A theorem on Wiener-type invariants for isometric subgraphs of hypercubes

Sandi Klavžara ${ }^{\text {a,b,*, }}$, Ivan Gutman ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, PeF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
${ }^{\mathrm{b}}$ Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
${ }^{\mathrm{c}}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and Montenegro

Received 1 June 2005; received in revised form 22 November 2005; accepted 11 December 2005

Abstract

Let $d(G, k)$ be the number of pairs of vertices of a graph G that are at distance k, λ a real (or complex) number, and $W_{\lambda}(G)=\sum_{k \geq 1} d(G, k) k^{\lambda}$. It is proved that for a partial cube $G, W_{\lambda+1}(G)=|\mathcal{F}| W_{\lambda}(G)-\sum_{F \in \mathcal{F}} W_{\lambda}(G \backslash F)$, where \mathcal{F} is the partition of $E(G)$ induced by the Djoković-Winkler relation Θ. This result extends a previously known result for trees and implies several relations for distance-based topological indices.

© 2006 Elsevier Ltd. All rights reserved.
Keywords: Graph distance; Hypercube; Partial cube; Wiener number; Hyper-Wiener index

1. Introduction

The Wiener number (or Wiener index) $W(G)$ of a connected graph G is the sum of distances between all pairs of vertices of G, that is,

$$
W(G)=\sum_{\{u, v\} \subseteq V(G) \times V(G)} d(u, v)
$$

In the case of trees the Wiener number was introduced back in 1947 by Wiener in [25], hence the name of this graph invariant. Right up to today, it has been extensively investigated, above all in mathematical chemistry; see special issues of journals devoted to the topic [13,14], recent surveys [5,6], and recent papers [7-9].

The Wiener number can be extended to disconnected graphs as follows [12]. Denote by $d(G, k)$ the number of pairs of vertices of G that are at distance k. Note that $d(G, 0)$ and $d(G, 1)$ represent the number of vertices and edges, respectively. Then W can be extended to disconnected graphs as $W(G)=\sum_{k \geq 1} d(G, k) k$. Moreover, this definition can be further generalized in the following natural way [11,12]:

$$
W_{\lambda}(G)=\sum_{k \geq 1} d(G, k) k^{\lambda},
$$

[^0]where λ is some real (or complex) number. Several particular instances of the invariant W_{λ} have been previously studied. For instance, $W_{-2}, W_{-1}, \frac{1}{2} W_{2}+\frac{1}{2} W_{1}$, and $\frac{1}{6} W_{3}+\frac{1}{2} W_{2}+\frac{1}{3} W_{1}$ are the so-called Harary index, reciprocal Wiener index, hyper-Wiener index, and Tratch-Stankevich-Zefirov index; cf. [12] and references therein. In the chemical literature also $W_{1 / 2}$ [27] as well as the general case W_{λ} were examined [10,11,15].

Let T be a tree; then in [12] the following recursive formula for W_{λ} has been obtained:

$$
\begin{equation*}
W_{\lambda+1}(T)=(n-1) W_{\lambda}(T)-\sum_{e \in E(T)} W_{\lambda}(T-e) . \tag{1}
\end{equation*}
$$

In this note we prove that if G is a partial cube and \mathcal{F} the partition of $E(G)$ induced by the Djoković-Winkler relation θ, then

$$
\begin{equation*}
W_{\lambda+1}(G)=|\mathcal{F}| W_{\lambda}(G)-\sum_{F \in \mathcal{F}} W_{\lambda}(G \backslash F) \tag{2}
\end{equation*}
$$

Since trees are partial cubes in which the partition \mathcal{F} is trivial, that is, every edge of a tree forms a class of the partition, (1) immediately follows from (2). In addition we will demonstrate that some known relations between distance-based topological indices follow from formula (2).

2. The main result

For $u, v \in V(G)$, let $d_{G}(u, v)$ denote the length of a shortest path (also called a geodesic) in G from u to v. A subgraph H of a graph G is called isometric if $d_{H}(u, v)=d_{G}(u, v)$ for all $u, v \in V(H)$. Isometric subgraphs of hypercubes are called partial cubes. Clearly, hypercubes are partial cubes, as well as trees and median graphs. Partial cubes form a well studied class of graphs; we refer the reader to classical references [1,4,26], the book [16], the recent paper [20] and references therein. For applications of partial cubes to mathematical chemistry see [3,17-19,21].

The Djoković-Winkler relation Θ is defined on the edge set of a graph in the following way [4,26]. Edges $e=x y$ and $f=u v$ of a graph G are in relation Θ if

$$
d_{G}(x, u)+d_{G}(y, v) \neq d_{G}(x, v)+d_{G}(y, u) .
$$

Winkler [26] proved that among bipartite graphs, Θ is transitive precisely for partial cubes; hence Θ partitions the edge set of a partial cube. Let G be a partial cube and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ the partition of its edge set induced by the relation Θ. Then we say that \mathcal{F} is the Θ-partition of G.

For the proof of our main theorem we need the following facts about Θ; cf. [16,20].
Lemma 1. Let G be a partial cube.
(i) A path P in G is a geodesic if and only if no two different edges of P are in relation Θ.
(ii) Let F be a class of the Θ-partition of G. Then $G \backslash F_{i}$ consists of two connected components.

We are now ready for our main result.
Theorem 2. Let G be a partial cube and \mathcal{F} its Θ-partition. Then for any real (or complex) number λ,

$$
W_{\lambda+1}(G)=|\mathcal{F}| W_{\lambda}(G)-\sum_{F \in \mathcal{F}} W_{\lambda}(G \backslash F) .
$$

Proof. Let s be the diameter of G; then

$$
W_{\lambda}(G)=\sum_{k=1}^{s} d(G, k) k^{\lambda} .
$$

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ and set

$$
X=\sum_{i=1}^{r} W_{\lambda}\left(G \backslash F_{i}\right)
$$

Let u and v be arbitrary vertices of G, where $d(u, v)=k, 1 \leq k \leq s$. Let P be a u, v-geodesic. By Lemma 1(i), the edges of P belong to pairwise different classes of \mathcal{F}. We may assume without loss of generality that they belong to $F_{1}, F_{2}, \ldots, F_{k}$. By Lemma 1(ii), u and v belong to different connected components of $G \backslash F_{i}$ for $i=1, \ldots, k$. On the other hand, u and v are in the same connected component of $G \backslash F_{i}$ for $i=k+1, \ldots, r$. Clearly, in the latter case, $d_{G \backslash F_{i}}(u, v)=k$. It follows that the pair $\{u, v\}$ contributes $(r-k)$ times to X. Thus,

$$
\begin{aligned}
X & =\sum_{k=1}^{s}(r-k) d(G, k) k^{\lambda} \\
& =r \sum_{k=1}^{s} d(G, k) k^{\lambda}-\sum_{k=1}^{s} d(G, k) k^{\lambda+1} \\
& =r W_{\lambda}(G)-W_{\lambda+1}(G) .
\end{aligned}
$$

If F is a Θ-class of the hypercube Q_{n}, then $Q_{n} \backslash F$ consists of two disjoint copies of Q_{n-1}. Thus, by Theorem 2, $W_{\lambda+1}\left(Q_{n}\right)=n W_{\lambda}\left(Q_{n}\right)-2 n W_{\lambda}\left(Q_{n-1}\right)$. By this recurrence relation it follows that $W_{\lambda}\left(Q_{n}\right)=p_{\lambda}(n) 4^{n}$, where $p_{\lambda}(n)$ is a polynomial. This can also be seen from the formula $W_{\lambda}\left(Q_{n}\right)=2^{n-1} \sum_{k=1}^{n}\binom{n}{k} k^{\lambda}$.

3. Applications

In this section we give two applications of Theorem 2. The first one is the following result for the Wiener number, first given in [19], and extended to the so-called L_{1}-graphs in [2].

Let G be a partial cube, \mathcal{F} its Θ-partition, and $F \in \mathcal{F}$. Then we will denote the connected components of $G \backslash F$ by $G_{1}(F)$ and $G_{2}(F)$. Set $n_{1}(F)=\left|G_{1}(F)\right|$ and $n_{2}(F)=\left|G_{2}(F)\right|$.

Corollary 3. Let G be a partial cube and \mathcal{F} its Θ-partition. Then

$$
W_{1}(G)=W(G)=\sum_{F \in \mathcal{F}} n_{1}(F) n_{2}(F) .
$$

Proof. Let $n=|V(G)|$; then for any $F \in \mathcal{F}, n_{1}(F)+n_{2}(F)=n$. Using Theorem 2 we can compute as follows:

$$
\begin{aligned}
W_{1}(G) & =|\mathcal{F}| W_{0}(G)-\sum_{F \in \mathcal{F}} W_{0}(G \backslash F) \\
& =|\mathcal{F}|\binom{n}{2}-\sum_{F \in \mathcal{F}}\left[\binom{n_{1}(F)}{2}+\binom{n_{2}(F)}{2}\right] \\
& =|\mathcal{F}|\binom{n}{2}-\frac{1}{2} \sum_{F \in \mathcal{F}}\left[n^{2}-n-2 n_{1}(F) n_{2}(F)\right] \\
& =|\mathcal{F}|\binom{n}{2}-\frac{1}{2} \sum_{F \in \mathcal{F}}\left(n^{2}-n\right)+\sum_{F \in \mathcal{F}} n_{1}(F) n_{2}(F) \\
& =\sum_{F \in \mathcal{F}} n_{1}(F) n_{2}(F) .
\end{aligned}
$$

For the second application some more concepts are needed. The hyper-Wiener index $W W$ is a topological index proposed by Randić [24] for trees and extended to all graphs by Klein et al. [22] as

$$
W W(G)=\frac{1}{2} W_{1}(G)+\frac{1}{2} W_{2}(G) .
$$

Let G be a partial cube, \mathcal{F} its Θ-partition, and $F, F^{\prime} \in \mathcal{F}, F \neq F^{\prime}$. Then we will define $n_{11}\left(F, F^{\prime}\right)=\mid G_{1}(F) \cap$ $G_{1}\left(F^{\prime}\right)\left|, n_{12}\left(F, F^{\prime}\right)=\left|G_{1}(F) \cap G_{2}\left(F^{\prime}\right)\right|, n_{21}\left(F, F^{\prime}\right)=\left|G_{2}(F) \cap G_{1}\left(F^{\prime}\right)\right|\right.$, and $n_{22}\left(F, F^{\prime}\right)=\left|G_{2}(F) \cap G_{2}\left(F^{\prime}\right)\right|$. We say that the classes F and F^{\prime} cross if $n_{k \ell}\left(F, F^{\prime}\right) \neq 0$ for $1 \leq k, \ell \leq 2$, and write $F \# F^{\prime}$ to denote the fact that F and F^{\prime} cross; see [20,23]. Now we can deduce from Theorem 2 the following result given in [17].

Fig. 1. Non-crossing classes F_{i} and F_{j}.
Corollary 4. Let G be a partial cube and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ its Θ-partition. Then

$$
W W(G)=W(G)+\sum_{i<j}\left[n_{11}\left(F_{i}, F_{j}\right) n_{22}\left(F_{i}, F_{j}\right)+n_{12}\left(F_{i}, F_{j}\right) n_{21}\left(F_{i}, F_{j}\right)\right] .
$$

Proof. By Theorem 2, $W_{2}(G)=r W(G)-\sum_{i=1}^{r} W\left(G \backslash F_{i}\right)$. On the other hand, $W W(G)=W(G) / 2+W_{2}(G) / 2$. Combining these two equalities we get

$$
\begin{equation*}
W W(G)=W(G)+\frac{1}{2}\left[(r-1) W(G)-\sum_{i=1}^{r} W\left(G \backslash F_{i}\right)\right] . \tag{3}
\end{equation*}
$$

By Corollary 3 we have

$$
\begin{equation*}
(r-1) W(G)=\sum_{j=1}^{r-1} \sum_{i=1}^{r} n_{1}\left(F_{i}\right) n_{2}\left(F_{i}\right)=\sum_{i=1}^{r} \sum_{j=1}^{r-1} n_{1}\left(F_{i}\right) n_{2}\left(F_{i}\right) \tag{4}
\end{equation*}
$$

while on the other hand

$$
\begin{equation*}
\sum_{i=1}^{r} W\left(G \backslash F_{i}\right)=\sum_{i=1}^{r}\left[W\left(G_{1}\left(F_{i}\right)\right)+W\left(G_{2}\left(F_{i}\right)\right)\right] \tag{5}
\end{equation*}
$$

Combining (4) and (5) with (3) we obtain

$$
\begin{equation*}
W W(G)=W(G)+\frac{1}{2} \sum_{i=1}^{r}\left[\sum_{j=1}^{r-1} n_{1}\left(F_{i}\right) n_{2}\left(F_{i}\right)-W\left(G_{1}\left(F_{i}\right)\right)-W\left(G_{2}\left(F_{i}\right)\right)\right] . \tag{6}
\end{equation*}
$$

Having in mind Corollary 3 we now consider the contribution of a fixed pair of classes F_{i} and F_{j} to the right-hand side sum in (6). For the rest of the proof let n_{11}, n_{12}, n_{21}, and n_{22} denote $n_{11}\left(F_{i}, F_{j}\right), n_{12}\left(F_{i}, F_{j}\right), n_{21}\left(F_{i}, F_{j}\right)$, and $n_{22}\left(F_{i}, F_{j}\right)$, respectively.

Suppose first that F_{i} and F_{j} cross. Then the contribution of the pair F_{i}, F_{j} is

$$
\begin{aligned}
& {\left[\left(n_{11}+n_{12}\right)\left(n_{21}+n_{22}\right)+\left(n_{11}+n_{21}\right)\left(n_{12}+n_{22}\right)\right]-\left[\left(n_{11} n_{12}+n_{21} n_{22}\right)+\left(n_{11} n_{21}+n_{12} n_{22}\right)\right]} \\
& \quad=2 n_{11} n_{22}+2 n_{12} n_{21} .
\end{aligned}
$$

If F_{i}, F_{j} do not cross, then there are four possibilities for how F_{i} and F_{j} are related; the possibilities are shown in Fig. 1.

Then the contributions of the classes F_{i} and F_{j} are, respectively,
(i) $\left(n_{11}+n_{12}\right) n_{22}+n_{11}\left(n_{12}+n_{22}\right)-\left(n_{11} n_{12}+n_{12} n_{22}\right)=2 n_{11} n_{22}$,
(ii) $\left(n_{11}+n_{12}\right) n_{21}+n_{12}\left(n_{11}+n_{21}\right)-\left(n_{12} n_{11}+n_{11} n_{21}\right)=2 n_{12} n_{21}$,
(iii) $\left(n_{21}+n_{22}\right) n_{11}+n_{22}\left(n_{11}+n_{21}\right)-\left(n_{21} n_{22}+n_{21} n_{11}\right)=2 n_{11} n_{22}$,
(iv) $\left(n_{21}+n_{22}\right) n_{12}+n_{21}\left(n_{12}+n_{22}\right)-\left(n_{21} n_{22}+n_{22} n_{21}\right)=2 n_{12} n_{21}$.

Since in cases (i), (ii), (iii), and (iv) we have $n_{21}=0, n_{22}=0, n_{12}=0$, and $n_{11}=0$, respectively, in all cases the contribution of F_{i} and F_{j} to the right-hand side sum in (6) can be written as

$$
2 n_{11} n_{22}+2 n_{12} n_{21}
$$

which completes the argument.

Acknowledgments

The first author was supported in part by the Ministry of Science of Slovenia under the grant P1-0297. We would also like to thank a referee for pointing out two missing cases in the original version of the proof of Corollary 4.

References

[1] V. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics 1 (1988) 6-9.
[2] V. Chepoi, M. Deza, V. Grishukhin, Clin d'oeil on L_{1}-embeddable planar graphs, Discrete Appl. Math. 80 (1997) 3-19.
[3] V. Chepoi, S. Klavžar, The Wiener index and the Szeged index of benzenoid systems in linear time, J. Chem. Inf. Comput. Sci. 37 (1997) 752-755.
[4] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263-267.
[5] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[6] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
[7] A.A. Dobrynin, L.S. Mel'nikov, Trees and their quadratic line graphs having the same Wiener index, MATCH Commun. Math. Comput. Chem. 50 (2004) 146-164.
[8] A.A. Dobrynin, L.S. Mel'nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209-214.
[9] A.A. Dobrynin, L.S. Mel'nikov, Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005) 307-312.
[10] B. Furtula, I. Gutman, Ž. Tomović, A. Vesel, I. Pesek, Wiener-type topological indices of phenylenes, Indian J. Chem. 41A (2002) 1767-1772.
[11] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.
[12] I. Gutman, A.A. Dobrynin, S. Klavžar, L. Pavlović, Wiener-type invariants of trees and their relation, Bull. Inst. Combin. Appl. 40 (2004) 23-30.
[13] Fifty years of the Wiener index, I. Gutman, S. Klavžar, B. Mohar (Eds.), MATCH Commun. Math. Comput. Chem. 35 (1997) 1-259.
[14] Fiftieth anniversary of the Wiener index, I. Gutman, S. Klavžar, B. Mohar (Eds.), Discrete Appl. Math. 80 (1) (1997) 1-113.
[15] I. Gutman, D. Vidović, L. Popović, On graph representation of organic molecules - Cayley's plerograms vs. his kenograms, J. Chem. Soc. Faraday Trans. 94 (1998) 857-860.
[16] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, New York, 2000.
[17] S. Klavžar, Applications of isometric embeddings to chemical graphs, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 51 (2000) 249-259.
[18] S. Klavžar, I. Gutman, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81.
[19] S. Klavžar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects the vertex-distance relations, J. Chem. Inf. Comput. Sci. 35 (1995) 590-593.
[20] S. Klavžar, H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002) 235-251.
[21] S. Klavžar, A. Vesel, P. Žigert, I. Gutman, Binary coding of Kekulé structures of catacondensed benzenoid hydrocarbons, Comput. Chem. 25 (2001) 569-575.
[22] D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
[23] F.R. McMorris, H.M. Mulder, F.R. Roberts, The median procedure on median graphs, Discrete Appl. Math. 84 (1998) 165-181.
[24] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
[25] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
[26] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225.
[27] H.Y. Zhu, D.J. Klein, I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996) 420-428.

[^0]: * Corresponding author at: Department of Mathematics and Computer Science, PeF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia. Tel.: +386 22293 604; fax: +386 12517281.

 E-mail addresses: sandi.klavzar@uni-mb.si (S. Klavžar), gutman@knez.uis.kg.ac.yu (I. Gutman).

