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Abstract

Almost self-centered graphs were recently introduced as the graphs

with exactly two non-central vertices. In this paper we characterize

almost self-centered graphs among median graphs and among chordal

graphs. In the first case P4 and the graphs obtained from hypercubes

by attaching to them a single leaf are the only such graphs. Among

chordal graph the variety of almost self-centered graph is much richer,

despite the fact that their diameter is at most 3. We also discuss almost

self-centered graphs among partial cubes and among k-chordal graphs,

classes of graphs that generalize median and chordal graphs, respec-

tively. Characterizations of almost self-centered graphs among these

two classes seem elusive.

Key words: radius, diameter, almost self-centered graph, median graph,
chordal graph

1 Introduction

Centrality notions lie in the very center of (discrete) location theory, self-

centered graphs [1, 5, 14, 21] forming a prominent theoretical model, see also

the survey [4]. Their importance lie in the fact that the maximum eccentricity

of any vertex is as small as possible which in turn allows different efficient

locations of the emergency facilities at central locations. In some situations,

however, we would like to have certain resources not to lie in the center of

a graph. With this motivation, almost self-centered graphs were introduced

in [17] as the graphs with exactly two non-central vertices. In the seminal paper

constructions that produce almost self-centered graphs are described, and em-

beddings of graphs into smallest almost self-centered graphs are considered. In
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the present paper we continue these studies by considering almost self-centered

graphs among median graphs, chordal graphs, and their generalizations.

Median graphs are probably the most extensively studied class in all metric

graph theory. For a survey on median graphs dealing with their characteriza-

tions, location theory, and related structures see [16], and for more on these

graphs see the book [11] and recent papers [6, 12]. Here we only emphasize

that despite the fact that median graphs are bipartite, they are intimately

connected with triangle-free graphs [13].

Chordal graphs, defined as the graphs having no induced cycles of length

greater than 3, are by far the most investigated class of graphs, see e.g. [2].

They have been studied from numerous aspects and generalized in several ways.

A very natural generalization are the so-called k-chordal graphs, in which by

definition the longest induced cycles are of length k. The largest common sub-

class of chordal and median graphs are trees, indicating the tree-like structure

of both classes. On the other hand, chordal and median graphs have a com-

mon generalization through the so-called cage-amalgamation graphs [3], for

which certain tree-like equalities were proven that generalize such equalities in

median graphs (counting the numbers of induced hypercubes) and in chordal

graphs (counting the numbers of induced cliques).

The paper is organized as follows. In the next section definitions needed

and concepts considered are collected. In Section 3 self-centered and almost

self-centered median graphs are characterized and related partial cubes are

considered. In Section 4 we concentrate on chordal graphs and prove that

the diameter of a chordal almost self-centered graph is not more than 3. We

follow with a characterization of almost self-centered chordal graph and provide

several infinite subclasses of them. In the final section k-chordal graphs are

considered and proved that the diameter of a k-chordal almost self-centered

graph with k ≥ 4 is at most k. A characterization of k-chordal almost self-
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centered graphs remains an open problem.

2 Preliminaries

The distance considered in this paper is the usual shortest path distance d.

A shortest path between vertices u and v will also be called a u, v-geodesic.

The eccentricity ecc(v) of a vertex v is the distance to a farthest vertex from

v. A vertex v is said to be an eccentric vertex of u if d(u, v) = ecc(u). The

radius rad(G) of G and the diameter diam(G) of G are the minimum and the

maximum eccentricity, respectively. A vertex u with ecc(u) = rad(G) is called

a central vertex, and it is diametrical if ecc(u) = diam(G) holds. A graph G

is self-centered graph if all vertices are central (equivalently, all vertices are

diametrical), and is almost self-centered graph if the center of G consists of

|V (G)| − 2 vertices.

For a connected graph and an edge xy of G we denote

Wxy = {w ∈ V (G) | d(x, w) < d(y, w)}.

Note that if G is a bipartite graph then V (G) = Wab ∪Wba holds for any edge

ab. Next, for an edge xy of G let Uxy denote the set of vertices that are in Wxy

and have a neighbor in Wyx. Sets in a graph that are Uxy for some edge xy

will be called U-sets. Similarly we define W -sets.

The Cartesian product G �H of graphs G and H is the graph with vertex

set V (G) × V (H) where the vertex (g, h) is adjacent to the vertex (g′, h′)

whenever gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). The Cartesian

product is commutative and associative, the product of n copies of K2 is the

n-dimensional hypercube or n-cube Qn. With Q+
n we denote the graph obtained

from Qn by attaching a pendant vertex to a vertex of Qn, while Q−

n denotes

the graph obtained from Qn by removing one of its vertices. (Qn is vertex-

transitive, hence these two graphs are well-defined.) It is straightforward to
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see that if G and H are self-centered graphs, then so is G �H .

A (connected) graph G is a median graph if for any three vertices x, y, z

there exists a unique vertex that lies in I(x, y)∩ I(x, z)∩ I(y, z). (Here I(u, v)

denotes the set of vertices on all u, v-geodesics, that is, the interval between

u and v.) If uv is an edge of a median graph, then the set of edges between

Uuv and Uvu form a matching. Two of the most important classes of median

graphs are trees and hypercubes. For the next result see [11, Lemma 12.20]:

Proposition 2.1 Let G be a median graph. Then G is a hypercube if and only

if Wuv = Uuv holds for any edge uv of G.

A subgraph H of G is isometric if dH(u, v) = dG(u, v) for all u, v ∈ V (H)

and a graph G is a partial cube if it is an isometric subgraph of some Qn,

see [11, 22]. It is well-known that median graphs are partial cubes but not the

other way around.

3 Almost self-centered median graphs and par-

tial cubes

We begin with the following strengthening of a result of Mulder from [20]

asserting that the same conclusion holds provided each vertex of a median

graph has a unique diametrical vertex.

Proposition 3.1 Let G be a median graph. Then G is self-centered if and

only if G is a hypercube.

Proof. Clearly, hypercubes are self-centered. For the converse it suffices (in

view of Proposition 2.1) to prove that Wuv = Uuv holds for any edge uv of G.

Suppose on the contrary that Wuv \ Uuv 6= ∅ for some edge uv ∈ E(G).

Then, since Wuv is connected, there exists a vertex x in Wuv − Uuv that is

adjacent to a vertex y in Uuv. Let y′ be the neighbor of y in Wvu. Then,
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since Wuv = Wyy′ and Uuv = Uyy′ , we may without loss of generality assume

that u = y, that is, we may assume that x is adjacent to u. Note that any

eccentric vertex u of u lies in Wvu, for otherwise ecc(v) > ecc(u). But then

d(x, u) = 1 + d(u, u), a contradiction. Hence Wuv = Uuv holds. �

Theorem 3.2 Let G be a median graph. Then G is almost self-centered if

and only if G is either P4 or Q+
n for some n ≥ 1.

Proof. It is straightforward to see that P4 and Q+
n , n ≥ 1, are almost self-

centered graphs.

Let now G be an arbitrary almost self-centered median graph. Since G

is not self-centered, Propositions 3.1 and 2.1 imply that there exists an edge

uv ∈ E(G) and a vertex x ∈ Wuv − Uuv. Select the edge uv and the vertex x

such that xu ∈ E(G). Let u be an eccentric vertex of u.

Case 1: u ∈ Wvu.

Then d(u, u) = d and d(x, u) = d + 1, that is, x and u are diametrical vertices

in this case. We claim that Wuv − Uuv = {x} and suppose on the contrary

that there exists y ∈ Wuv − Uuv, y 6= x. Suppose first that y is adjacent to

y′ ∈ Uuv. Let y′′ be the neighbor of y′ in Uvu. If an eccentric vertex y′ of y′

lies in Wvu, then d(y, y′) = d + 1, a contradiction. Therefore, y′ ∈ Wuv. Then

d(y′′, y′) = d + 1 hence y′ = x and y′′ = u. Then d(y, v) = d + 1, another

contradiction.

Hence u is the only vertex of Uuv that has a neighbor in Wuv − Uuv. It is

now clear that x is the unique vertex from Wuv − Uuv for otherwise we would

have more than two diametrical vertices or diameter bigger than d + 1. So we

have proved that Wuv − Uuv = {x}.

Assume u ∈ Wvu − Uvu. We are going to show that Wvu − Uvu = {u}. Let

y be an arbitrary vertex from Wvu −Uvu with a neighbor z ∈ Uvu. Let z be an

eccentric vertex of z. Then z ∈ Wuv, for otherwise, the neighbor of z in Uuv
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would have eccentricity d + 1. Since d(y, z) = d + 1, we find that z = x and

y = u. We conclude that Wvu − Uvu = {u} by the same reasons as above. Let

the neighbor of u in Uvu be z′′ and let z′ be the neighbor of z′′ in Uuv. If an

eccentric vertex of z′ lies in Wuv, then the eccentricity of u is d+2, which is not

possible. So an eccentric vertex z′ of z′ has to lie in Wvu. If z′ ∈ Uvu, then u

has an eccentric vertex (the neighbor of z′ in Uuv) different from x. Therefore,

z′ = u. This means that d = 2 and consequently G = P4.

Suppose u ∈ Uvu. By similar arguments as before Wvu = Uvu. Clearly, an

eccentric vertex of y ∈ Uuv lies in Uvu, for any y. Since G − x = 〈Uuv〉�K2,

we also have that an eccentric vertex of y′ ∈ Uvu lies in Uuv, for any y′. Then

G − x is a hypercube by Proposition 2.1 and therefore G = Q+
n .

Case 2: u ∈ Wuv.

In this case, u /∈ Uuv, for otherwise u would have eccentricity d + 1. By

interchanging the roles of x and v we are in Case 1. �

In the rest of the section we consider (almost) self-centered partial cubes.

Even cycles form an example of self-centered partial cubes, and we can expect

that the list of (almost) self-centered graphs will be considerably larger than

for median graphs. However, their characterization seems difficult, just as it

is difficult to characterize regular (in particular cubic) partial cubes, see [9,

15, 18]. We give a construction, based on an expansion procedure, that gives

rise to new self-centered partial cubes from smaller ones. Again, as for median

graphs, they give rise to almost self-centered graphs by adding a pendant

vertex. However this are not the only almost self-centered partial cubes as we

will see at the end of the section.

Let G1 and G2 be isometric subgraphs of a graph G such that G1∪G2 = G

and G′ = G1 ∩ G2 6= ∅. Note that there is no edge from G1\G
′ to G2\G

′.

Then the expansion of G with respect to G1 and G2 is the graph H defined as

follows. Take disjoint copies of G1 and G2 and connect every vertex from G′
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in G1 with the same vertex of G′ in G2 with an edge. It is not hard to see that

copies of G′ in G1 and in G2 and new edges between those two copies form the

Cartesian product G′
�K2. Chepoi [7] has shown that G is a partial cube if

and only if G can be obtained from K1 by a sequence of expansions. Similar

expansion theorem was shown for median graphs earlier by Mulder [19].

We call the expansion H of G with respect to G1 and G2 a diametrical

expansion whenever for any diametrical pair of vertices u and u of G either

both u, u ∈ V (G′) or u ∈ V (G1\G
′) and u ∈ V (G2\G

′).

Theorem 3.3 Let G be a self-centered partial cube and let H be obtained from

G by a diametrical expansion. Then H is a self-centered partial cube.

Proof. Let H be a diametrical expansion of G with respect to G1 and G2

where G′ = G1 ∩ G2. Then H is a partial cube by Chepoi’s theorem.

Let eccG(g) = d for any g ∈ V (G). Let h be an arbitrary vertex of H .

Then h must be in either G1\G
′, G2\G

′ or G′
�K2. First we assume that

h ∈ V (G1\G
′). Then h must be in G2\G

′, since H is a diametrical expansion.

Also eccH(h) = d + 1. Namely, to see eccH(h) ≥ d + 1 we can take the same

path as in G between h and h that is extended by a new edge of expansion,

and in addition eccH(h) > d+1 would yield a contradiction with eccG(h) = d.

By symmetry we also have eccH(h) = d + 1 for h ∈ V (G2\G
′). Next let

h ∈ V (G′
�K2). Then h, h ∈ V (G′). Let h1 ∈ V (G1) and h2 ∈ V (G2) be

two copies of h in H . If h ∈ G1 then dH(h, h2) = d + 1 and if h ∈ G2 then

dH(h, h1) = d + 1. Again eccH(h) > d + 1 would yield a contradiction with

eccG(h) = d and we have eccH(h) = d + 1. �

An example of diametrical expansion is shown in Figure 1. Since Q3 is a

self-centered partial cube, so is the expanded graph on the right hand side of

the figure.
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Figure 1: A diametrical expansion of Q3

It is easy to see (by induction for instance) that if a partial cube is obtained

from K1 by a series of diametrical expansions, then every vertex has a unique

diametrical vertex. We can obtain almost self-centered partial cubes from

self-centered partial cube G by attaching a pendant vertex to a vertex with

the unique diametrical vertex in G. However this is not the only possibility.

Another family of almost self-centered partial cubes arise from Q−

n by attaching

a pendant vertex to a vertex of degree n − 1. Note that for n = 2 we get the

sporadic example P4 of median graphs.

We can generalize the above idea as follows. Let G be a self-centered graph,

and let G1 and G2 be isometric subgraphs of G such that the expansion of G

with respect to G1 and G2 is “almost diametrical”, that is, there is exactly one

pair (u, u) of diametrical vertices with the property u ∈ G1\G
′ and u ∈ G′ and

for all other diametrical pairs the condition of diametrical expansion holds.

Such an expansion does not produce self-centered graphs, but if we attach a

pendant vertex to u we get an almost self-centered graph.
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4 Chordal graphs

In this section we characterize almost self-centered chordal graphs. For this

purpose we first show:

Theorem 4.1 Let G be a chordal, almost self-centered graph. Then diam(G) ≤

3.

Proof. Suppose on the contrary that G is a chordal almost self-centered graph

with diam = k ≥ 4. Let x and x be diametrical vertices with ecc(x) =

ecc(x) = k and let P : (x =)u0u1 . . . uk(= x) be an x, x-diametrical path.

Then ecc(u) = k − 1 for all the other vertices u ∈ V (G)− {x, x}. Hence there

exists u2 with d(u2, u2) = k − 1.

Since d(u2, u2) = k − 1, we have k − 3 ≤ d(x, u2) ≤ k − 1. Let Q : (x =

)v0v1 . . . vq(= u2), k − 3 ≤ q ≤ k − 1, be a shortest x, u2-path. Note that it is

possible that v1 = u1, but all other vertices of P and Q are different. For if a

vertex us, where s ≥ 2, belongs to both P and Q, then u2 is an inner vertex on

a x, u2-geodesic of length at most k−1, a contradiction with d(u2, u2) = k−1.

Let R : (x =)w0w1 . . . wr(= u2), 2 ≤ r ≤ k − 1, be a u2, x-geodesic (note

that the case when x and u2 are adjacent is not excluded). Let vj and ui be

the first vertices of Q and P , respectively, that are also on R. Suppose u1 6= v1.

The x, ui-subpath of P , the x, vj-subpath of Q, and the ui, vj-subpath of R

form a cycle C. Clearly, u2 does not form a chord with any vertex of P , Q, and

R since d(u2, u2) = k − 1, with a possible exception of v1 and w1. The later

case is possible only when d(x, u2) = k − 1, since otherwise d(u2, u2) < k − 1

which is not possible. But then clearly d(x, x) = 4.

Let first k > 4. If u2v1 is not a chord, then u2 has no chords on C and we

are done since also u1u3 is not a chord. So we may assume that u2v1 is a chord

(which also includes the case when u1 = v1). Then let C ′ be a cycle obtained
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from u2v1 and a longer u2, v1-path on C. Then u2 has no chords on C ′ and u3

and v1 are not adjacent since d(x, x) = k. Hence the same contradiction again.

Finally let k = 4. If u2w1 is not a chord we have the same contradiction as

before. So let u2w1 ∈ E(G) and let C ′ be a cycle obtained from u2, w1-path on

C that does not contains x and u2w1. If u2v1 /∈ E(G) no chord on C ′ starts in

u2. We get a contradiction, since edge u1w1 would destroy d(x, x) = 4. Hence

u2v1 ∈ E(G) and let C ′′ be a cycle obtained from edge u2v1 and u2, v1-path on

C ′ that does not contains u1. (Note that if u1 = v1 we have C ′′ = C ′.) But

again u2 has no chords on C ′′ and v1w1 is again not possible since d(x, x) = 4,

a final contradiction. �

We introduce the class C of chordal graphs as follows. Let G′ be a chordal

graph with diameter at most 2, and let V (G′) = X + Y + Z (where + stands

for the disjoint union of sets) such that for any v ∈ V (G′), we have d(v, X) ≤ 1

and d(v, Y ) ≤ 1, with only Z being possibly empty. (Note that it means any

vertex from X must have a neighbor in Y and vice versa and a vertex in Z, if

any, must have a neighbor in both X and Y .) Let G be obtained from G′ by

adding two new vertices x and y, and edges between x and all vertices from

X, and y and all vertices from Y . Clearly, any graph G, obtained in such a

way is chordal with diameter 3, and we say it belongs to the class C. It is also

clear that only x and y are diametrical vertices, and all other vertices have the

same eccentricity, making G almost self-centered chordal graph.

The class C is relatively rich. It includes the graphs, obtained from a clique

by adding two vertices with disjoint neighborhoods in the clique (say, P4 as

the smallest example. Another subclass is obtained from the join Kn ◦ Km

of the complete graph Kn and totally disconnected graph Km, by adding two

simplicial vertices, whose neighborhoods are disjoint subcliques of Kn.

Theorem 4.2 Let G be a chordal graph. Then G is almost self-centered if

and only if G is either Kn − e or it belongs to C.
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Proof. If G is either Kn − e or in C, it is clearly almost self-centered.

For the converse, let G be an almost self-centered chordal graph. By The-

orem 4.1, G has diameter at most 3. Assume diam(G) = 2. Since G is not

a complete graph, there exist two non adjacent simplicial vertices x and y in

G by Dirac’s theorem [8]. Clearly N(x) ∩ N(y) 6= ∅. In addition, if there is

a vertex z 6∈ N [x] ∩ N [y] then ecc(z) = 2 which is a contradiction with G

being almost self-centered. By the same reasoning, we find that N(x) = N(y)

induces a clique. Hence G is isomorphic to Kn − e.

Suppose diam(G) = 3. Then by a result of Farber and Jamison [10] there

exist two simplicial vertices x and y with d(x, y) = diam(G) = 3. Let X =

N(x) and Y = N(y). Since d(x, y) = 3, X ∩ Y = ∅ and let Z = V (G) −

(N [x] ∪ N [y]). Clearly, the subgraph G′ induced by V (G) − {x, y} is chordal

and its diameter is at most 2. Note that for any v ∈ V (G′), eccG(v) = 2. If

v ∈ X then there must be a vertex w ∈ Y such that vw ∈ E(G), otherwise

d(v, y) = 3. We infer that d(v, Y ) = 1, and similarly we find that d(w, X) = 1

for any w ∈ Y . If z ∈ Z, again by eccentricity 2 of vertices from G′, we find

that d(z, X) = 1 and d(z, Y ) = 1. We derive that G belongs to the class C. �

5 k-chordal graphs

A graph G is k-chordal if every cycle C of length greater than k has a chord.

The chordality of G is the smallest k such that G is k-chordal. For k-chordal

graphs Theorem 4.1 naturally extends:

Theorem 5.1 Let G be a k-chordal almost self-centered graph with k ≥ 4.

Then diam(G) ≤ k.

Proof. Suppose on the contrary that G is a k-chordal almost self-centered

graph with diam(G) = r ≥ k + 1. Let x and x be diametrical vertices with
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ecc(x) = ecc(x) = r and let P : (x =)u0u1 . . . ur(= x) be a x, x-diametrical

path. Then ecc(u) = r − 1 for all the other vertices u ∈ V (G) − {x, x}. For

a =
⌈

k−1

2

⌉

+ 1 there exists ua with d(ua, ua) = r − 1.

Since d(ua, ua) = r − 1, we have r − a − 1 ≤ d(x, ua) ≤ r − 1. Let

Q : (x =)v0v1 . . . vq(= ua), r−a−1 ≤ q ≤ r−1, be a shortest x, ua-path. Note

that it is possible that vi = ui for 1 ≤ i < a, but all other vertices of P and Q

are different. For if a vertex us, s ≥ a, belongs to both P and Q, then ua is an

inner vertex on a shortest x, ua-path of length at most r − 1, a contradiction

with d(ua, ua) = r − 1.

Let R : (x =)w0w1 . . . wt(= ua), 1 ≤ t ≤ r − 1 be a shortest ua, x-path.

Let uℓ be the last vertex common to P and Q, while vp and us = wr−s be the

first vertices of Q and P , respectively, that are also on R. Suppose that there

exists a chord uavb for some ℓ ≤ b ≤ p. Then q − b + 1 ≥ d(ua, ua) = r − 1

and hence b ≤ q − r + 2 ≤ r − 1 − r + 2 = 1. Clearly uav0 = uax /∈ E(G) and

uav1 ∈ E(G) imply a contradiction with d(x, x) = r ≥ k + 1. Hence there is

no chord uavb. Similarly, if there exists a chord uawb for some r − s ≤ b ≤ p,

we have t− b+1 ≥ r−1 and again b ≤ 1. As before edge uaw0 is not possible,

but edge uaw1 can exists when r = 5 and k = 4. For r > 5 this is not possible

since we violate d(x, x) = r.

Assume first that uaw1 /∈ E(G). Fix edges ubvc, udwe, and vfwg, f ≥ c,

g ≥ e, and b < a < d, as follows. Let b < a be the biggest number with an

edge ubvy and among all such edges let c also be the biggest number. Note

that such an edge always exists, since uℓ+1vℓ is such an edge. Similarly let

d > a be smallest number with an edge udwy and among all such edges choose

e to be the biggest number. Again such an edge exists since us−1us is of that

type. Finally let f ≥ c be the smallest number such that edge vfwg exists,

where g ≥ e is also small as possible. Since vp−1vp is a candidate for this edge,

there is no problem with the existence of such an edge. We construct cycle C

13



as follows

ubvc
Q
→ vfwg

R
→ weud

P
→ ub.

By minimality or maximality of b, c, d, e, f, g it is clear that C is chordless. We

gain the contradiction by showing that C has length > k.

First note that since d(x, x) = r, vf is not adjacent to wg for g < r− f −1.

Thus g ≥ r − f − 1. Clearly

|C| = d − b + f − c + g − e + 3 ≥ r + 2 + d − b − c − e.

We will show that 2 + d − b − c − e ≥ 0 or equivalently d − b + 2 ≥ c + e.

Let P ′ be a path ua
P
→ udwe and P ′′ a path ua

P
→ ubvc. Note that P ′ ∩

P ′′ = {ua} and that the length of both is d − b + 2. If c > |P ′′| we have

q = d(x, ua) > |P ′′| + q − c ≥ r − 1, a contradiction. Similarly if e > |P ′| we

have t = d(x, ua) > |P ′| + t − e ≥ r − 1, a contradiction again. Thus c ≤ |P ′′|

and e ≤ |P ′| and d − b + 2 ≥ c + e follows. Hence C is a chordless cycle of

length |C| ≥ r + 2 + d − b − c − e ≥ r > k which is not possible in k-chordal

graphs.

Finally let uaw1 ∈ E(G). Then r = 5, k = 4, and in this case a = 3. Since

d(u3, u3) = 4 it is easy to see that u2v2, u2v1, u1v1, and u1v0 are all possible

edges of type ubvc. Instead of udwe we take u3w1 and for edge vfwg we have

the following possibilities: v1w3, v2w2, v2w3, v3w2, and v3w3 (whenever this

vertices exists). It is easy to see that combining this edges we always get a

chordless cycle of length at least 5, which is not possible in 4-chordal graphs.

�

As a direct consequence of Theorem 5.1 we get:

Corollary 5.2 If G is an almost self-centered graph of chordality k, then

diam(G) ≤ k.
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