staller.

The game domination number γg(G) of G is the number of moves played

when Dominator starts and both players play optimally. Similarly, γ′

g(G) is

the number of moves played when Staller starts. Graphs G with γg(G) =

2, graphs with γ′

g(G) = 2, as well as graphs extremal with respect to the

diameter among these graphs are characterized. In particular, γ′

g(G) = 2 and

diam(G) = 3 hold for a graph G if and only if G is a so-called gamburger.

Graphs G with γg(G) = 3 and diam(G) = 6, as well as graphs G with

γ′

g(G) = 3 and diam(G) = 5 are also characterized.

1. INTRODUCTION

The domination game is played on an arbitrary graph G by Dominator and
Staller. The two players take turns choosing a vertex from G such that at least
one previously undominated vertex becomes dominated. The game ends when no
move is possible and the score of the game is the total number of vertices chosen.
Dominator wants to minimize the score, while Staller wants to maximize it. By
D-game we mean a game in which Dominator has the first move and by S-game

a game started by Staller. Assuming that both players play optimally, the game

domination number γg(G) of a graph G denotes the score of D-game played on G.
Similarly, the Staller-start game domination number γ′

g(G) is defined as the score
of optimal S-game.
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The game was introduced in [4] and already received considerable attention.
One of the reasons for this interest is the so-called 3/5-conjecture from [18] asserting
that γg(G) ≤ 3n/5 holds for any isolate free graph of order n. Trees that attain this
bound were investigated in [5], while recently Bujtas [8] made a breakthrough by
proving that the conjecture holds for all graphs with the minimum degree at least 3.
In order to achieve this result she further developed the proof technique introduced
in [6, 7] where the conjecture is verified for all trees in which no two leaves are at
distance 4. Henning and Kinnersley [13] further established the truth of the
3/5-conjecture over the class of graphs with minimum degree at least 2, hence the
3/5-conjecture remains open only for graphs with pendant vertices. We point out
that Bujtas’ proof technique already turned out to be useful elsewhere [9].

Recently, two closely related games were introduced. The total version of
the domination game was investigated in [14] and further studied in [15] where it
was proved that for any graph of order n in which every component contains at
least three vertices, the corresponding total invariant is bounded above by 4n/5,
see also [16]. The second related game, named the disjoint domination game,
was studied in [11]. Among the additional investigations of the domination game
we mention the complexity studies from [1], the behaviour of the game played
on the disjoint union of graphs [12], domination game critical graphs [10], and a
characterization of trees T for which γg(T ) = γ(T ) holds [20], where γ(T ) is the
usual domination number of T.

Motivated in part by the characterization of graphs with γg = 3 and γ′

g = 2
from [2] and by the complexity studies from [1], we study in this paper graphs that
have small game domination number. In the next section we introduce notations
needed, recall some results, and bound the diameter of a graph from above in terms
of the game domination number (see [3, Corollary 4.1] for a closely related result).
In Section 3 we first characterize graphsG with γg(G) = 2 and graphs with γ′

g(G) =
2. We also characterize graphs extremal with respect to the diameter among these
graphs. In particular, we introduce the concept of the so-called gamburger and
prove that G has γ′

g(G) = 2 and diam(G) = 3 if and only if G is a gamburger. In
Section 4 we then characterize extremal graphs (w.r.t. the diameter) in the class
of graphs with the game domination number equal 3. In particular, γ′

g(G) = 3 and
diam(G) = 5 hold for a graph G if and only if G is the so-called double-gamburger.

2. PRELIMINARIES

If x is a vertex of a graph G, then NG(x) (resp. NG[x]) denotes the neig-
borhood (resp. closed neighborhood) of x. Let dG(x, y) be the standard shortest-
path distance between vertices x and y of G. The eccentricity eccG(x) of x is
max{d(x, y) : y ∈ V (G)} and the diameter diam(G) of G is the maximum eccen-
tricity of its vertices. If eccG(x) = diam(G), then x is called a diametrical vertex. A
pair of vertices x, y such that dG(x, y) = diam(G) holds is called a diametrical pair.
SG
r (x) = {y ∈ V (G) : dG(x, y) = r} is called the sphere with center x and radius r

and BG
r (x) = {y ∈ V (G) : dG(x, y) ≤ r} is called the ball with center x and radius
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r. If G will be clear from the context, we will simplify the above notations to N(x),
N [x], d(x, y), Sr(x), Br(x), and ecc(x).

We next collect some known results to be used later on. A fundamental
result about the domination game is the following theorem for which the fact that
γg(G) ≤ γ′

g(G) + 1 holds was proved in [4], while the inequality γ′

g(G) ≤ γg(G) + 1
was later established in [18].

Theorem 2.1. [4, 18] For any graph G, |γg(G) − γ′

g(G)| ≤ 1.

If (γg(G), γ′

g(G)) = (k, ℓ) then we say that G realizes (k, ℓ). By Theorem 2.1,
if G realizes the pair (k, ℓ), then |k − ℓ| ≤ 1.

Vertices u and v of a graph G are called twins if N [u] = N [v]. Note that
twins are necessarily adjacent. A graph is called twin-free if it contains no twins.
The following result is not difficult to prove and was implicitly or explicitly (cf. [2])
used earlier and is also stated in [20].

Proposition 2.2. If u and v are twins in a graph G, then γg(G) = γg(G− u) and
γ′

g(G) = γ′

g(G− u).

A subgraph H of a graph G is guarded in G if for any vertex x in G there
exists a vertex y ∈ V (H) such that N [x] ∩ V (H) ⊆ N [y] ∩ V (H). The vertex y is
called a guard of x in H. (If x ∈ V (H), then x is a guard of itself.) The concept of
a guarded subgraph was introduced in [3] where the following result was proved:

Theorem 2.3. If H is guarded in G, then γg(H) ≤ γg(G) and γ′

g(H) ≤ γ′

g(G).

To bound the diameter of a graph with its game domination number we recall
the following result proved in [17], cf. also [19].

Proposition 2.4. If n ≥ 1, then

(i) γg(Pn) =







⌈

n

2

⌉

− 1; n ≡ 3 (mod 4),
⌈

n

2

⌉

; otherwise.

(ii) γ′

g(Pn) =
⌈

n

2

⌉

.

We are now ready for the announced bound that was not earlier reported (at
least explicitly) in the literature, hence we include its proof.

Proposition 2.5. If G is a graph, then

(i) diam(G) ≤

{

2γg(G); γg(G) odd ,

2γg(G)− 1; otherwise.

(ii) diam(G) ≤ 2γ′

g(G) − 1.

Moreover, the bounds are tight.
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Proof. Let G be a graph and let P be a diametrical path of G. Then P is a shortest
path isomorphic to Pdiam(G)+1 and by the proof of [3, Corollary 4.1], P is guarded
in G. Hence by Theorem 2.3, γg(G) ≥ γg(P ) and γ′

g(G) ≥ γ′

g(P ). Using the latter
inequality and Proposition 2.4 we get

γ′

g(G) ≥ γ′

g

(

Pdiam(G)+1

)

=

⌈

diam(G) + 1

2

⌉

≥
diam(G) + 1

2
,

which proves the assertion (ii).

Let γg(G) be odd. Assume by way of contradiction that diam(G) ≥ 2γg(G)+
1. Then G contains a shortest path P ′ of order 2γg(G) + 2 and hence γg(G) ≥
γg(P

′) = ⌈(2γg(G) + 2)/2⌉ = γg(G) + 1, a contradiction. Hence diam(G) ≤ 2γg(G)
holds when γg(G) is odd.

Let γg(G) be even and suppose that diam(G) ≥ 2γg(G) holds. Then G
contains a shortest path P ′′ of order 2γg(G)+ 1. Since γg(G) is even, 2γg(G)+ 1 ≡
1 (mod 4), and therefore, γg(G) ≥ γg(P

′′) = ⌈(2γg(G) + 1)/2⌉ = γg(G) + 1, a
contradiction. We conclude that diam(G) ≤ 2γg(G)− 1 holds when γg(G) is even.

That the bounds are tight follows by considering the path graphs. More
precisely, for any k ≥ 1 we have

• γg(P4k) = 2k and diam(P4k) = 4k − 1 = 2γg(P4k)− 1,

• γg(P4k+3) = 2k + 1 and diam(P4k+3) = 4k + 2 = 2γg(P4k+3), and

• γ′

g(P2k) = k and diam(P2k) = 2k − 1 = 2γ′

g(P2k)− 1. �

3. GRAPHS G WITH γg(G) = 2 OR γ′

g
(G) = 2

In this section we study the structure of graphs G with γg(G) = 2 or γ′

g(G) =
2. Before doing it, we observe that

• γg(G) = 1 if and only if ∆(G) = n− 1, and

• γ′

g(G) = 1 if and only if G is a complete graph.

Note also that if γg(G) = 2 and G is not connected, then G consists of two compo-
nents, one containing a universal vertex and the other being complete. Moreover, if
γ′

g(G) = 2 and G is not connected, then G consists of two complete components. To
characterize connected graphs with γg(G) = 2 we introduce the following concept.
We say that a vertex u of a (connected) graph G is 2-dense, if

• ecc(u) = 2,

• there is a join between S2(u) and the neighborhood of S2(u) in S1(u), and

• S2(u) induces a clique.

Let u be a 2-dense vertex of G and let L(u) be the neighbors of u that are at
distance 3 from S2(u), see Fig. 1. We point out that it is possible that L(u) = ∅.
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Proposition 3.6. If G is a con-

nected graph, then the following

hold.

(i) γg(G) = 2 if and only if G
contains a 2-dense vertex.

(ii) γ′

g(G) = 2 if and only if G is

not complete and every vertex

lies in a dominating set of or-

der 2.

Proof. (i) Suppose first that
γg(G) = 2 and let u be an optimal
first move of Dominator. Then
ecc(u) ≥ 2, for otherwise Domina-
tor could play a universal vertex and

Figure 1. A 2-dense vertex u

finish the game in one move. Since Staller, by playing a vertex in S1(u), dominates
no vertex in S3(u) it follows that ecc(u) = 2. If there exists two nonadjacent vertices
in S2(u), then Staller could play any one of them in order to prolong the game for
one more move. Hence S2(u) must induce a clique. Assume finally that there is a
vertex x ∈ S1(u) that is adjacent to y ∈ S2(u) and not adjacent to z ∈ S2(u). Then
Staller can play x in order to prolong the game for one more move. Therefore there
is no such vertex z, that is, there is a join between S2(u) and the neighborhood of
S2(u) in S1(u). We conclude that u is a 2-dense vertex.

Conversely, suppose that G contains a 2-dense vertex u. Then it is straight-
forward to see that Dominator forces Staller to finish the game in the next move
by playing u. Hence γg(G) ≤ 2. On the other hand, ecc(u) = 2 implies that
diam(G) ≥ 2 which in turn implies that γg(G) ≥ 2.

(ii) Suppose that γ′

g(G) = 2. Then G is clearly not complete. Let next u be
an arbitrary vertex of G. There is nothing to prove if u is a universal vertex (just
add any vertex to u to form a dominating set). If u is not universal, then if Staller
plays u as the first move, Dominator has a reply v such that the game is over after
this move. But then {u, v} is a dominating set.

Conversely, suppose that G is not complete and every vertex lies in a dom-
inating set of order 2. Then γ′

g(G) ≥ 2 because G is not complete. Moreover,
γ′

g(G) ≤ 2 because after an arbitrary first move u of Staller, Dominator can play
v, where {u, v} is a dominating set. �

If γg(G) = 2 or γ′

g(G) = 2, then G realizes one of the pairs (1, 2), (2, 2), (3, 2),
or (2, 3). Among the twin-free graphs, the classes of graphs that characterize the
first three pairs can be described in the following simple way.

Observation 3.7. Let G be a connected, twin-free graph with γ′

g(G) = 2. Then

(i) G realizes (1, 2) if and only if ∆(G) = n− 1.

(ii) G realizes (2, 2) if and only if ∆(G) = n− 2.
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(iii) G realizes (3, 2) if and only if ∆(G) ≤ n− 3.

Proof. The statement (i) is clear, (iii) follows from [2, Corollary 3.2], and then (ii)
characterizes the remaining connected, twin-free graphs G with γ′

g(G) = 2. �

The last pair to consider is (2, 3). It is straightforward to see that G realizes
the pair (2, 3) if and only if γg(G) = 2 and G contains a vertex that is in no
minimum dominating set.

By Proposition 2.5, if γg(G) = 2 or γ′

g(G) = 2, then diam(G) ≤ 3. In the rest
of the section we give an explicit description of the structure of related extremal
classes of graphs, that is, those with diameter equal to 3. For γg Proposition 3.6
immediately implies:

Corollary 3.8. Let G be a connected graph. Then γg(G) = 2 and diam(G) = 3 if

and only if G contains a 2-dense vertex u such that L(u) 6= ∅.

In order to characterize graphs with γ′

g(G) = 2 and diam(G) = 3, we in-
troduce the following concept. We say that a connected graph G is a gamburger

with a gamburger structure Q1, T1,
T2, Q2, if G is the disjoint union
of non-empty subgraphs Q1, T1, T2,
and Q2, where Q1 and Q2 induce
cliques with no edges between them
and, in addition, the following hold
for any i ∈ {1, 2} (see Fig. 2).

• There is a join between Qi and
Ti and there are no edges be-
tween Qi and T3−i.

• For any vertex x ∈ Ti there ex-
ists a vertex x′ ∈ T3−i ∪ Q3−i

such that T1 ∪ T2 ⊆ N [x] ∪
N [x′].

Figure 2. Gamburger (with cliques Q1

and Q2)

We first show that every gamburger can be presented in a canonical form.

Lemma 3.9. If G is a gamburger with a gamburger structure Q1, T1, T2, Q2, then
there exists a gamburger structure Q′

1, T
′

1, T
′

2, Q
′

2 for G such that any vertex from

T ′

i , 1 ≤ i ≤ 2, has at least one neighbor in T ′

3−i.

Proof. Let Q1, Q2, T1, T2 be a gamburger structure for G. For i ∈ {1, 2}, we define
Wi as the subset of vertices of Ti whose neighborhood is contained in Ti ∪Qi. We
put Q′

i = Qi ∪Wi and T ′

i = Ti \Wi. Note that, since G is connected Wi 6= Ti and
then T ′

i is not empty. To show that this defines a new gamburger structure for G,
we only need to show that N [w] = Qi ∪ Ti holds for all w ∈ Wi. Suppose, this is
not the case. Since there is a join between Qi and Ti, this means that there exists
x ∈ Ti, which is not a neighbor of w. Since G is a gamburger, by the definition
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there exists a vertex x′ ∈ G \ (Ti ∪ Qi) such that w belongs to N(x′). This is
a contradiction with the definition of Wi. In conclusion, N [w] = Qi ∪ Ti and Q′

i

induces a clique. �

Lemma 3.10. A gamburger has diameter 3.

Proof. Since Q1 and Q2 are not empty, diam(G) ≥ 3. By Lemma 3.9 we can
assume that every vertex in T1 (resp. T2) has a neighbor in T2 (resp. T1) which in
turn implies diam(G) ≤ 3. �

We can now prove that gamburgers are precisely the graphsG with γ′

g(G) = 2
and extremal diameter.

Theorem 3.11. A graph G has γ′

g(G) = 2 and diam(G) = 3 if and only if G is a

gamburger.

Proof. Assume first that G is a gamburger. By Lemma 3.10, diam(G) = 3. We
prove that γ′

g(G) is 2. Since diam(G) = 3, γ′

g(G) is clearly greater or equal to 2.
First, suppose Staller selects a vertex in one of the two cliques, say Q1. Dominator
ends the game at his turn, by playing any vertex in Q2. Suppose next that Staller
does not play in one of the two cliques, but say on x ∈ T1. There is a vertex
x′ ∈ T2 ∪ Q2 such that N [x] ∪ N [x′] contains T1 ∪ T2. Since no vertex in Q2 is
dominated, playing x′ is a legal move, which enables Dominator to end the game
at his turn.

Conversely, suppose that γ′

g(G) = 2 and diam(G) = 3. Let u be an arbitrary
diametrical vertex of G. We set Q1 = {u}, T1 = S1(u), T2 = S2(u) and Q2 = S3(u).
These four sets obviously form a partition of V (G). We claim that Q1, T1, T2, Q2 is
a gamburger structure for G. It is clear that there are no edges that would violate
the gamburger structure, that is, there are no edges between Q1 and Q2 and no
edges between Qi and T3−i for 1 ≤ i ≤ 2. It is also clear that Q1 induces a (one-
vertex) clique and hence that there is a join between Q1 and T1. Whatever Staller
plays as her first move, Dominator has to be able to end the game in the next turn.
If Staller plays in Q2, Dominator will not be able at his turn to simultaneously
dominate vertices in Q1 and Q2. Hence, all the vertices of Q2 must be dominated
by such a Staller’s first move. It follows that Q2 induces a clique. Assume next that
Staller plays a vertex y ∈ T2. In order to dominate the vertex in Q1, Dominator has
to play in T1 ∪Q1. Hence, all the vertices of Q2 are adjacent to y. Since y was an
arbitrary vertex of T2, it follows that there is a join between Q2 and T2. Consider
now an optimal move y′ of Dominator. As already observed, y′ belongs to T1 ∪Q1.
Since the game ends with this move, it follows that T1∪T2 ⊆ N [y]∪N [y′]. Similarly,
for all x ∈ T1, there is a vertex x′ ∈ T2 ∪ Q2 such that T1 ∪ T2 ⊆ N [x] ∪N [x′]. In
conclusion, G is a gamburger and Q1, T1, T2, Q2 is a gamburger structure for G,
which completes the proof. �

If a gamburgerG with a gamburger structure Q1, T1, T2, Q2 contains a vertex
x ∈ T1 such that T1 ∪ T2 ⊆ N [x], then we say that G is a full-gamburger. We will
also say that the vertex x is a full vertex of G.

With this definition we can specialize Theorem 3.11 to (2, 2)-graphs as follows.
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Corollary 3.12. A graph G is a (2, 2)-graph with diam(G) = 3 if and only if G is

a full-gamburger.

Proof. Assume first that G is a full-gamburger. By Theorem 3.11, γ′

g(G) = 2 and
diam(G) = 3. Note that a full vertex x from T1 is 2-dense. Hence γg(G) = 2 holds
by Proposition 3.6.

Conversely, suppose G is a (2, 2)-graph with diameter 3. By Theorem 3.11,
G has a gamburger structure Q1, T1, T2, Q2. Moreover, by Lemma 3.9 we may
without loss of generality assume that every vertex in Ti has a neighbor in T3−i,
1 ≤ i ≤ 2. Let x be an optimal first move of Dominator in D-game. Then x belongs
to T1 ∪ T2, for if x would belong to Qi, Staller could play in Ti without ending the
game. Assume without loss of generality that x ∈ T1 and suppose that N [x] does
not contain T1∪T2. Let y be a vertex of T1∪T2 which is not in N [x]. If y belongs to
T1, Staller can play y and this will not end the game. If y belongs to T2, we know
that y has a neighbor in T1, say y′. Clearly, y′ is distinct from x, hence playing
y′ is a legal move because it newly dominates y. In both cases, we thus have a
contradiction with γg(G) = 2. We conclude that T1 ∪ T2 ⊆ N [x] and hence x is a
full vertex of the full-gamburger G. �

4. ON GRAPHS WITH GAME DOMINATION NUMBER 3

The class of graphs G with γg(G) = 3 seems too rich to allow some nice
characterization. In [2] the subclass of these graphs with the property that γ′

g(G) =
2 was characterized. For instance, the cycles C5 and C6 both belong to this class.
In view of Proposition 2.5, in the first part of this section we characterize the
subclass of γg = 3 graphs extremal with respect to the diameter, that is graphs
with γg(G) = 3 and diam(G) = 6. For instance, this class contains P7 and is
disjoint from the above class of graphs realizing (3, 2). That the two classes are
disjoint follows from facts that γ(G) = 2 holds for all graphs G from the first class
and γ(G) ≥ 3 for all graphs G from the second class. In Fig. 3 the situation is
demonstrated.

Figure 3. Subclasses of γg = 3 graphs

In the second part of the section we then characterize the graphs G with
γ′

g(G) = 3 and diam(G) = 5.
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4.1. Graphs with γg = 3 and diam = 6

Full-gamburgers turn out to be useful also for the first main result of this
section. In addition to this concept, we also introduce the following. If G is a
connected graph, then a vertex u of G is nice if the following conditions are fulfilled.

• There exists v1 ∈ S1(u) such that N [v1] = B2(u).

• There is a join between N(S3(u)) ∩ S2(u) and S3(u).

• S3(u), S4(u), S5(u), S6(u) is a full-gamburger structure with a full vertex in
S5(u).

• S7(u) = ∅.

With these notations, the announced result reads as follows.

Theorem 4.13. If G is a connected graph, then the following statements are equiv-

alent.

(i) γg(G) = 3 and diam(G) = 6.

(ii) Any diametrical pair of vertices contains at least one nice vertex.

(iii) There exists a nice diametrical vertex.

Proof. We first prove that (i) implies (ii). Let u1 and u2 be vertices of G with
d(u1, u2) = 6 and let P be a shortest u1, u2-path. Since γg(G) = 3 = γg(P7),
and because the two neighbors of pendant vertices of P7 are the only optimal start
moves for Dominator when playing D-game on P7, we infer that Dominator’s first
move must be either in S1(u1) or in S1(u2). Indeed, for otherwise Staller could
guarantee (by considering the game restricted to P ) the game to last at least four
moves. Let i ∈ {1, 2} be such that we have an optimal move for Dominator in
S1(ui). For convenience, we will write Sj , 0 ≤ j ≤ 6, instead of Sj(ui) and set
u = ui.

Since the diameter of the graph is 6, the spheres Sj are non-empty and form
a partition of V (G). We are going to prove several claims that will establish the
structure as described in (ii). Let x ∈ S1 be an optimal first move of Dominator.

Claim 1. There exists a vertex v1 ∈ S1 such that N [v1] = B2(u).
Staller’s move could be in S4. To finish the game in three turns, Dominator must
then play in S5 ∪ S6. Hence, his first move x must dominate the whole B2(u) and
therefore v1 = x fulfills the claim.

Claim 2. There is a join between N(S3) ∩ S2 and S3.
Staller could play her first move anywhere in N(S3) ∩ S2. Such moves are actually
legal because they dominate at least one new vertex in S3. In that case Dominator
has to answer in S5. Hence, all the vertices in S3 must have been dominated by the
Staller’s move. Since this move of Staller in N(S3) ∩ S2 was arbitrary, we have a
join between N(S3) ∩ S2 and S3.
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It remains to prove that S3, S4, S5, S6 form a full-gamburger structure with
a full vertex in S5.

Claim 3. S3 and S6 are cliques.
Assume Staller plays first in S3 (resp. S6). Dominator must play next in S5 ∪ S6

(resp. S3 ∪S4). Since this move of Dominator has to end the game, all the vertices
of S3 (resp. S6) must have been dominated by the move of Staller. This move could
be arbitrary in the sphere S3 (resp. S6), because x dominates no vertex in S3. It
follows that S3 (resp. S6) induces a clique.

Claim 4. There is a join between S3 and S4 and between S5 and S6. Moreover,
for any vertex y in S4 (resp. in S5) there is a vertex y′ in S5 ∪ S6 (resp. in S3 ∪S4)
such that N [y] ∪N [y′] contains S4 ∪ S5.
Suppose Staller plays a vertex y in S4. Dominator must play next in S5∪S6. Hence,
all the vertices of S3 must have been dominated by the move of Staller. Because y
is an arbitrary vertex from S4, there must be a join between S3 and S4. Let now y′

in S5 ∪ S6 be an optimal answer of Dominator. Vertices of S4 ∪ S5 could only be
dominated by the last two moves of the game, that is, by y and y′. Therefore, these
two spheres are contained in N [y]∪N [y′]. Similarly, when Staller plays as her first
move a vertex y from S5, Dominator replies by playing a vertex y′ ∈ S3 ∪ S4 and
we get the same conclusion.

Until now we have already seen that S3, S4, S5, S6 defines a gamburger struc-
ture. Hence it remains to prove the following.

Claim 5. The gamburger on S3, S4, S5, S6 has a full vertex in S5.
As in Claim 2, assume that Staller plays in S2. Dominator has to answer in S5 and
must dominate all the vertices in S4, S5 and S6 with this move. Therefore, such
a reply of Dominator in S5 is a full vertex of the gamburger with the gamburger
structure S3, S4, S5, S6.

In conclusion we have proved that u is a nice vertex.

Since (ii) trivially implies (iii), it remains to prove that (iii) implies (i). As-
sume that there exists a nice diametrical vertex u. As above, we simply write
Si instead of Si(u), for any i ∈ {0, . . . , 6}. Let v1 be a vertex in S1 such that
N [v1] = B2(u).

We prove first that diam(G) = 6. Since S3, S4, S5, S6 induce a gamburger
structure, none of these spheres is empty. Hence ecc(u) = 6 and diam(G) ≥ 6.
By Lemma 3.10, the subgraph induced by S3, S4, S5, S6 has diameter 3. Moreover,
using the vertex v1 ∈ S1, it is easy to show that all the vertices from B2(u) are at
distance at most 3 from any vertex in S3. In conclusion, G has diameter 6.

Since diam(G) = 6, we have γg(G) ≥ 3. Hence, to conclude the proof we need
to show that Dominator could ensure the game to end in three turns. His strategy
is to play v1 as the first move. After that, all the vertices in B2(u) are dominated
and the remaining legal moves for Staller are in G\B1(u). First assume Staller plays
in G \ B2(u). Since these vertices induce a gamburger, Theorem 3.11 implies that
Dominator has an answer in G \B2(u), such that all the vertices of this subgraph
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are dominated after this move that clearly ends the game. Second, if Staller plays
in S2, then to be legal, this move has to belong to N(S3). Because of the join
between N(S3) ∩ S2 and S3, all the vertices in S3 are dominated. Dominator can
then finish the game by playing a full vertex in S5. �

We point out that both characterizations from Theorem 4.13 of graphs with
γg(G) = 3 and diam(G) = 6 are useful if we wish to give a fast recognition algorithm
for these graphs. Indeed, we only need to select a pair of diametrical vertices and
check if one of them leads to the structure as described in (iii). If not, then we
know from (ii) that no other diametrical vertex can give us the desired structure.

4.2. Graphs with γ′

g
= 3 and diam = 5

To characterize the graphs from the title, we introduce one more concept.
We say that a connected graph G is a double-gamburger, if G is the disjoint union
of non-empty subgraphs Q1, R1, T1, T2, R2, Q2, for which the following hold for any
i ∈ {1, 2}.

• Qi and Ti induce cliques.

• There are joins between Qi and Ri, and between Ri and Ti.

• Ri induces a clique minus a matching Mi.

• If Mi is a perfect matching of Ri, then M3−i is empty and there is a join
between T1 and T2.

• There exists a vertex xi ∈ Ti, such that T3−i ⊆ N(xi).

• There are no edges between Qi and G \Ri and between Ri and G \ (Qi∪Ti).

See Fig. 4. We say that Q1, R1, T1, T2, R2, Q2 is a double-gamburger structure for
G.

Figure 4. Double-gamburger
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Lemma 4.14. A double-gamburger has diameter 5.

Proof. The graphs H1 and H2, respectively induced by Q1, R1, T1 and T2, R2, Q2

have diameter 2. For any i ∈ {1, 2}, we have a vertex x ∈ Ti, such that T3−i ⊆ N(x).
Using these vertices, it is straightforward to see that the distance between a vertex
in Hi and the subgraph H3−i is 3. In conclusion, a double-gamburger has diameter
5. �

Theorem 4.15. If G is a connected graph, then the following statements are equiv-

alent.

(i) γ′

g(G) = 3 and diam(G) = 5.

(ii) For any diametrical vertex u, defining Q1 = {u} ∪ W1, R1 = S1(u) \ W1,
T1 = S2(u), T2 = S3(u), R2 = S4(u) and Q2 = S5(u), where W1 = S1(u) \
N(S2(u)), is a double-gamburger structure for G.

(iii) G is a double-gamburger.

Proof. We first prove that (i) implies (ii). Let u be a vertex of G with ecc(u) = 5.
We are going to prove four claims which together establish that the subgraphs
Q1, R1, T1, T2, R2, Q2 as defined in (ii) form a double-gamburger structure for G.
Note first that these subgraphs are clearly not empty and there are no edges between
Qi and G \Ri, as well as no edges between Ri and G \ (Qi ∪ Ti).

Claim 1. For i ∈ {1, 2}, Qi induces a clique, there is a join between Qi and Ri

and there exists u ∈ T3−i such that N(u) contains Ti.
Assume x ∈ Qi is the first move of Staller. If Dominator plays in Ri∪Ti, Staller will
be able to play her second move in T3−i. In that case, Q3−i will remain undominated
at the end of the third turn. If he plays in Q3−i, she could answer in R3−i and Ti

will not be dominated. Hence Dominator’s optimal answer is either in T3−i or in
R3−i. In both cases, there is still a legal move for Staller in T3−i ∪R3−i. Since the
game must end in three turns, this implies that Qi∪Ri has been entirely dominated
by x. Hence, Qi is a clique and there is a join between Qi and Ri. Now assume,
that Dominator’s move was in T3−i. Staller can play her last move in R3−i. So, the
game could end in three turns only if Dominator’s move dominates all vertices in
Ti. On the other hand, if Dominator played in R3−i, Staller can play her last move
in T3−i. Once more, this move must dominate all Ti. In conclusion, we have at least
one vertex in T3−i whose neighborhood contains Ti.

Claim 2. For i ∈ {1, 2}, Ti induces a clique and there is a join between Ti and Ri.
By way of contradiction, assume there exists x ∈ Ti, such that N [x] does not
contain Ti ∪Ri and let y be a vertex in (Ti ∪Ri) \N [x]. Staller can play the vertex
x. If Dominator plays in Qi ∪Ri ∪ Ti, Staller will be able to play her second move
in T3−i. If he plays in T3−i, she could answer in Qi. In both cases, the vertices in
Q3−i will not be dominated at the end of the third turn. Therefore, Dominator
has to play in R3−i ∪ Q3−i. Now, if y ∈ Ti, playing y is a legal move for Staller
and after this move no vertex in Qi is dominated. Otherwise, if y is in Ri, then by
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the way we define Q1, Ti and Ri, y has a neighbor y′ in Ti. Since playing y′ will
dominate the new vertex y, it is a legal move. By playing it, Staller ensures that
no vertex in Qi is already dominated. In both cases, the game is not over at the
end of the third turn. This is a contradiction with the assumption γ′

g(G) = 3.

Claim 3. For i ∈ {1, 2}, Ri induces a clique from which a matching Mi has been
removed.
If |Ri| ≤ 2, the claim is trivially true. Assume now that |Ri| ≥ 3. By way of
contradiction, suppose that Ri does not induced a clique minus a matching. In
other words, there exist distinct vertices y, y′ and x in Ri such that x is neither
adjacent to y nor to y′. If Staller starts by playing y, Dominator’s optimal answer
is in T3−i ∪ R3−i ∪ Q3−i. Otherwise, Staller could play her second move in T3−i,
and Q3−i would remain undominated. After the move of Dominator, y′ is still
undominated. Hence Staller can play this vertex as her second move. Finally, after
these three turns, x is not yet dominated, again contradicting γ′

g(G) = 3.

Claim 4. For i ∈ {1, 2}, if the matching Mi is perfect, then M3−i is empty and
there is a join between T1 and T2.
Assume first there is not a join between T1 and T2. Then Staller can choose a vertex
in T3−i, such that at least one vertex in Ti is not dominated. As in Claim 2, Dom-
inator must play in Ri ∪ Qi. Since Ti is not completely dominated after Staller’s
first move, Dominator has no choice but to play in Ri. Moreover, Staller could play
her last move in Q3−i ∪ R3−i. So all the vertices in Ti ∪ Ri ∪ Qi must be domi-
nated by Dominator’s move. Therefore we must have a vertex in Ri whose closed
neighborhood contains at least Ri. In conclusion, Mi is not a perfect matching.

Suppose now that M3−i is not empty (i.e. R3−i does not induce a clique). Staller
can play a vertex in R3−i, whose closed neighborhood does not contain R3−i. As in
Claim 3, Dominator has to play in Ti ∪Ri ∪Qi. But, Staller would be in all cases
able to make her last move in R3−i. Hence, the game could end in three turns only
if Dominator can dominate all Ti ∪Ri ∪Qi in one move. As above, it implies that
the matching Mi is not perfect.

Statement (ii) obviously implies (iii). It remains to prove that (iii) leads to (i).
Assume that G has a double-gamburger structure. By Lemma 4.14, diam(G) = 5
which in turn implies that γ′

g(G) ≥ 3. So, we only have to give a strategy for
Dominator which ensures that the game ends in at most three turns. By symmetry,
we have three cases.

Case 1. Staller’s first move is in Q1. Then Dominator chooses to play a vertex
from T2 whose neighborhood contains T1. Clearly, after such a move, all the vertices
of G \Q2 are dominated. Moreover, all the remaining legal moves for Staller are in
R2 ∪ Q2. Since there is a join between these two sets, whatever she plays, all the
vertices in Q2 will be dominated and the game will be over in three turns.

Case 2. Staller’s first move is in R1. They are two possibilities. First, the matching
M2 removed from a clique to get R2 is perfect. Therefore R1 is a clique. Dominator
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selects a vertex in R2. All the vertices of G, except one in R2, are dominated after
this move. Staller has no choice but to end the game by selecting a vertex in the
closed neighborhood of this last undominated vertex. Second, the matching M2

is not perfect. Hence, there is a vertex x ∈ R2 whose neighborhood contains R2.
Dominator chooses this vertex. Now, there is at most one undominated vertex in
G, which is actually in R1. Staller has to dominate this vertex and the game is over
after her move.

Case 3. Staller’s first move is in T1. Suppose first that we have a join between
T1 and T2. Dominator selects any vertex in Q2. On the other hand, if there is no
join between T1 and T2, then M2 is not a perfect matching and we have a vertex
x ∈ R2 such that N [x] contains T2 ∪ R2 ∪ Q2. Dominator plays this vertex. In
both situations, all the vertices in G \Q1 are now dominated. The legal moves for
Staller are only in Q1 ∪R1. Since there is a join between these two sets, whatever
she chooses the game will end after her move. �

As for Theorem 4.13, both characterizations of graphs with γ′

g(G) = 3 and
diam(G) = 5 are useful for a fast recognition algorithm.

To conclude the paper we show that a double-gamburger G always has a
property γg(G) = 3. In other words, the following is true.

Corollary 4.16. A graph G is a (3, 3)-graph of diameter 5 if and only if G is a

double-gamburger. In particular, there is no (4, 3)-graph with diameter 5.

Proof. By Theorem 4.15 we only need to prove that if G is a double-gamburger,
then γg(G) = 3. Since diam(G) = 5, [3, Corollary 4.1] implies that γg(G) ≥ 3.
Hence we only have to prove that Dominator can end the game in at most three
turns.

Let M1 and M2 be the two matchings defined by the double-gamburger struc-
ture of G. Assume first that both are not perfect. Then Dominator can start by
playing a vertex in R1 which dominates all R1. As his second move, he selects a
vertex in R2 which dominates all R2. Such a vertex is still available, because Staller
plays optimally and hence she did not select such a vertex. Playing this way, all the
vertices will be dominated at the end of the third turn. On the other hand, if one of
the matchings, say M1 is perfect, by the double-gamburger structure of G, R2 is a
clique and we have a join between T1 and T2. Dominator starts the game with any
vertex of Q1. If Staller answers in R1 ∪ T1 ∪ T2, Dominator plays his second move
in R2. If Staller plays in R2 ∪ Q2, then he plays in T2. Note that these two cases
are exhaustive, because the vertices in Q1 are not legal moves for Staller (since all
the vertices in Q1 ∪ R1 are already dominated by Dominator’s move). Finally, it
is straightforward to show that in both cases all the vertices are dominated at the
end of the third turn. �
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Explo’RA Doc from La Région Rhône Alpes. The authors thank the two referees
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nation problem. Manuscript, 2014.
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