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Abstract

Let d(G, k) be the number of pairs of vertices of a graphG that are at distancek, λ a real (or complex) number, and
Wλ(G) = ∑

k≥1 d(G, k) kλ. It is proved that for a partial cubeG, Wλ+1(G) = |F |Wλ(G) − ∑
F∈F Wλ(G\F), whereF is

the partition ofE(G) induced by the Djokovi´c–Winkler relationΘ . This result extends a previously known result for trees and
implies several relations for distance-based topological indices.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

TheWiener number (or Wiener index) W (G) of a connected graphG is the sum of distances between all pairs of
vertices ofG, that is,

W (G) =
∑

{u,v}⊆V (G)×V (G)

d(u, v).

In the case of trees the Wiener number was introduced back in 1947 by Wiener in [25], hence the name of this graph
invariant. Right up to today, it has been extensively investigated, above all in mathematical chemistry; see special
issues of journals devoted to the topic [13,14], recent surveys [5,6], and recent papers [7–9].

The Wiener number can be extended to disconnected graphs as follows [12]. Denote byd(G, k) the number of
pairs of vertices ofG that are at distancek. Note thatd(G, 0) andd(G, 1) represent the number of vertices and edges,
respectively. ThenW can be extended to disconnected graphs asW (G) = ∑

k≥1 d(G, k)k. Moreover, this definition
can be further generalized in the following natural way [11,12]:

Wλ(G) =
∑
k≥1

d(G, k) kλ,
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whereλ is some real (or complex) number. Several particular instances of the invariantWλ have been previously
studied. For instance,W−2, W−1, 1

2 W2 + 1
2 W1, and1

6 W3 + 1
2 W2 + 1

3 W1 are the so-called Harary index, reciprocal
Wiener index, hyper-Wiener index, and Tratch–Stankevich–Zefirov index; cf. [12] and references therein. In the
chemical literature alsoW1/2 [27] as well as thegeneral caseWλ were examined [10,11,15].

Let T be a tree; then in [12] the following recursive formula forWλ has been obtained:

Wλ+1(T ) = (n − 1)Wλ(T ) −
∑

e∈E(T )

Wλ(T − e). (1)

In this note we prove that ifG is a partial cube andF the partition ofE(G) induced by the Djokovi´c–Winkler relation
Θ , then

Wλ+1(G) = |F |Wλ(G) −
∑
F∈F

Wλ(G\F). (2)

Since trees are partial cubes in which the partitionF is trivial, that is, every edge of a tree forms a class of the partition,
(1) immediately follows from(2). In addition we will demonstrate that some known relations between distance-based
topological indices follow from formula(2).

2. The main result

For u, v ∈ V (G), let dG(u, v) denote the length of a shortest path (also called ageodesic) in G from u to v. A
subgraphH of a graphG is calledisometric if dH (u, v) = dG(u, v) for all u, v ∈ V (H ). Isometric subgraphs of
hypercubes are calledpartial cubes. Clearly, hypercubes are partial cubes, as well as trees and median graphs. Partial
cubes form a well studied class of graphs; we refer the reader to classical references [1,4,26], the book [16], the recent
paper [20] and references therein. For applications of partial cubes to mathematical chemistry see [3,17–19,21].

TheDjoković–Winkler relation Θ is definedon the edge set of a graph in the following way [4,26]. Edgese = xy
and f = uv of a graphG are in relationΘ if

dG(x, u) + dG(y, v) �= dG(x, v) + dG(y, u).

Winkler [26] proved that amongbipartite graphs,Θ is transitive precisely for partial cubes; henceΘ partitions the
edge set of a partial cube. LetG be a partial cube andF = {F1, F2, . . . , Fr } the partition of its edge set induced by
the relationΘ . Then we say thatF is theΘ -partition of G.

For the proof of our main theorem we need the following facts aboutΘ ; cf. [16,20].

Lemma 1. Let G be a partial cube.

(i) A path P in G is a geodesic if and only if no two different edges of P are in relation Θ .
(ii) Let F be a class of the Θ -partition of G. Then G\Fi consists of two connected components.

We are now ready for our main result.

Theorem 2. Let G be a partial cube and F its Θ -partition. Then for any real (or complex) number λ,

Wλ+1(G) = |F |Wλ(G) −
∑
F∈F

Wλ(G\F).

Proof. Let s be the diameter ofG; then

Wλ(G) =
s∑

k=1

d(G, k) kλ.

LetF = {F1, F2, . . . , Fr } and set

X =
r∑

i=1

Wλ(G\Fi ).
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Let u andv be arbitrary vertices ofG, whered(u, v) = k, 1 ≤ k ≤ s. Let P be au, v-geodesic. ByLemma 1(i), the
edges ofP belong to pairwise different classes ofF . We may assume without loss of generality that they belong to
F1, F2, . . . , Fk . By Lemma 1(ii), u andv belong to different connected components ofG\Fi for i = 1, . . . , k. On the
other hand,u andv are in the same connected component ofG\Fi for i = k + 1, . . . , r . Clearly, in the latter case,
dG\Fi (u, v) = k. It follows that the pair{u, v} contributes(r − k) times toX . Thus,

X =
s∑

k=1

(r − k)d(G, k)kλ

= r
s∑

k=1

d(G, k)kλ −
s∑

k=1

d(G, k)kλ+1

= r Wλ(G) − Wλ+1(G). �

If F is aΘ -class of the hypercubeQn , thenQn\F consists of two disjoint copies ofQn−1. Thus, byTheorem 2,
Wλ+1(Qn) = nWλ(Qn) − 2nWλ(Qn−1). By this recurrence relation it follows thatWλ(Qn) = pλ(n)4n, wherepλ(n)

is apolynomial. This can also be seen from the formulaWλ(Qn) = 2n−1 ∑n
k=1

( n
k

)
kλ.

3. Applications

In this section we give two applications ofTheorem 2. The firstone is the following result for the Wiener number,
first given in [19], and extended to the so-calledL1-graphs in [2].

Let G be a partial cube,F its Θ -partition, andF ∈ F . Then we will denote the connected components ofG\F by
G1(F) andG2(F). Setn1(F) = |G1(F)| andn2(F) = |G2(F)|.
Corollary 3. Let G be a partial cube and F its Θ -partition. Then

W1(G) = W (G) =
∑
F∈F

n1(F)n2(F).

Proof. Let n = |V (G)|; then for anyF ∈ F , n1(F) + n2(F) = n. UsingTheorem 2we can compute as follows:

W1(G) = |F |W0(G) −
∑
F∈F

W0(G\F)

= |F |
(n

2

)
−

∑
F∈F

[(
n1(F)

2

)
+

(
n2(F)

2

)]

= |F |
(n

2

)
− 1

2

∑
F∈F

[
n2 − n − 2n1(F)n2(F)

]

= |F |
(n

2

)
− 1

2

∑
F∈F

(n2 − n) +
∑
F∈F

n1(F)n2(F)

=
∑
F∈F

n1(F)n2(F). �

For the second application some more concepts are needed. The hyper-Wiener indexWW is a topological index
proposed by Randi´c [24] for trees and extended to all graphs by Klein et al. [22] as

WW(G) = 1

2
W1(G) + 1

2
W2(G).

Let G be a partial cube,F its Θ -partition, andF, F ′ ∈ F , F �= F ′. Then we will define n11(F, F ′) = |G1(F) ∩
G1(F ′)|, n12(F, F ′) = |G1(F) ∩ G2(F ′)|, n21(F, F ′) = |G2(F) ∩ G1(F ′)|, andn22(F, F ′) = |G2(F) ∩ G2(F ′)|.
We say that the classesF andF ′ cross if nk�(F, F ′) �= 0 for 1 ≤ k, � ≤ 2, and write F#F ′ to denote the fact thatF
andF ′ cross; see [20,23]. Now we can deduce fromTheorem 2the following result given in [17].
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Fig. 1. Non-crossing classesFi andFj .

Corollary 4. Let G be a partial cube and F = {F1, F2, . . . , Fr } its Θ -partition. Then

WW(G) = W (G) +
∑
i< j

[n11(Fi , Fj )n22(Fi , Fj ) + n12(Fi , Fj )n21(Fi , Fj )].

Proof. By Theorem 2, W2(G) = r W (G) − ∑r
i=1 W (G\Fi ). On theother hand,WW(G) = W (G)/2 + W2(G)/2.

Combining these two equalities we get

WW(G) = W (G) + 1

2

[
(r − 1)W (G) −

r∑
i=1

W (G\Fi )

]
. (3)

By Corollary 3 we have

(r − 1)W (G) =
r−1∑
j=1

r∑
i=1

n1(Fi )n2(Fi ) =
r∑

i=1

r−1∑
j=1

n1(Fi )n2(Fi ), (4)

while on the other hand
r∑

i=1

W (G\Fi ) =
r∑

i=1

[W (G1(Fi )) + W (G2(Fi ))]. (5)

Combining(4) and(5) with (3) weobtain

WW(G) = W (G) + 1

2

r∑
i=1

[
r−1∑
j=1

n1(Fi )n2(Fi ) − W (G1(Fi )) − W (G2(Fi ))

]
. (6)

Having in mindCorollary 3 we now consider the contribution of a fixed pair of classesFi and Fj to the right-hand
side sum in(6). For the rest of the proof letn11, n12, n21, andn22 denoten11(Fi , Fj ), n12(Fi , Fj ), n21(Fi , Fj ), and
n22(Fi , Fj ), respectively.

Suppose first thatFi andFj cross. Then the contribution of the pairFi , Fj is

[(n11 + n12)(n21 + n22) + (n11 + n21)(n12 + n22)] − [(n11n12 + n21n22) + (n11n21 + n12n22)]
= 2n11n22 + 2n12n21.

If Fi , Fj do not cross, then there are four possibilities for howFi and Fj are related; the possibilities are shown in
Fig. 1.

Then the contributions of the classesFi andFj are, respectively,

(i) (n11 + n12)n22 + n11(n12 + n22) − (n11n12 + n12n22) = 2n11n22,
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(ii) (n11 + n12)n21 + n12(n11 + n21) − (n12n11 + n11n21) = 2n12n21,
(iii) (n21 + n22)n11 + n22(n11 + n21) − (n21n22 + n21n11) = 2n11n22,
(iv) (n21 + n22)n12 + n21(n12 + n22) − (n21n22 + n22n21) = 2n12n21.

Since in cases (i), (ii), (iii), and (iv) we haven21 = 0, n22 = 0, n12 = 0, andn11 = 0, respectively, in all cases the
contribution ofFi andFj to the right-hand side sum in(6) can be written as

2n11n22 + 2n12n21

which completes the argument. �
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