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Abstract

Fibonacci cubes, extended Fibonacci cubes, and Lucas cubes are induced subgraphs of hypercubes
defined in terms of Fibonacci strings. Itis shown that all these graphs are median. Several enumeration
results on the number of their edges and squares are obtained. Some identities involving Fibonacci
and Lucas numbers are also presented.
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1. Introduction

Several classes of graphs based on Fibonacci strings were introduced in the last 10 years
as models for interconnection networks. Fibonacci cubes were definfédbinfollowed
with extended Fibonacci cub§b9] and Lucas cubed5]. Different structural properties
of the Fibonacci cubes were studied#9,10,16,17]while for additional information on
extended Fibonacci cubes and Lucas cube$l&jend[3], respectively.

The vertex set of the-cubeQ,, consists of all binary strings of length two vertices
being adjacent if the corresponding strings differ in precisely one place. Not@ tkatk»
andQ.>=C4. We also seQo= K1. The Fibonacci numbei, are defined withf'1 = Fo=1,
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F,=F,_1+F,_»forn>3,andthe Lucas numbers with=2,L1=1,L,=L,_1+L,,_»
forn>2.

A Fibonacci stringof lengthnis a binary strind1b5 . . . b, with b;b; 11 =0 for 1<i < n,
that is, a binary string without two consecutive ones. Fii®nacci cubd’, (n>1) is the
subgraph ofQ,, induced by the Fibonacci strings of lengthFor convenience we also set
I'o= K. Call a Fibonacci string1b> . . . b, aLucas stringf b1b, =0. Then thd_ucas cube
A, (n>2) is the subgraph of,, induced by the Lucas strings of lengthForn>i >0,
the ith extended Fibonacci cube of order ﬁ;, is defined as follows. LeB; be the set
of all binary strings of length. Then the vertex se¥, of I'! is defined recursively by
Vi, ,=0V[ ,U10V/, with initial conditionsV; = B;, V/, , = B; ;1. Note that ther™; = Q;
andr, , = Q;41. Observe also that) =TI,

The Fibonacci cubeg,s and s, the Lucas cubels, and the extended Fibonacci cube
F}l, are, together with the corresponding vertex labels, shoviagnl

For a graplG let, as usualy (G) be its vertex set anfl (G) its edge set. In addition, let
S(G) be the set of all induced squares (that is, 4-cycleg}.of
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Let G be a graph. Then medianof verticesu, v, w is a vertex that simultaneously lies
on a shortest, v-path, a shortest, w-path, and a shortest w-path. A connected graph is
called amedian graphf every triple of its vertices has a unique median. Note thatibes
are median graphs. For more information on these graphs we refer to the B]nmyoks
[7,12], and classical referencgs11].

In the next section we show that all the Fibonacci-like cubes introduced above are median
graphs. In particular, we construct an explicit retraction frignonto 4,, and mention an
expansion property of the Fibonacciand Lucas cubes. In the last section we use the expansion
property to obtain several enumerative results concerning the number of edges and squares
in these cubes, which in turn enable us to obtain some identities involving Fibonacci and
Lucas numbers.

2. Fibonacci-like cubes as median graphs

Median graphs form an important and well-studied class of graphs. In this section we
show that all the introduced Fibonacci-like cubes are median graphs which could be useful
for studies of the related interconnection networks.

Itis well known that a connected graf@hs a median graph if and only @ is an induced
subgraph of am-cube such that with any three vertices®their median in thex-cube is
also a vertex ofs. The result is due to Mulddd 1], see alsd2,14] for alternative proofs.

We say a subgrapH of a graphG is median closed, with any triple of vertices oH, their
median is also i.

Theorem 1. Ffl is a median graph for any >i >0, and 4,, is a median graph for any
n=2.

Proof. Clearly, anyl™,, n>i >0, and anyA,, n>2, is an induced subgraph ¢f,. We
first show thatfg = I', is a median closed subgraph @f,. So letu, v, w be arbitrary
vertices ofl’,, embedded int®,, with coordinates1us . . . u,,v1v2. .. v,, andwiws . .. w,,
respectively. It is well known (cf. the proof §f, Proposition 1.29]that the median of the
triple in Q,, is obtained by the majority rule: thith coordinate of the median is equal to the
element that appears at least twice amongshe;, andw;. Suppose that for somethe
majorities ofu;, v;, w; andu; 41, v;+1, w;4+1 are both equal to 1. But then in at least one of
the vertices:, v, w we find two consecutive 1's, say — u; 1 = 1, which is not possible. It
follows that the median of, v, w does not contain two consecutive 1's and so it is a vertex
of I',,. In other words[,, is a median closed subgraph@f, and hence a median graph by
the above theorem of Mulder.

To see that1,, is a median graph for any> 2, we use analogous argument. First, the ma-
jority of u, v, w does not contain two consecutive 1's. Moreover, the majority 061, w1
and the majority ofi,,, v,,, w,, cannot both be 1, for otherwise for at least one of the vertices
u, v, w, the first and the last coordinates would be 1. So the medianwfw is a vertex
of A,, and we are done.

In [18, Corollary 2.2]it is proved thatl™, = Fgﬂ.DQi =T,_;0Q;. Since the Cartesian
product operation preserves median graphs, and we have just shown tha median,
I'" is median as well. O
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One of the cornerstones in the theory of median graphs is the following theorem of
Bandelt[1]: A connected grapks is a median graph if and only & is a retract of some
n-cube. Recall that a subgraptof a graphG is aretractof G if there is an edge-preserving
mapr : V(G) — V(R) with r(x) = x, for all x € V(R), cf. [4]. The mapr is called a
retraction The next result shows that there is a natural retraction ffgranto A,,. Hence,
knowing thatl",, is a median graph, and since a composition of retractions is a retraction,
this result gives an alternative argument thatis a median graph.

Proposition 2. For anyn >2, 4, is a retract ofl,,.
Proof. Letthe mappingf : V(I',,) — V(A,) be defined with

Ououz...u,-10; uy=u, =1,

fw) = {u; otherwise

Clearly, f mapsI’,, onto 4, and fixes4,. Thus we only need to show thats edge-

preserving. Suppose first thab € E(I',) whereu, v ¢ A,,. Thenu = 1uy...u,—11 and

v=1vz...v,-11, where for exactly one index2<i<n — 1, u; # v;. Butthenf (u) =

Ousz...u,-10isadjacentty’ (v)=0v>...v,-10. The second case to consider is where

E(I'y) whereu ¢ A, andv € A, (or vice versa). Them = lus...u,_11 and, sincau is

adjacenttw, we may without loss of generality assume thatlv, . . . v,—10. Hencer; =v;

for anyi, 2<i<n — 1. Butthenf (u) =0u>...u,_10is adjacent tqgf (v) = lus...u,_10.
[

Another classical result on median graphs is due to Mulder. To state it some preparation
is needed. A subgrapH of a graphG is calledconvexif for any verticesu, v of H, any
shortestu, v-path of G lies completely inH. Let G’ be a connected graph with convex
subgraphs5}, G5 such thatG’ = G} U G5, G| N G5 is a nonempty convex subgraph of
G', and no vertex o7\ G}, is adjacent to a vertex @\ G}. Then theconvex expansion
of G’ with respect taG, G, is the graphG constructed as follows. Faér= 1, 2 let G; be
an isomorphic copy o6}, and for any vertex’ in G| N G5, letu; be the corresponding
vertex inG;, i = 1, 2. ThenG is obtained from the disjoint unio; U G2, where for
eachu’ in G} N G, the verticesy;andu are joined by an edge. Roughly speaking, the
convex expansion afi’ is obtained by selecting two convex subgraphs that c6Veand
have nonempty intersection, and expanding the intersection by blowing each vertex to an
edge. Then Muldefl11,12] proved that a grapls is a median graph if and only {& can
be obtained fromk; by a sequence of convex expansions. In fact, a strengthening of this
resultis true. Calling a convex expansioeripheralif G| < G/, or G, € G/, Mulder[13]
proved thatG is a median graph if and only @& can be obtained fronk'; by a sequence of
convexperipheralexpansions.

It is easy to see that the Fibonacci cubbg can be obtained by a convex peripheral
expansion froml",,_1, whererl’,_» is the peripheral subgraph. This in particular implies
that

|E(L) | = E(n-D)| + |[E(T'w-2)| + |VT'h-2)| oy
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and also
ST =1STn—D| + |SUTn-2)| + [ET'—-2)]. )

Similarly, the Lucas cubel,, is obtained by a convex peripheral expansion from 1,
wherel’,_3 is peripheral. Therefore, we have

|[EA)|=ET -]+ |[ET—3)| + VT —3)| (3
and
[SAD = ST - + ST p—3)| + |[E(T'y—3)]. 4)

These recurrences will be applied in the next section.

3. Enumerative properties

In this section we count the number of edges and squares for each of the Fibonacci cubes,
Lucas cubes, and extended Fibonacci cubes. Some relations involving Fibonacci and Lucas
numbers are obtained along the way.

3.1. Fibonacci cubes

The Fibonacci cubé’,, containsF),;» vertices, cf[6]. We next count the number of its
edges in the following way.

Proposition 3. Foranyn>1,

n—2

|E(T)| = Fasa+ ) FiFuri.
i=1

Proof. Forn = 1 andn = 2 the above sum vanishes, thus we [@etl';)| = 1 = F»> and
|E(I'2)| = 2= F3. Hence the equality holds far=1, 2. Letn >3 and assume that it holds
for all indices smaller tham. Then, using (1), the induction assumption, and keeping in
mind that|V (I',,—2)| = F,, we compute as follows:

n—3 n—4
|E(Iy)| = (Fn +y F,-Fn,) + (Fnl +> F,-Fnl,-> + Fy
i=1 i=1
n—4
=Foi1+ Y Fi(Fuoi+ Fy10) + Fy3Fs+ F,
i=1
n—4
= n+1+z FiFn+l—i + Fy_3F3+ F.
i=1
SinceF, 3F3+ Fy =2F, 3+ Fy 1+ Fy 2=3F, 3+ 2F, 2= F, 3F4+ F, 2F3, we
conclude thatE(I',)| = Fuy1 4 Y 1% FiFypr1-i. O
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In [15] it is proved that fom > 1,

nFuy1+2mn+DF,
5 .

(The result is there stated far> 2, but also holds for = 1.) Combining this formula with
Proposition 3 we get the next result.

|E(I'y)| = (5)

Corollary 4. Foranyn>1,n # 5,

52?;12 FiFpp1-i —2(n+ 1F,

F =
n+1 n_5

Note that Corollary 4 indeed holds also foe= 1, 2 since in these two cases the above
sum vanishesandwe gt =1=—-4/(1—-5) andF3=2=-6/(2—5).
We continue by counting the number of squares in the Fibonacci cubes.

Proposition 5. Foranyn>1,

ST ==+ (e 3Ly
W=t (10750 25) "

Proof. The right-hand side of the equality is O fo=1 andn =2, so the assertion holds for
I'1 andI'2. Letn >3 and assume that it holds for all indices smaller thaBy induction,
using (2) and (5), we thus have

Ssaf= 30 =D, (n—1)2+3(n—1) 1),
w = 25 " 10 50 25 "n1
3(n —2) n—22 3n-2 1
-2 Yp - —E,_
25 ”l+( 10 50 25) "2
n—2F1+2(n—1F,>
* 5
B 3(n—1)F+5n2—3n—8F +5n2+3n—8
- 25 " 50 -1 50 n-2
. 3nF +5n2—3n—2F
- o5l 50 "
3n 5n2 4+ 3n — 2
- _2F e O
25 n+1+ 50 n

The number of squares &f, can also be expressed as follows.

Proposition 6. For anyn >3,

n—2

ST =) FIET-1-).

i=1
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Proof. We again proceed by induction and first observe thatfer3 andn = 4 the sum
returns 1 and 3, respectively. Ligt andc, denote the number of edges and squards,of
respectively. Then fot > 5 we use (2) and proceed as follows:

n—3 n—4
Cp = Z Fiby 2 + Z Fiby—3-i +by—2
i=1 i=1
n—3

=Fiby 3+ Y (F;i + Fi-1)by2-i + Fib, 2
i=2
n—2
=F1b, o+ Fob, 3+ Z Fib, 1. O
i=3

Note that by combining Propositions 3 and 6, the number of squafgsain be expressed
using Fibonacci numbers only.

3.2. Lucas cubes

For the Lucas cubes we hay€(4,)| = L,, see[15]. The following expression for
the number of its edges was obtained using (3). However, we will follow an alternative
argument.

Proposition 7. For anyn >2,

n—1

|E()| =) Fily-1.

i=1

Proof. In [15, Proposition 4(ii)]it is shown that E(A4,)| = nF,_1, n>2, hence we are
going to show thaE,’.’;l1 F;L,_1-; =nF,_1. Clearly, the equality holds for = 2, 3 and
for the induction step we compute as follows:

n—1 n—1
Y Filpai=Ly2+Li3+) (Fii+F 2Ly 1
i=1 i=3
n—2 n—3
=L, 2+ Z FL, 2+ Z FiL, 3
i=1 i=1

=Lp2+m—-—DF, 2+ 0 —-2)F_3.
SinceL,_» = F,_» + 2F,_3, the result follows. [J
Combining Proposition 7 witfil5, Proposition 4(ii)Jwe immediately get the follow-

ing consequence. Since the identity is quite nice, we suspect that it could be previously
known.
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Corollary 8. Foranyn>2,

1 n—1
F, = Z FiL,_;.
n—1 =

For the number of squares df, we have:

Proposition 9. For anyn >5,

n—4

IS =Y Lil E(Tw-3-0).

i=0

Proof. Combining Eq. (4) with Proposition 6, settirsg for the number of edges df,,
andc,, for the number of squares dff,, we have

n—3 n—5
= Z Fiby 2 + Z Fiby_4_i +b,_3
i=1 i=1
n—5
= F1b, 3+ Fab, 4+ Z (Fi + Fiy2)by—4a—i +by—3
i=1
n—5
=Loby—3+ Lib, 4+ Z (Fi + Fit2)bp—a-i.
i=1

SinceF; + F;;2 = L;+1, the result follows. O
3.3. Extended Fibonacci cubes

Aswe already mentioneﬂi,:F,,,iDQi holds forn >i > 0. Therefore, counting vertices,
edges, and squares of extended Fibonacci cubes reduces to the corresponding problems in
Fibonacci cubes. More precisely, using only basic properties of the Cartesian product, cf.
[7], the following equalities are straightforward:

VI = VT - V()| = Fug2-i 2';

[EW)| =V In=i)| - IEQ)| + |[E(Ln=p| - [V(Q)]
= Fup2-ii2 N+ |[E(T,-)| 2';

IS =V T - 1S+ 1ET =) - [E@D] + [ST =) - 1V (Qi)]
= Fupo-ii(i = D273+ |E(T,-)li2 7+ [S(F-) 12"
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