On median nature and enumerative properties of Fibonacci-like cubes ${ }^{2}$

Sandi Klavžar
Department of Mathematics and Computer Science, University of Maribor, PeF, Koroška cesta 160, 2000 Maribor, Slovenia

Received 12 August 2003; received in revised form 12 December 2003; accepted 12 February 2004
Available online 21 July 2005

Abstract

Fibonacci cubes, extended Fibonacci cubes, and Lucas cubes are induced subgraphs of hypercubes defined in terms of Fibonacci strings. It is shown that all these graphs are median. Several enumeration results on the number of their edges and squares are obtained. Some identities involving Fibonacci and Lucas numbers are also presented. © 2005 Elsevier B.V. All rights reserved.

Keywords: (Extended) Fibonacci cube; Lucas cube; Median graph; Cartesian product; Fibonacci number; Lucas number

1. Introduction

Several classes of graphs based on Fibonacci strings were introduced in the last 10 years as models for interconnection networks. Fibonacci cubes were defined in [5,6], followed with extended Fibonacci cubes [19] and Lucas cubes [15]. Different structural properties of the Fibonacci cubes were studied in [3,9,10,16,17], while for additional information on extended Fibonacci cubes and Lucas cubes see [18] and [3], respectively.
The vertex set of the n-cube Q_{n} consists of all binary strings of length n, two vertices being adjacent if the corresponding strings differ in precisely one place. Note that $Q_{1}=K_{2}$ and $Q_{2}=C_{4}$. We also set $Q_{0}=K_{1}$. The Fibonacci numbers F_{n} are defined with $F_{1}=F_{2}=1$,

[^0]

Fig. 1. $\Gamma_{4}, \Gamma_{5}, \Lambda_{5}$, and Γ_{4}^{1}.
$F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 3$, and the Lucas numbers with $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geqslant 2$.

A Fibonacci string of length n is a binary string $b_{1} b_{2} \ldots b_{n}$ with $b_{i} b_{i+1}=0$ for $1 \leqslant i<n$, that is, a binary string without two consecutive ones. The Fibonacci cube $\Gamma_{n}(n \geqslant 1)$ is the subgraph of Q_{n} induced by the Fibonacci strings of length n. For convenience we also set $\Gamma_{0}=K_{1}$. Call a Fibonacci string $b_{1} b_{2} \ldots b_{n}$ a Lucas string if $b_{1} b_{n}=0$. Then the Lucas cube $\Lambda_{n}(n \geqslant 2)$ is the subgraph of Q_{n} induced by the Lucas strings of length n. For $n \geqslant i \geqslant 0$, the i th extended Fibonacci cube of order n, Γ_{n}^{i}, is defined as follows. Let B_{i} be the set of all binary strings of length i. Then the vertex set V_{n}^{i} of Γ_{n}^{i} is defined recursively by $V_{n+2}^{i}=0 V_{n+1}^{i} \cup 10 V_{n}^{i}$, with initial conditions $V_{i}^{i}=B_{i}, V_{i+1}^{i}=B_{i+1}$. Note that then $\Gamma_{i}^{i}=Q_{i}$ and $\Gamma_{i+1}^{i}=Q_{i+1}$. Observe also that $\Gamma_{n}^{0}=\Gamma_{n}$.

The Fibonacci cubes Γ_{4} and Γ_{5}, the Lucas cube Λ_{5}, and the extended Fibonacci cube Γ_{4}^{1}, are, together with the corresponding vertex labels, shown in Fig. 1.

For a graph G let, as usual, $V(G)$ be its vertex set and $E(G)$ its edge set. In addition, let $S(G)$ be the set of all induced squares (that is, 4-cycles) of G.

Let G be a graph. Then a median of vertices u, v, w is a vertex that simultaneously lies on a shortest u, v-path, a shortest u, w-path, and a shortest v, w-path. A connected graph is called a median graph if every triple of its vertices has a unique median. Note that n-cubes are median graphs. For more information on these graphs we refer to the survey [8], books [7,12], and classical references [1,11].

In the next section we show that all the Fibonacci-like cubes introduced above are median graphs. In particular, we construct an explicit retraction from Γ_{n} onto Λ_{n} and mention an expansion property of the Fibonacci and Lucas cubes. In the last section we use the expansion property to obtain several enumerative results concerning the number of edges and squares in these cubes, which in turn enable us to obtain some identities involving Fibonacci and Lucas numbers.

2. Fibonacci-like cubes as median graphs

Median graphs form an important and well-studied class of graphs. In this section we show that all the introduced Fibonacci-like cubes are median graphs which could be useful for studies of the related interconnection networks.

It is well known that a connected graph G is a median graph if and only if G is an induced subgraph of an n-cube such that with any three vertices of G their median in the n-cube is also a vertex of G. The result is due to Mulder [11], see also [2,14] for alternative proofs. We say a subgraph H of a graph G is median closed if, with any triple of vertices of H, their median is also in H.

Theorem 1. Γ_{n}^{i} is a median graph for any $n \geqslant i \geqslant 0$, and Λ_{n} is a median graph for any $n \geqslant 2$.

Proof. Clearly, any $\Gamma_{n}^{i}, n \geqslant i \geqslant 0$, and any $\Lambda_{n}, n \geqslant 2$, is an induced subgraph of Q_{n}. We first show that $\Gamma_{n}^{0}=\Gamma_{n}$ is a median closed subgraph of Q_{n}. So let u, v, w be arbitrary vertices of Γ_{n} embedded into Q_{n} with coordinates $u_{1} u_{2} \ldots u_{n}, v_{1} v_{2} \ldots v_{n}$, and $w_{1} w_{2} \ldots w_{n}$, respectively. It is well known (cf. the proof of [7, Proposition 1.29]) that the median of the triple in Q_{n} is obtained by the majority rule: the i th coordinate of the median is equal to the element that appears at least twice among the u_{i}, v_{i}, and w_{i}. Suppose that for some i, the majorities of u_{i}, v_{i}, w_{i} and $u_{i+1}, v_{i+1}, w_{i+1}$ are both equal to 1 . But then in at least one of the vertices u, v, w we find two consecutive 1 's, say $u_{i}=u_{i+1}=1$, which is not possible. It follows that the median of u, v, w does not contain two consecutive 1 's and so it is a vertex of Γ_{n}. In other words, Γ_{n} is a median closed subgraph of Q_{n} and hence a median graph by the above theorem of Mulder.

To see that Λ_{n} is a median graph for any $n \geqslant 2$, we use analogous argument. First, the majority of u, v, w does not contain two consecutive 1 's. Moreover, the majority of u_{1}, v_{1}, w_{1} and the majority of u_{n}, v_{n}, w_{n} cannot both be 1 , for otherwise for at least one of the vertices u, v, w, the first and the last coordinates would be 1 . So the median of u, v, w is a vertex of Λ_{n} and we are done.

In [18, Corollary 2.2] it is proved that $\Gamma_{n}^{i}=\Gamma_{n-i}^{0} \square Q_{i}=\Gamma_{n-i} \square Q_{i}$. Since the Cartesian product operation preserves median graphs, and we have just shown that Γ_{n-i} is median, Γ_{n}^{i} is median as well.

One of the cornerstones in the theory of median graphs is the following theorem of Bandelt [1]: A connected graph G is a median graph if and only if G is a retract of some n-cube. Recall that a subgraph R of a graph G is a retract of G if there is an edge-preserving map $r: V(G) \rightarrow V(R)$ with $r(x)=x$, for all $x \in V(R)$, cf. [4]. The map r is called a retraction. The next result shows that there is a natural retraction from Γ_{n} onto Λ_{n}. Hence, knowing that Γ_{n} is a median graph, and since a composition of retractions is a retraction, this result gives an alternative argument that Λ_{n} is a median graph.

Proposition 2. For any $n \geqslant 2, \Lambda_{n}$ is a retract of Γ_{n}.
Proof. Let the mapping $f: V\left(\Gamma_{n}\right) \rightarrow V\left(\Lambda_{n}\right)$ be defined with

$$
f(u)= \begin{cases}0 u_{2} u_{3} \ldots u_{n-1} 0 ; & u_{1}=u_{n}=1 \\ u ; & \text { otherwise }\end{cases}
$$

Clearly, f maps Γ_{n} onto Λ_{n} and fixes Λ_{n}. Thus we only need to show that f is edgepreserving. Suppose first that $u v \in E\left(\Gamma_{n}\right)$ where $u, v \notin \Lambda_{n}$. Then $u=1 u_{2} \ldots u_{n-1} 1$ and $v=1 v_{2} \ldots v_{n-1} 1$, where for exactly one index $i, 2 \leqslant i \leqslant n-1, u_{i} \neq v_{i}$. But then $f(u)=$ $0 u_{2} \ldots u_{n-1} 0$ is adjacent to $f(v)=0 v_{2} \ldots v_{n-1} 0$. The second case to consider is when $u v \in$ $E\left(\Gamma_{n}\right)$ where $u \notin \Lambda_{n}$ and $v \in \Lambda_{n}$ (or vice versa). Then $u=1 u_{2} \ldots u_{n-1} 1$ and, since u is adjacent to v, we may without loss of generality assume that $v=1 v_{2} \ldots v_{n-1} 0$. Hence $u_{i}=v_{i}$ for any $i, 2 \leqslant i \leqslant n-1$. But then $f(u)=0 u_{2} \ldots u_{n-1} 0$ is adjacent to $f(v)=1 u_{2} \ldots u_{n-1} 0$.

Another classical result on median graphs is due to Mulder. To state it some preparation is needed. A subgraph H of a graph G is called convex if for any vertices u, v of H, any shortest u, v-path of G lies completely in H. Let G^{\prime} be a connected graph with convex subgraphs $G_{1}^{\prime}, G_{2}^{\prime}$ such that $G^{\prime}=G_{1}^{\prime} \cup G_{2}^{\prime}, G_{1}^{\prime} \cap G_{2}^{\prime}$ is a nonempty convex subgraph of G^{\prime}, and no vertex of $G_{1}^{\prime} \backslash G_{2}^{\prime}$ is adjacent to a vertex of $G_{2}^{\prime} \backslash G_{1}^{\prime}$. Then the convex expansion of G^{\prime} with respect to $G_{1}^{\prime}, G_{2}^{\prime}$ is the graph G constructed as follows. For $i=1,2$ let G_{i} be an isomorphic copy of G_{i}^{\prime}, and for any vertex u^{\prime} in $G_{1}^{\prime} \cap G_{2}^{\prime}$, let u_{i} be the corresponding vertex in $G_{i}, i=1,2$. Then G is obtained from the disjoint union $G_{1} \cup G_{2}$, where for each u^{\prime} in $G_{1}^{\prime} \cap G_{2}^{\prime}$ the vertices u_{1} and u_{2} are joined by an edge. Roughly speaking, the convex expansion of G^{\prime} is obtained by selecting two convex subgraphs that cover G^{\prime} and have nonempty intersection, and expanding the intersection by blowing each vertex to an edge. Then Mulder [11,12] proved that a graph G is a median graph if and only if G can be obtained from K_{1} by a sequence of convex expansions. In fact, a strengthening of this result is true. Calling a convex expansion peripheral if $G_{1}^{\prime} \subseteq G_{2}^{\prime}$ or $G_{2}^{\prime} \subseteq G_{1}^{\prime}$, Mulder [13] proved that G is a median graph if and only if G can be obtained from K_{1} by a sequence of convex peripheral expansions.

It is easy to see that the Fibonacci cube Γ_{n} can be obtained by a convex peripheral expansion from Γ_{n-1}, where Γ_{n-2} is the peripheral subgraph. This in particular implies that

$$
\begin{equation*}
\left|E\left(\Gamma_{n}\right)\right|=\left|E\left(\Gamma_{n-1}\right)\right|+\left|E\left(\Gamma_{n-2}\right)\right|+\left|V\left(\Gamma_{n-2}\right)\right| \tag{1}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left|S\left(\Gamma_{n}\right)\right|=\left|S\left(\Gamma_{n-1}\right)\right|+\left|S\left(\Gamma_{n-2}\right)\right|+\left|E\left(\Gamma_{n-2}\right)\right| . \tag{2}
\end{equation*}
$$

Similarly, the Lucas cube Λ_{n} is obtained by a convex peripheral expansion from Γ_{n-1}, where Γ_{n-3} is peripheral. Therefore, we have

$$
\begin{equation*}
\left|E\left(\Lambda_{n}\right)\right|=\left|E\left(\Gamma_{n-1}\right)\right|+\left|E\left(\Gamma_{n-3}\right)\right|+\left|V\left(\Gamma_{n-3}\right)\right| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S\left(\Lambda_{n}\right)\right|=\left|S\left(\Gamma_{n-1}\right)\right|+\left|S\left(\Gamma_{n-3}\right)\right|+\left|E\left(\Gamma_{n-3}\right)\right| . \tag{4}
\end{equation*}
$$

These recurrences will be applied in the next section.

3. Enumerative properties

In this section we count the number of edges and squares for each of the Fibonacci cubes, Lucas cubes, and extended Fibonacci cubes. Some relations involving Fibonacci and Lucas numbers are obtained along the way.

3.1. Fibonacci cubes

The Fibonacci cube Γ_{n} contains F_{n+2} vertices, cf. [6]. We next count the number of its edges in the following way.

Proposition 3. For any $n \geqslant 1$,

$$
\left|E\left(\Gamma_{n}\right)\right|=F_{n+1}+\sum_{i=1}^{n-2} F_{i} F_{n+1-i}
$$

Proof. For $n=1$ and $n=2$ the above sum vanishes, thus we get $\left|E\left(\Gamma_{1}\right)\right|=1=F_{2}$ and $\left|E\left(\Gamma_{2}\right)\right|=2=F_{3}$. Hence the equality holds for $n=1,2$. Let $n \geqslant 3$ and assume that it holds for all indices smaller than n. Then, using (1), the induction assumption, and keeping in mind that $\left|V\left(\Gamma_{n-2}\right)\right|=F_{n}$, we compute as follows:

$$
\begin{aligned}
\left|E\left(\Gamma_{n}\right)\right| & =\left(F_{n}+\sum_{i=1}^{n-3} F_{i} F_{n-i}\right)+\left(F_{n-1}+\sum_{i=1}^{n-4} F_{i} F_{n-1-i}\right)+F_{n} \\
& =F_{n+1}+\sum_{i=1}^{n-4} F_{i}\left(F_{n-i}+F_{n-1-i}\right)+F_{n-3} F_{3}+F_{n} \\
& =F_{n+1}+\sum_{i=1}^{n-4} F_{i} F_{n+1-i}+F_{n-3} F_{3}+F_{n} .
\end{aligned}
$$

Since $F_{n-3} F_{3}+F_{n}=2 F_{n-3}+F_{n-1}+F_{n-2}=3 F_{n-3}+2 F_{n-2}=F_{n-3} F_{4}+F_{n-2} F_{3}$, we conclude that $\left|E\left(\Gamma_{n}\right)\right|=F_{n+1}+\sum_{i=1}^{n-2} F_{i} F_{n+1-i}$.

In [15] it is proved that for $n \geqslant 1$,

$$
\begin{equation*}
\left|E\left(\Gamma_{n}\right)\right|=\frac{n F_{n+1}+2(n+1) F_{n}}{5} \tag{5}
\end{equation*}
$$

(The result is there stated for $n \geqslant 2$, but also holds for $n=1$.) Combining this formula with Proposition 3 we get the next result.

Corollary 4. For any $n \geqslant 1, n \neq 5$,

$$
F_{n+1}=\frac{5 \sum_{i=1}^{n-2} F_{i} F_{n+1-i}-2(n+1) F_{n}}{n-5} .
$$

Note that Corollary 4 indeed holds also for $n=1,2$ since in these two cases the above sum vanishes and we get $F_{2}=1=-4 /(1-5)$ and $F_{3}=2=-6 /(2-5)$.

We continue by counting the number of squares in the Fibonacci cubes.
Proposition 5. For any $n \geqslant 1$,

$$
\left|S\left(\Gamma_{n}\right)\right|=-\frac{3 n}{25} F_{n+1}+\left(\frac{n^{2}}{10}+\frac{3 n}{50}-\frac{1}{25}\right) F_{n} .
$$

Proof. The right-hand side of the equality is 0 for $n=1$ and $n=2$, so the assertion holds for Γ_{1} and Γ_{2}. Let $n \geqslant 3$ and assume that it holds for all indices smaller than n. By induction, using (2) and (5), we thus have

$$
\begin{aligned}
\left|S\left(\Gamma_{n}\right)\right|= & -\frac{3(n-1)}{25} F_{n}+\left(\frac{(n-1)^{2}}{10}+\frac{3(n-1)}{50}-\frac{1}{25}\right) F_{n-1} \\
& -\frac{3(n-2)}{25} F_{n-1}+\left(\frac{(n-2)^{2}}{10}+\frac{3(n-2)}{50}-\frac{1}{25}\right) F_{n-2} \\
& +\frac{(n-2) F_{n-1}+2(n-1) F_{n-2}}{5} \\
= & -\frac{3(n-1)}{25} F_{n}+\frac{5 n^{2}-3 n-8}{50} F_{n-1}+\frac{5 n^{2}+3 n-8}{50} F_{n-2} \\
= & -\frac{3 n}{25} F_{n-1}+\frac{5 n^{2}-3 n-2}{50} F_{n} \\
= & -\frac{3 n}{25} F_{n+1}+\frac{5 n^{2}+3 n-2}{50} F_{n} .
\end{aligned}
$$

The number of squares of Γ_{n} can also be expressed as follows.
Proposition 6. For any $n \geqslant 3$,

$$
\left|S\left(\Gamma_{n}\right)\right|=\sum_{i=1}^{n-2} F_{i}\left|E\left(\Gamma_{n-1-i}\right)\right| .
$$

Proof. We again proceed by induction and first observe that for $n=3$ and $n=4$ the sum returns 1 and 3 , respectively. Let b_{n} and c_{n} denote the number of edges and squares of Γ_{n}, respectively. Then for $n \geqslant 5$ we use (2) and proceed as follows:

$$
\begin{aligned}
c_{n} & =\sum_{i=1}^{n-3} F_{i} b_{n-2-i}+\sum_{i=1}^{n-4} F_{i} b_{n-3-i}+b_{n-2} \\
& =F_{1} b_{n-3}+\sum_{i=2}^{n-3}\left(F_{i}+F_{i-1}\right) b_{n-2-i}+F_{1} b_{n-2} \\
& =F_{1} b_{n-2}+F_{2} b_{n-3}+\sum_{i=3}^{n-2} F_{i} b_{n-1-i} .
\end{aligned}
$$

Note that by combining Propositions 3 and 6, the number of squares of Γ_{n} can be expressed using Fibonacci numbers only.

3.2. Lucas cubes

For the Lucas cubes we have $\left|V\left(\Lambda_{n}\right)\right|=L_{n}$, see [15]. The following expression for the number of its edges was obtained using (3). However, we will follow an alternative argument.

Proposition 7. For any $n \geqslant 2$,

$$
\left|E\left(\Lambda_{n}\right)\right|=\sum_{i=1}^{n-1} F_{i} L_{n-1-i}
$$

Proof. In [15, Proposition 4(ii)] it is shown that $\left|E\left(\Lambda_{n}\right)\right|=n F_{n-1}, n \geqslant 2$, hence we are going to show that $\sum_{i=1}^{n-1} F_{i} L_{n-1-i}=n F_{n-1}$. Clearly, the equality holds for $n=2,3$ and for the induction step we compute as follows:

$$
\begin{aligned}
\sum_{i=1}^{n-1} F_{i} L_{n-1-i} & =L_{n-2}+L_{n-3}+\sum_{i=3}^{n-1}\left(F_{i-1}+F_{i-2}\right) L_{n-1-i} \\
& =L_{n-2}+\sum_{i=1}^{n-2} F_{i} L_{n-2-i}+\sum_{i=1}^{n-3} F_{i} L_{n-3-i} \\
& =L_{n-2}+(n-1) F_{n-2}+(n-2) F_{n-3} .
\end{aligned}
$$

Since $L_{n-2}=F_{n-2}+2 F_{n-3}$, the result follows.
Combining Proposition 7 with [15, Proposition 4(ii)] we immediately get the following consequence. Since the identity is quite nice, we suspect that it could be previously known.

Corollary 8. For any $n \geqslant 2$,

$$
F_{n}=\frac{1}{n-1} \sum_{i=1}^{n-1} F_{i} L_{n-i}
$$

For the number of squares of Λ_{n} we have:
Proposition 9. For any $n \geqslant 5$,

$$
\left|S\left(\Lambda_{n}\right)\right|=\sum_{i=0}^{n-4} L_{i}\left|E\left(\Gamma_{n-3-i}\right)\right| .
$$

Proof. Combining Eq. (4) with Proposition 6, setting b_{n} for the number of edges of Γ_{n}, and c_{n}^{\prime} for the number of squares of Λ_{n}, we have

$$
\begin{aligned}
c_{n}^{\prime} & =\sum_{i=1}^{n-3} F_{i} b_{n-2-i}+\sum_{i=1}^{n-5} F_{i} b_{n-4-i}+b_{n-3} \\
& =F_{1} b_{n-3}+F_{2} b_{n-4}+\sum_{i=1}^{n-5}\left(F_{i}+F_{i+2}\right) b_{n-4-i}+b_{n-3} \\
& =L_{0} b_{n-3}+L_{1} b_{n-4}+\sum_{i=1}^{n-5}\left(F_{i}+F_{i+2}\right) b_{n-4-i} .
\end{aligned}
$$

Since $F_{i}+F_{i+2}=L_{i+1}$, the result follows.

3.3. Extended Fibonacci cubes

As we already mentioned, $\Gamma_{n}^{i}=\Gamma_{n-i} \square Q_{i}$ holds for $n \geqslant i \geqslant 0$. Therefore, counting vertices, edges, and squares of extended Fibonacci cubes reduces to the corresponding problems in Fibonacci cubes. More precisely, using only basic properties of the Cartesian product, cf. [7], the following equalities are straightforward:

$$
\begin{aligned}
\left|V\left(\Gamma_{n}^{i}\right)\right| & =\left|V\left(\Gamma_{n-i}\right)\right| \cdot\left|V\left(Q_{i}\right)\right|=F_{n+2-i} 2^{i} ; \\
\left|E\left(\Gamma_{n}^{i}\right)\right| & =\left|V\left(\Gamma_{n-i}\right)\right| \cdot\left|E\left(Q_{i}\right)\right|+\left|E\left(\Gamma_{n-i}\right)\right| \cdot\left|V\left(Q_{i}\right)\right| \\
& =F_{n+2-i} i 2^{i-1}+\left|E\left(\Gamma_{n-i}\right)\right| 2^{i} ; \\
\left|S\left(\Gamma_{n}^{i}\right)\right| & =\left|V\left(\Gamma_{n-i}\right)\right| \cdot\left|S\left(Q_{i}\right)\right|+\left|E\left(\Gamma_{n-i}\right)\right| \cdot\left|E\left(Q_{i}\right)\right|+\left|S\left(\Gamma_{n-i}\right)\right| \cdot\left|V\left(Q_{i}\right)\right| \\
& =F_{n+2-i} i(i-1) 2^{i-3}+\left|E\left(\Gamma_{n-i}\right)\right| i 2^{i-1}+\left|S\left(\Gamma_{n-i}\right)\right| 2^{i} .
\end{aligned}
$$

References

[1] H.-J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501-510.
[2] F.R.K. Chung, R.L. Graham, M.E. Saks, Dynamic search in graphs, in: H. Wilf (Ed.), Discrete Algorithms and Complexity, Academic Press, New York, 1987, pp. 351-387.
[3] E. Dedó, D. Torri, N. Zagaglia Salvi, The observability of the Fibonacci and the Lucas cubes, Discrete Math. 255 (2002) 55-63.
[4] P. Hell, Absolute retracts in graphs, Lecture Notes in Math. 406 (1974) 291-301.
[5] W.-J. Hsu, Fibonacci cubes-a new interconnection topology, IEEE Trans. Parallel Distr. Systems 4 (1993) 3-12.
[6] W.-J. Hsu, C.V. Page, J.-S. Liu, Fibonacci cubes-a class of self-similar graphs, Fibonacci Quart. 31 (1993) 65-72.
[7] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[8] S. Klavžar, H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comput. 30 (1999) 103-127.
[9] S. Klavžar, P. Žigert, Fibonacci cubes are the resonance graphs of fibonaccenes, Fibonacci Quart., 2005, in press.
[10] J. Liu, W.-J. Hsu, M.J. Chung, Generalized Fibonacci cubes are mostly hamiltonian, J. Graph Theory 18 (1994) 817-829.
[11] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204.
[12] H.M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980.
[13] H.M. Mulder, The expansion procedure for graphs, in: R. Bodendiek (Ed.), Contemporary Methods in Graph Theory, Wissenschaftsverlag, Mannhaim, 1990, pp. 459-477.
[14] H.M. Mulder, A. Schrijver, Median graphs and Helly hypergraphs, Discrete Math. 25 (1979) 41-50.
[15] E. Munarini, C. Perelli Cippo, N. Zagaglia Salvi, On the Lucas cubes, Fibonacci Quart. 39 (2001) 12-21.
[16] E. Munarini, N. Zagaglia Salvi, Structural and enumerative properties of the Fibonacci cubes, Discrete Math. 255 (2002) 317-324.
[17] M.S. Tong, C.H. Liu, T.Y. Fan, Z.C. Huang, An algorithm for finding parallel paths between two nodes in Fibonacci cubes, J. Beijing Inst. Technol. 19 (1999) 180-185 (in Chinese).
[18] C. Whitehead, N. Zagaglia Salvi, Observability of the extended Fibonacci cubes, Discrete Math. 266 (2003) 431-440.
[19] J. Wu, Extended Fibonacci cubes, IEEE Trans. Parallel Distr. Systems 8 (1997) 3-9.

[^0]: Supported in part by the Ministry of Science of Slovenia under Grant P1-0297.
 E-mail address: sandi.klavzar@uni-mb.si.

