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Abstract

Let M, A, S, and P, be the sets of median graphs, almost-median graphs,
semi-median graphs and partial cubes, respectively. Then M ⊂ A ⊂ S ⊂ P.
It is proved that a partial cube is almost-median if and only if it contains no
convex cycle of length greater that four. This extends the result of Brešar [2]
who proved that the same property characterizes almost-median graphs within
the class of semi-median graphs.
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1 Introduction

Median graphs, one of the central classes in metric graph theory, can be characterized
as partial cubes for which all sets Uuv are convex. (See Section 2 for the definition of
Uuv.) Motivated by this fact, almost-median graphs were introduced in [7] as those
partial cubes for which the sets Uuv are isometric. Another reason for this definition
was to better understand the structure of partial cubes and to find faster recognition
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algorithms for partial cubes. Along these lines, it was shown in [3] that prism-free
almost-median graphs and some related classes of graphs can be recognized in time
O(m log n), where n is the number of vertices and m the number of edges of a
given graph. An algorithm of the same time complexity has bee developed in [8] for
an additional class of almost-median graphs that in particular includes all planar
almost-median graphs. The fastest recognition algorithm for the general partial
cube is due to Eppstein [6]. It is also known that median graphs are the almost-
median graphs that contain no convex vertex-deleted Q3, see [7]. For the position
of almost-median graphs in the hierarchy of classes of partial cubes see [4].

Several characterizations of almost-median graphs are known. They are precisely
the graphs that can be obtained from a single vertex by a sequence of isometric
expansions, where in each expansion covering sets induce almost-median graphs [3].
In addition, they can be characterized among partial cubes with the so-called almost-
quadrangle property [10].

Our main motivation is the following characterization due to Brešar [2]: A graph
G is an almost-median graph if and only if G is a semi-median graphs that contains
no convex cycle of length greater that four. Using a closer inspection of convex
cycles in partial cubes we prove in this note that an absence of long convex cycles
characterizes almost-median among all partial cubes.

At least two related results involving forbidden convex subgraphs should be
mentioned here. Polat [12] proved that nontrivial netlike partial cubes (the class
of graphs introduced in [11]) that contain at most one convex cycle of length greater
than four can be characterized with the so-called prism-retractable property. On the
other hand, Bandelt and Chepoi [1] proved that graphs of acyclic cubical complexes
are precisely median graphs not containing any convex bipartite wheels.

We proceed as follows. In the next section the necessary definitions are collected,
while Section 3 contains a key lemma about convex cycles in partial cubes. In the
final section the main result (Theorem 4.1) is obtained in two ways and a short
proof of the characterization of almost-median graphs using the almost-quadrangle
property is given.

2 Preliminaries

A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for any vertices
u, v ∈ H and is convex if for any vertices u, v ∈ H, every u, v-shortest path in G lies
in H. For X ⊆ V (G) we will also say that it is isometric/convex if the subgraph
induced on X is isometric/convex. The interval I(u, v) between vertices u and v of
a connected graph G consists of the vertices of G that lie on shortest u, v-paths.

A partial cube is a graph G that isometrically embeds into some d-cube Qd. In
other words, G is a partial cube if for some d ≥ 1 its vertices can be labeled with
strings {0, 1}d such the distance function of G coincides with the Hamming distance
between the strings.

A graph G is a median graph if to every triple u, v, w of its vertices there is a
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unique vertex x such that d(u, x) + d(x, v) = d(u, v), d(v, x) + d(x,w) = d(v, w) and
d(u, x) + d(x,w) = d(u,w). Median graphs are partial cubes.

For an edge uv of a graph G let Wuv = {w | d(u,w) < d(v, w)}. Let Fuv be
the set of edges between Wuv and Wvu, and let Uuv be the set of those vertices of
Wuv than have a neighbor in Wvu. If G is a partial cube, then the sets Wuv and
Wvu partition V (G). Moreover, the sets Fuv, uv ∈ E(G), partition E(G). The sets
Fuv are also known as Θ-classes of G since they coincide with the partition of E(G)
induced by the Djoković-Winkler relation Θ. A partial cube G is called almost-
median if for any uv ∈ E(G) the set Uuv is isometric and is called semi-median if
for any uv ∈ E(G) the set Uuv is connected.

Nonempty isometric subgraphs G1 and G2 form an isometric cover of a graph
G provided that V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). If G is
connected then G1 ∩G2 6= ∅ for every isometric cover G1, G2. Suppose G1, G2 is an
isometric cover of G. For i = 1, 2, let G̃i be an isomorphic copy of Gi, and for a
vertex u ∈ G1 ∩ G2, let ui be the corresponding vertex in G̃i. The expansion of G
with respect to G1, G2 is the graph G̃ obtained from the disjoint union of G̃1 and
G̃2, where for each u ∈ G1∩G2 the vertices u1 and u2 are joined by a new edge in G̃.
We say that the expansion is isometric provided that G1∩G2 is an isometric graph.
Chepoi [5] proved that a graph is a partial cube if and only if it can be obtained
from K1 by a sequence of expansions.

Let F be a Θ-class of a partial cube G. Then the contraction of G with respect to
F is the graph G′ obtained from G by contraction every edge of F . This operation
reverses the expansion, in particular G′ is also a partial cube.

3 Convex cycles

Here is our key lemma:

Lemma 3.1 Let G be a partial cube and F a Θ-class of G containing edges e and
f . Then either (a) there exists an edge g ∈ F , g 6= e, f , such that dG(e, f) =
dG(e, g)+dG(g, f), or (b) e and f are contained in a unique shortest cycle, and this
cycle is convex in G.

Proof. Assume that there is no edge g ∈ F satisfying (a). Let e = e1e2 and f = f1f2,
where dG(e1, f1) = dG(e, f) = dG(e2, f2). Consider a shortest cycle C containing e
and f . Then C consists of e, a shortest path A from e1 to f1, f , and a shortest path
B from f2 to e2. We first prove the following:

Claim: If a ∈ A and b ∈ B then every shortest path between a and b passes through
e or through f .

Every shortest path T between a and b contains an edge g from F . Suppose that
g 6= e, f and consider I(e1, f2). By the way C is selected, a, b ∈ I(e1, f2). As intervals
in partial cubes are convex, it follows that g1 ∈ I(e1, f2) as well. But then, having
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in mind that We1e2 is isometric,

d(e1, f1) + 1 = d(e1, f2) = d(e1, g1) + d(g1, f2) = d(e1, g1) + d(g1, f1) + 1

and hence d(e1, f1) = d(e1, g1)+d(g1, f1). As we have assumed that there is no edge
g satisfying (a), the claim is proved.

As a consequence of the claim, we now have that C is first isometric and then
also convex. Indeed, suppose this is not the case and select a shortest geodesic R
between vertices of C that is not contained in C. Let a and b be the endpoints of R.
By the assumption, none of the edges (or intermediate vertices) of R lie on C. Hence
it follows from the claim that a and b are both on A or both on B. Without loss
of generality assume a, b ∈ A. Since A is a geodesic, R cannot be shorter that the
path between a and b along A. This shows that C is isometric. To show convexity,
consider the cycle C ′ obtained from C where the part between a and b is substituted
by R. Then C ′ has the same property as C, in particular it is also isometric. Let
ac be the first edge on R. The edge t opposite to ac on C ′ lies on B which is
common for C and C ′. In particular, t is opposite on C to an edge ac′. Since ac
and t are opposite in an isometric cycle, they are in the same Θ-class. Similarly, ac′

and t are in the same Θ-class. It follows that ac and ac′ are in the same Θ-class, a
contradiction.

Note that since we have proved that C is convex, A is the only shortest path
between e1 and f1 and similarly B is the only shortest path between e2 and f2.
Hence C is the unique shortest cycle containing e and f .

Note also that the claims (a) and (b) exclude each other. Indeed, if we have
an intermediate edge g ∈ F , then there is a shortest path from e1 to f1 via g1 and
similarly from e2 to f2 via g2. This produces a shortest cycle which is not convex.
¤

The structure of convex cycles was in [9] encoded as follows. Let F be a Θ-class
of a partial cube G. Then the F -zone graph, ZF , is the graph with V (ZF ) = F ,
vertices f and f ′ being adjacent in ZF if they belong to a common convex cycle
of G. We now extend the concept of the zone graph to its weighted version as
follows. To every such edge ZF we assign the weight k−2

2 , where k = |C| and C is
the convex cycle representing the edge. Note that this weight is exactly the distance
in G between the two edges of F lying on C. Moreover, Lemma 3.1 immediately
implies the following:

Corollary 3.2 The weighted distance in ZF between e, f ∈ F coincides with dG(e, f).
Furthermore, if there is an edge connecting e and f , then this is the unique shortest
weighted path between e and f .

4 The main result

We are now ready for the main result of this note.
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Theorem 4.1 Let G be a partial cube. Then G is almost-median if and only if G
contains no convex cycles of length more than four.

Proof. It was proven in [2] that every almost-median graph has no convex cycle
of length more than four. Hence we just need to show the converse. Suppose G is
a partial cube without convex cycles of length more than four. According to the
definition of almost-median graphs we need to verify that Uab is isometric for every
edge ab. Let F be the Θ-class containing ab. Suppose that there are edges e, f ∈ F
such that dG(e1, f1) < dUab

(e1, f1), where e1 and f1 are endpoints of e and f lying
in Uab. We may assume that e and f are selected so that dG(e1, f1) is minimal.
This condition forces that there is no intermediate edge g ∈ F as in case (a) of
Lemma 3.1. By this lemma it follows that e and f lie in a unique shortest cycle
which is convex. By our assumption, this cycle cannot be of length more than four,
which means that e1 and f1 are adjacent, a contradiction. ¤

Another way to deduce Theorem 4.1 is to apply Corollary 3.2. Indeed, the
theorem follows from the lemma since in the zone graph all the edge-weights are 1
in the absence of long convex cycles. Therefore, the weighted distance in ZF is the
same as the path distance.

We conclude this note with a short proof (based on Theorem 4.1) of the charac-
terization of almost-median graphs due to Peterin [10]. For it we need the following
definition. A graph G satisfies the almost-quadrangle property if for any vertices
u,w, x, y such that d(u, x) = d(u, y) = k = d(u,w)− 1 and w is adjacent to x and y,
there exists an edge ab such that axwb is an induced C4 of G and d(u, a) = k − 1.

Corollary 4.2 ([10, Corollary 6]) Let G be a partial cube. Then G is almost-median
if and only if G satisfies the almost-quadrangle property.

Proof. Suppose G is almost-median and let u,w, x, y be vertices of G such that
d(u, x) = d(u, y) = k = d(u,w) − 1 and w is adjacent to x and y. Let P be a
shortest x, u-path and Q a shortest y, u-path. Let F be the Θ-class of G containing
xw. Then Q contains an edge x′w′ ∈ F , where d(x′, x) < d(x′, w). Note that
x′ ∈ I(u, x). Since G is almost-median, Uxw contains a geodesic P ′ between x and
x′. Let a be the neighbor of x on P ′ and let b be the neighbor of a in Uwx. Then ab
is the required edge, hence G satisfies the almost-quadrangle property.

Conversely, suppose G satisfies the almost-quadrangle property. If G contained a
convex cycle of length more that four, then we could choose u and w to be opposite
vertices on the cycle and then by the convexity a must be on the cycle and hence
b must also be on the cycle, a contradiction. We conclude that G is almost-median
by Theorem 4.1. ¤
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