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Abstract

Fibonacci cubes, extended Fibonacci cubes, and Lucas cubes are induced subgraphs of hypercubes
defined in terms of Fibonacci strings. It is shown that all these graphs aremedian. Several enumeration
results on the number of their edges and squares are obtained. Some identities involving Fibonacci
and Lucas numbers are also presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Several classes of graphs based on Fibonacci strings were introduced in the last 10 years
as models for interconnection networks. Fibonacci cubes were defined in[5,6], followed
with extended Fibonacci cubes[19] and Lucas cubes[15]. Different structural properties
of the Fibonacci cubes were studied in[3,9,10,16,17], while for additional information on
extended Fibonacci cubes and Lucas cubes see[18] and[3], respectively.
The vertex set of then-cubeQn consists of all binary strings of lengthn, two vertices

being adjacent if the corresponding strings differ in precisely one place. Note thatQ1=K2
andQ2=C4.We also setQ0=K1. The Fibonacci numbersFn are definedwithF1=F2=1,
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Fn =Fn−1+Fn−2 for n�3, and the Lucas numbers withL0=2,L1=1,Ln =Ln−1+Ln−2
for n�2.
A Fibonacci stringof lengthn is a binary stringb1b2 . . . bn with bibi+1=0 for 1� i < n,

that is, a binary string without two consecutive ones. TheFibonacci cube�n (n�1) is the
subgraph ofQn induced by the Fibonacci strings of lengthn. For convenience we also set
�0=K1. Call a Fibonacci stringb1b2 . . . bn aLucas stringif b1bn =0. Then theLucas cube
�n (n�2) is the subgraph ofQn induced by the Lucas strings of lengthn. For n� i�0,
the ith extended Fibonacci cube of order n, �i

n, is defined as follows. LetBi be the set
of all binary strings of lengthi. Then the vertex setV i

n of �i
n is defined recursively by

V i
n+2=0V i

n+1∪10V i
n , with initial conditionsV

i
i =Bi ,V i

i+1=Bi+1. Note that then�i
i =Qi

and�i
i+1 = Qi+1. Observe also that�0

n = �n.
The Fibonacci cubes�4 and�5, the Lucas cube�5, and the extended Fibonacci cube

�1
4, are, together with the corresponding vertex labels, shown inFig. 1.
For a graphG let, as usual,V (G) be its vertex set andE(G) its edge set. In addition, let

S(G) be the set of all induced squares (that is, 4-cycles) ofG.
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LetG be a graph. Then amedianof verticesu, v, w is a vertex that simultaneously lies
on a shortestu, v-path, a shortestu, w-path, and a shortestv, w-path. A connected graph is
called amedian graphif every triple of its vertices has a unique median. Note thatn-cubes
are median graphs. For more information on these graphs we refer to the survey[8], books
[7,12], and classical references[1,11].
In the next section we show that all the Fibonacci-like cubes introduced above aremedian

graphs. In particular, we construct an explicit retraction from�n onto�n and mention an
expansionpropertyof theFibonacci andLucascubes. In the last sectionweuse theexpansion
property to obtain several enumerative results concerning the number of edges and squares
in these cubes, which in turn enable us to obtain some identities involving Fibonacci and
Lucas numbers.

2. Fibonacci-like cubes as median graphs

Median graphs form an important and well-studied class of graphs. In this section we
show that all the introduced Fibonacci-like cubes are median graphs which could be useful
for studies of the related interconnection networks.
It is well known that a connected graphG is a median graph if and only ifG is an induced

subgraph of ann-cube such that with any three vertices ofG their median in then-cube is
also a vertex ofG. The result is due to Mulder[11], see also[2,14] for alternative proofs.
We say a subgraphH of a graphG ismedian closedif, with any triple of vertices ofH, their
median is also inH.

Theorem 1. �i
n is a median graph for anyn� i�0, and�n is a median graph for any

n�2.

Proof. Clearly, any�i
n, n� i�0, and any�n, n�2, is an induced subgraph ofQn. We

first show that�0
n = �n is a median closed subgraph ofQn. So letu, v, w be arbitrary

verticesof�n embedded intoQnwith coordinatesu1u2 . . . un,v1v2 . . . vn, andw1w2 . . . wn,
respectively. It is well known (cf. the proof of[7, Proposition 1.29]) that the median of the
triple inQn is obtained by the majority rule: theith coordinate of the median is equal to the
element that appears at least twice among theui , vi , andwi . Suppose that for somei, the
majorities ofui, vi, wi andui+1, vi+1, wi+1 are both equal to 1. But then in at least one of
the verticesu, v, w we find two consecutive 1’s, sayui =ui+1=1, which is not possible. It
follows that the median ofu, v, w does not contain two consecutive 1’s and so it is a vertex
of �n. In other words,�n is a median closed subgraph ofQn and hence a median graph by
the above theorem of Mulder.
To see that�n is a median graph for anyn�2, we use analogous argument. First, the ma-

jority of u, v, w does not contain two consecutive 1’s. Moreover, the majority ofu1, v1, w1
and themajority ofun, vn, wn cannot both be 1, for otherwise for at least one of the vertices
u, v, w, the first and the last coordinates would be 1. So the median ofu, v, w is a vertex
of �n and we are done.
In [18, Corollary 2.2]it is proved that�i

n = �0
n−i�Qi = �n−i�Qi . Since the Cartesian

product operation preserves median graphs, and we have just shown that�n−i is median,
�i

n is median as well. �
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One of the cornerstones in the theory of median graphs is the following theorem of
Bandelt[1]: A connected graphG is a median graph if and only ifG is a retract of some
n-cube. Recall that a subgraphRof a graphG is aretractofG if there is an edge-preserving
mapr : V (G) → V (R) with r(x) = x, for all x ∈ V (R), cf. [4]. The mapr is called a
retraction. The next result shows that there is a natural retraction from�n onto�n. Hence,
knowing that�n is a median graph, and since a composition of retractions is a retraction,
this result gives an alternative argument that�n is a median graph.

Proposition 2. For anyn�2,�n is a retract of�n.

Proof. Let the mappingf : V (�n) → V (�n) be defined with

f (u) =
{
0u2u3 . . . un−10; u1 = un = 1,
u; otherwise.

Clearly, f maps�n onto �n and fixes�n. Thus we only need to show thatf is edge-
preserving. Suppose first thatuv ∈ E(�n) whereu, v /∈ �n. Thenu = 1u2 . . . un−11 and
v = 1v2 . . . vn−11, where for exactly one indexi, 2� i�n − 1, ui 	= vi . But thenf (u) =
0u2 . . . un−10 is adjacent tof (v)=0v2 . . . vn−10. The second case to consider is whenuv ∈
E(�n) whereu /∈ �n andv ∈ �n (or vice versa). Thenu = 1u2 . . . un−11 and, sinceu is
adjacent tov, wemaywithout loss of generality assume thatv=1v2 . . . vn−10. Henceui =vi

for anyi, 2� i�n − 1. But thenf (u) = 0u2 . . . un−10 is adjacent tof (v) = 1u2 . . . un−10.
�

Another classical result on median graphs is due to Mulder. To state it some preparation
is needed. A subgraphH of a graphG is calledconvexif for any verticesu, v of H, any
shortestu, v-path ofG lies completely inH. Let G′ be a connected graph with convex
subgraphsG′

1, G
′
2 such thatG′ = G′

1 ∪ G′
2, G

′
1 ∩ G′

2 is a nonempty convex subgraph of
G′, and no vertex ofG′

1\G′
2 is adjacent to a vertex ofG

′
2\G′

1. Then theconvex expansion
of G′ with respect toG′

1, G
′
2 is the graphG constructed as follows. Fori = 1,2 letGi be

an isomorphic copy ofG′
i , and for any vertexu′ in G′

1 ∩ G′
2, let ui be the corresponding

vertex inGi , i = 1,2. ThenG is obtained from the disjoint unionG1 ∪ G2, where for
eachu′ in G′

1 ∩ G′
2 the verticesu1andu2 are joined by an edge. Roughly speaking, the

convex expansion ofG′ is obtained by selecting two convex subgraphs that coverG′ and
have nonempty intersection, and expanding the intersection by blowing each vertex to an
edge. Then Mulder[11,12] proved that a graphG is a median graph if and only ifG can
be obtained fromK1 by a sequence of convex expansions. In fact, a strengthening of this
result is true. Calling a convex expansionperipheralif G′

1 ⊆ G′
2 orG

′
2 ⊆ G′

1, Mulder[13]
proved thatG is a median graph if and only ifG can be obtained fromK1 by a sequence of
convexperipheralexpansions.
It is easy to see that the Fibonacci cube�n can be obtained by a convex peripheral

expansion from�n−1, where�n−2 is the peripheral subgraph. This in particular implies
that

|E(�n)| = |E(�n−1)| + |E(�n−2)| + |V (�n−2)| (1)
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and also

|S(�n)| = |S(�n−1)| + |S(�n−2)| + |E(�n−2)|. (2)

Similarly, the Lucas cube�n is obtained by a convex peripheral expansion from�n−1,
where�n−3 is peripheral. Therefore, we have

|E(�n)| = |E(�n−1)| + |E(�n−3)| + |V (�n−3)| (3)

and

|S(�n)| = |S(�n−1)| + |S(�n−3)| + |E(�n−3)|. (4)

These recurrences will be applied in the next section.

3. Enumerative properties

In this section we count the number of edges and squares for each of the Fibonacci cubes,
Lucas cubes, and extended Fibonacci cubes. Some relations involving Fibonacci and Lucas
numbers are obtained along the way.

3.1. Fibonacci cubes

The Fibonacci cube�n containsFn+2 vertices, cf.[6]. We next count the number of its
edges in the following way.

Proposition 3. For anyn�1,

|E(�n)| = Fn+1 +
n−2∑
i=1

FiFn+1−i .

Proof. For n = 1 andn = 2 the above sum vanishes, thus we get|E(�1)| = 1= F2 and
|E(�2)| = 2= F3. Hence the equality holds forn = 1,2. Letn�3 and assume that it holds
for all indices smaller thann. Then, using (1), the induction assumption, and keeping in
mind that|V (�n−2)| = Fn, we compute as follows:

|E(�n)| =
(

Fn +
n−3∑
i=1

FiFn−i

)
+
(

Fn−1 +
n−4∑
i=1

FiFn−1−i

)
+ Fn

= Fn+1 +
n−4∑
i=1

Fi(Fn−i + Fn−1−i ) + Fn−3F3 + Fn

= Fn+1 +
n−4∑
i=1

FiFn+1−i + Fn−3F3 + Fn.

SinceFn−3F3 + Fn = 2Fn−3 + Fn−1 + Fn−2 = 3Fn−3 + 2Fn−2 = Fn−3F4 + Fn−2F3, we
conclude that|E(�n)| = Fn+1 +∑n−2

i=1 FiFn+1−i . �
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In [15] it is proved that forn�1,

|E(�n)| = nFn+1 + 2(n + 1)Fn

5
. (5)

(The result is there stated forn�2, but also holds forn = 1.) Combining this formula with
Proposition 3 we get the next result.

Corollary 4. For anyn�1, n 	= 5,

Fn+1 = 5
∑n−2

i=1 FiFn+1−i − 2(n + 1)Fn

n − 5
.

Note that Corollary 4 indeed holds also forn = 1,2 since in these two cases the above
sum vanishes and we getF2 = 1= −4/(1− 5) andF3 = 2= −6/(2− 5).
We continue by counting the number of squares in the Fibonacci cubes.

Proposition 5. For anyn�1,

|S(�n)| = −3n

25
Fn+1 +

(
n2

10
+ 3n

50
− 1

25

)
Fn.

Proof. The right-hand side of the equality is 0 forn=1 andn=2, so the assertion holds for
�1 and�2. Let n�3 and assume that it holds for all indices smaller thann. By induction,
using (2) and (5), we thus have

|S(�n)| = − 3(n − 1)

25
Fn +

(
(n − 1)2

10
+ 3(n − 1)

50
− 1

25

)
Fn−1

− 3(n − 2)

25
Fn−1 +

(
(n − 2)2

10
+ 3(n − 2)

50
− 1

25

)
Fn−2

+ (n − 2)Fn−1 + 2(n − 1)Fn−2

5

= − 3(n − 1)

25
Fn + 5n2 − 3n − 8

50
Fn−1 + 5n2 + 3n − 8

50
Fn−2

= − 3n

25
Fn−1 + 5n2 − 3n − 2

50
Fn

= − 3n

25
Fn+1 + 5n2 + 3n − 2

50
Fn. �

The number of squares of�n can also be expressed as follows.

Proposition 6. For anyn�3,

|S(�n)| =
n−2∑
i=1

Fi |E(�n−1−i )|.
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Proof. We again proceed by induction and first observe that forn = 3 andn = 4 the sum
returns 1 and 3, respectively. Letbn andcn denote the number of edges and squares of�n,
respectively. Then forn�5 we use (2) and proceed as follows:

cn =
n−3∑
i=1

Fibn−2−i +
n−4∑
i=1

Fibn−3−i + bn−2

= F1bn−3 +
n−3∑
i=2

(Fi + Fi−1)bn−2−i + F1bn−2

= F1bn−2 + F2 bn−3 +
n−2∑
i=3

Fibn−1−i . �

Note thatbycombiningPropositions3and6, thenumberof squaresof�n canbeexpressed
using Fibonacci numbers only.

3.2. Lucas cubes

For the Lucas cubes we have|V (�n)| = Ln, see[15]. The following expression for
the number of its edges was obtained using (3). However, we will follow an alternative
argument.

Proposition 7. For anyn�2,

|E(�n)| =
n−1∑
i=1

FiLn−1−i .

Proof. In [15, Proposition 4(ii)]it is shown that|E(�n)| = nFn−1, n�2, hence we are
going to show that

∑n−1
i=1 FiLn−1−i = nFn−1. Clearly, the equality holds forn = 2,3 and

for the induction step we compute as follows:

n−1∑
i=1

FiLn−1−i = Ln−2 + Ln−3 +
n−1∑
i=3

(Fi−1 + Fi−2)Ln−1−i

= Ln−2 +
n−2∑
i=1

FiLn−2−i +
n−3∑
i=1

FiLn−3−i

= Ln−2 + (n − 1)Fn−2 + (n − 2)Fn−3.

SinceLn−2 = Fn−2 + 2Fn−3, the result follows. �

Combining Proposition 7 with[15, Proposition 4(ii)]we immediately get the follow-
ing consequence. Since the identity is quite nice, we suspect that it could be previously
known.
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Corollary 8. For anyn�2,

Fn = 1

n − 1

n−1∑
i=1

FiLn−i .

For the number of squares of�n we have:

Proposition 9. For anyn�5,

|S(�n)| =
n−4∑
i=0

Li |E(�n−3−i )|.

Proof. Combining Eq. (4) with Proposition 6, settingbn for the number of edges of�n,
andc′

n for the number of squares of�n, we have

c′
n =

n−3∑
i=1

Fibn−2−i +
n−5∑
i=1

Fibn−4−i + bn−3

= F1bn−3 + F2bn−4 +
n−5∑
i=1

(Fi + Fi+2)bn−4−i + bn−3

= L0bn−3 + L1bn−4 +
n−5∑
i=1

(Fi + Fi+2)bn−4−i .

SinceFi + Fi+2 = Li+1, the result follows. �

3.3. Extended Fibonacci cubes

Aswealreadymentioned,�i
n=�n−i�Qi holds forn� i�0.Therefore, countingvertices,

edges, and squares of extended Fibonacci cubes reduces to the corresponding problems in
Fibonacci cubes. More precisely, using only basic properties of the Cartesian product, cf.
[7], the following equalities are straightforward:

|V (�i
n)| = |V (�n−i )| · |V (Qi)| = Fn+2−i 2

i ;

|E(�i
n)| = |V (�n−i )| · |E(Qi)| + |E(�n−i )| · |V (Qi)|

= Fn+2−i i2
i−1 + |E(�n−i )|2i ;

|S(�i
n)| = |V (�n−i )| · |S(Qi)| + |E(�n−i )| · |E(Qi)| + |S(�n−i )| · |V (Qi)|

= Fn+2−i i(i − 1)2i−3 + |E(�n−i )|i2i−1 + |S(�n−i )|2i .

References

[1] H.-J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501–510.
[2] F.R.K. Chung, R.L. Graham, M.E. Saks, Dynamic search in graphs, in: H. Wilf (Ed.), Discrete Algorithms

and Complexity, Academic Press, NewYork, 1987, pp. 351–387.



S. Klavžar /Discrete Mathematics 299 (2005) 145–153 153

[3] E. Dedó, D. Torri, N. Zagaglia Salvi, The observability of the Fibonacci and the Lucas cubes, Discrete Math.
255 (2002) 55–63.

[4] P. Hell, Absolute retracts in graphs, Lecture Notes in Math. 406 (1974) 291–301.
[5] W.-J. Hsu, Fibonacci cubes—a new interconnection topology, IEEE Trans. Parallel Distr. Systems 4 (1993)

3–12.
[6] W.-J. Hsu, C.V. Page, J.-S. Liu, Fibonacci cubes—a class of self-similar graphs, Fibonacci Quart. 31 (1993)

65–72.
[7] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, NewYork, 2000.
[8] S. Klavžar, H.M.Mulder, Median graphs: characterizations, location theory and related structures, J. Combin.

Math. Combin. Comput. 30 (1999) 103–127.
[9] S. Klavžar, P. Žigert, Fibonacci cubes are the resonance graphs of fibonaccenes, Fibonacci Quart., 2005, in

press.
[10] J. Liu, W.-J. Hsu, M.J. Chung, Generalized Fibonacci cubes are mostly hamiltonian, J. Graph Theory 18

(1994) 817–829.
[11] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197–204.
[12] H.M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts 132, Mathematisch Centrum,

Amsterdam, 1980.
[13] H.M. Mulder, The expansion procedure for graphs, in: R. Bodendiek (Ed.), Contemporary Methods in Graph

Theory, Wissenschaftsverlag, Mannhaim, 1990, pp. 459–477.
[14] H.M. Mulder, A. Schrijver, Median graphs and Helly hypergraphs, Discrete Math. 25 (1979) 41–50.
[15] E. Munarini, C. Perelli Cippo, N. Zagaglia Salvi, On the Lucas cubes, Fibonacci Quart. 39 (2001) 12–21.
[16] E. Munarini, N. Zagaglia Salvi, Structural and enumerative properties of the Fibonacci cubes, Discrete Math.

255 (2002) 317–324.
[17] M.S. Tong, C.H. Liu, T.Y. Fan, Z.C. Huang, An algorithm for finding parallel paths between two nodes in

Fibonacci cubes, J. Beijing Inst. Technol. 19 (1999) 180–185 (in Chinese).
[18] C. Whitehead, N. Zagaglia Salvi, Observability of the extended Fibonacci cubes, Discrete Math. 266 (2003)

431–440.
[19] J. Wu, Extended Fibonacci cubes, IEEE Trans. Parallel Distr. Systems 8 (1997) 3–9.


	On median nature and enumerative propertiesof Fibonacci-like cubes62626262
	Introduction
	Fibonacci-like cubes as median graphs
	Enumerative properties
	Fibonacci cubes
	Lucas cubes
	Extended Fibonacci cubes

	References


